Supporting Information

A composite approach towards a complete model of the myosin rod

E. Nihal Korkmaz^{a,1}, Keenan C. Taylor^{b,1}, Michael P. Andreas^b, Guatam Ajay^b, Nathan T. Heinze^b, Qiang Cui^a, and Ivan Rayment^{b*}

Affiliations

^aDepartment of Chemistry and Theoretical Chemistry Institute, University of Wisconsin, Madison, WI 53706, USA ^bDepartment of Biochemistry, University of Wisconsin, 433 Babcock Drive, Madison, WI 53706, USA

Corresponding Author

*Dr. Ivan Rayment, Department of Biochemistry, University of Wisconsin, 433 Babcock Drive, Madison, WI 53706, USA, Tel:608-262-0437, <u>ivan_rayment@biochem.wisc.edu</u> or

Dr. Qiang Cui, Department of Chemistry and Theoretical Chemistry Institute, University of Wisconsin, Madison, WI 53706, USA, Tel:608-262-9801, cui@chem.wisc.edu

Figure S1. Distribution of clusters among three independent trajectories where each panel constitutes the conformations from a different simulation.

Figure S2. D_{COM} for the three independent simulations of the composite model. See Figure 8 for average over conformations from all 3 simulations.

Figure S3. Super helical pitch for the three independent simulations of the composite model. These were calculated and averaged over the conformations of each individual simulation. See Figure 8 for average over conformations from all three simulations.

Table S1. Potential charged interactions within the rod

Residue pairs that are within 4.5 Å according to the average distance between the center of mass of nitrogen atoms (NH1, NH2) of Arginine, nitrogen atom (NZ) of Lysine and center of mass of oxygen atoms from Glutamate (OE1, OE2) and Aspartate (OD1, OD2) are listed. The distances are averaged over a combined trajectory of three independent simulations.

	Residue number and Type	Residue number and Type	Distance (Å)
Between	1526 5 ()	1527 IZ ()	4.0 ± 0.8
helices	1536 E (g)	1537 K (a)	
	1537 K (a)	1536 E (g)	4.0 ± 0.9
	1579 K (a)	1580 E (b)	4.4 ± 0.9
	1580 D (b)	1579 K (a)	4.4 ± 1.0
	1604 E (d)	1608 R (a)	4.0 ± 0.3
	1608 R (a)	1604 E (d)	4.0 ± 0.4
Within 1 st			4.0 1.1
helix	1602 D (b)	1606 R (f)	4.8 ± 1.1
	1615 K (a)	1619 E (e)	5.0 ± 1.5
Within			<i>1</i> 0 11
2 nd helix	1602 D (b)	1606 R (f)	4.0 ± 1.1
	1615 K (a)	1619 E (e)	5.0 ± 1.5

Table S2. Potential hydrophobic interactions within the rod

The hydrophobic interactions within the rod were evaluated by the average minimum distances between the hydrophobic side-chains from each helix. The pairs of residues within 5 Å are shown. The distances are averaged over a combined trajectory of three independent simulations.

Residue	Residue number			num	ber	D		
and	Гуре		and [Гуре		Distance	(A)	
1527	E	(e)	1530	E	(e)	4.52	±	2.2
1529	V	(g)	1530	V	(g)	2.60	±	0.3
1530	R	(a)	1527	R	(a)	4.76	±	2.1
1530	R	(a)	1529	R	(a)	2.60	±	0.3
1530	R	(a)	1530	R	(a)	3.54	±	0.6
1530	R	(a)	1533	R	(a)	2.89	±	0.5
1533	L	(d)	1530	L	(d)	2.94	±	0.5
1533	L	(d)	1533	L	(d)	2.32	±	0.2
1533	L	(d)	1534	L	(d)	2.91	±	0.5
1533	L	(d)	1537	L	(d)	2.73	±	0.4
1534	E	(e)	1533	E	(e)	2.87	±	0.4
1536	E	(g)	1537	E	(g)	2.16	±	0.6
1537	K	(a)	1533	K	(a)	2.78	±	0.4
1537	K	(a)	1536	K	(a)	2.17	±	0.6
1537	K	(a)	1537	K	(a)	3.75	±	0.7
1537	K	(a)	1540	K	(a)	2.56	±	0.3
1540	L	(d)	1537	L	(d)	2.56	±	0.3
1540	L	(d)	1540	L	(d)	2.43	±	0.3

1540	L	(d)	1541	L	(d)	2.71	±	0.4
1540	L	(d)	1544	L	(d)	2.58	±	0.3
1541	Q	(e)	1540	Q	(e)	2.73	±	0.4
1543	А	(g)	1544	А	(g)	2.73	±	0.4
1544	L	(a)	1540	L	(a)	2.59	±	0.3
1544	L	(a)	1543	L	(a)	2.84	±	0.5
1544	L	(a)	1544	L	(a)	2.73	±	0.3
1544	L	(a)	1547	L	(a)	3.24	±	0.5
1547	А	(d)	1544	А	(d)	3.28	±	0.5
1547	А	(d)	1547	А	(d)	2.90	±	0.5
1547	А	(d)	1548	А	(d)	4.60	±	0.7
1547	А	(d)	1551	А	(d)	3.97	±	0.8
1548	E	(e)	1547	E	(e)	4.69	±	0.7
1550	S	(g)	1551	S	(g)	2.90	±	0.6
1551	L	(a)	1547	L	(a)	4.03	±	0.9
1551	L	(a)	1550	L	(a)	2.95	±	0.7
1551	L	(a)	1551	L	(a)	2.66	±	0.4
1551	L	(a)	1554	L	(a)	2.95	±	0.7
1554	E	(d)	1551	E	(d)	4.95	±	4.1
1557	K	(g)	1558	K	(g)	4.18	±	1.5
1558	Ι	(a)	1554	Ι	(a)	3.59	±	1.3
1558	Ι	(a)	1557	Ι	(a)	4.28	±	1.4
1558	Ι	(a)	1558	Ι	(a)	2.40	±	0.3
1558	Ι	(a)	1561	Ι	(a)	4.80	±	2.1
1561	А	(d)	1558	А	(d)	3.96	±	1.4
1561	А	(d)	1562	А	(d)	4.85	±	1.0
1562	Q	(e)	1561	Q	(e)	4.91	±	1.1

1565	F	(a)	1561	F	(a)	4.95	±	2.1
1565	F	(a)	1562	F	(a)	4.60	±	2.1
1565	F	(a)	1565	F	(a)	2.81	±	0.3
1565	F	(a)	1568	F	(a)	4.79	±	2.2
1568	Ι	(d)	1565	Ι	(d)	4.32	±	2.1
1568	Ι	(d)	1569	Ι	(d)	3.25	±	0.8
1569	K	(e)	1565	K	(e)	4.49	±	1.8
1569	K	(e)	1568	K	(e)	3.15	±	0.7
1569	K	(e)	1572	K	(e)	3.61	±	1.1
1572	Ι	(a)	1569	Ι	(a)	3.31	±	0.9
1572	Ι	(a)	1572	Ι	(a)	2.34	±	0.2
1572	Ι	(a)	1573	Ι	(a)	3.92	±	1.0
1572	Ι	(a)	1576	Ι	(a)	3.45	±	1.1
1573	Е	(b)	1572	Е	(b)	3.78	±	0.9
1575	K	(d)	1576	K	(d)	2.67	±	0.4
1576	L	(e)	1572	L	(e)	3.17	±	1.0
1576	L	(e)	1575	L	(e)	2.66	±	0.4
1576	L	(e)	1576	L	(e)	2.71	±	0.3
1576	L	(e)	1579	L	(e)	2.88	±	0.5
1579	Κ	(a)	1576	K	(a)	2.83	±	0.5
1579	K	(a)	1579	K	(a)	2.85	±	0.6
1579	K	(a)	1580	K	(a)	2.43	±	0.8
1579	K	(a)	1583	K	(a)	3.38	±	0.6
1580	D	(b)	1579	D	(b)	2.39	±	0.8
1582	E	(c)	1583	E	(c)	2.86	±	0.7
1583	М	(d)	1579	М	(d)	3.36	±	0.7
1583	М	(d)	1582	Μ	(d)	2.89	±	0.7

1583	М	(d)	1583	М	(d)	2.58	±	0.3
1583	М	(d)	1586	М	(d)	3.24	±	0.8
1586	А	(g)	1583	А	(g)	3.17	±	0.8
1586	А	(g)	1587	А	(g)	4.67	±	0.8
1587	K	(a)	1586	K	(a)	4.66	±	0.8
1587	K	(a)	1590	K	(a)	4.16	±	2.1
1590	Н	(d)	1587	Н	(d)	4.11	±	1.9
1590	Н	(d)	1590	Н	(d)	2.63	±	0.3
1590	Н	(d)	1594	Н	(d)	4.14	±	0.9
1593	V	(g)	1594	V	(g)	2.74	±	0.4
1594	V	(a)	1590	V	(a)	4.01	±	0.9
1594	V	(a)	1593	V	(a)	2.69	±	0.4
1594	V	(a)	1594	V	(a)	2.77	±	0.5
1594	V	(a)	1597	V	(a)	2.65	±	0.4
1597	L	(d)	1594	L	(d)	2.62	±	0.4
1597	L	(d)	1597	L	(d)	2.32	±	0.2
1597	L	(d)	1598	L	(d)	2.87	±	0.5
1597	L	(d)	1601	L	(d)	2.80	±	0.4
1598	Q	(e)	1597	Q	(e)	2.83	±	0.5
1600	S	(g)	1601	S	(g)	2.75	±	0.4
1601	L	(a)	1597	L	(a)	2.73	±	0.4
1601	L	(a)	1600	L	(a)	2.67	±	0.4
1601	L	(a)	1601	L	(a)	2.83	±	0.3
1601	L	(a)	1604	L	(a)	2.70	±	0.4
1604	E	(d)	1601	E	(d)	2.68	±	0.3
1604	Е	(d)	1604	E	(d)	2.36	±	0.2
1604	E	(d)	1605	Е	(d)	2.73	±	0.5

1604	E	(d)	1608	E	(d)	1.81	±	0.1
1605	Т	(e)	1604	Т	(e)	2.83	±	0.5
1607	S	(g)	1608	S	(g)	2.68	±	0.4
1608	R	(a)	1604	R	(a)	1.82	±	0.1
1608	R	(a)	1607	R	(a)	2.62	±	0.3
1608	R	(a)	1608	R	(a)	2.50	±	0.3
1608	R	(a)	1611	R	(a)	3.87	±	0.7
1611	А	(d)	1608	А	(d)	3.48	±	0.7
1611	А	(d)	1611	А	(d)	2.89	±	0.5
1611	А	(d)	1612	А	(d)	3.87	±	0.9
1611	А	(d)	1615	А	(d)	4.72	±	1.1
1612	L	(e)	1611	L	(e)	3.94	±	0.9
1614	V	(g)	1615	V	(g)	2.62	±	0.5
1615	Κ	(a)	1611	K	(a)	4.30	±	1.1
1615	Κ	(a)	1614	K	(a)	2.64	±	0.5
1615	Κ	(a)	1615	K	(a)	4.12	±	1.2
1615	Κ	(a)	1618	K	(a)	3.12	±	0.8
1618	Μ	(d)	1615	М	(d)	3.02	±	0.7
1618	М	(d)	1618	М	(d)	2.64	±	0.4
1618	Μ	(d)	1619	М	(d)	3.00	±	0.8
1618	Μ	(d)	1622	М	(d)	2.89	±	0.6
1619	Е	(e)	1618	E	(e)	2.97	±	0.8
1621	D	(g)	1622	D	(g)	3.37	±	0.7
1622	L	(a)	1618	L	(a)	2.89	±	0.6
1622	L	(a)	1621	L	(a)	3.35	±	0.7
1622	L	(a)	1622	L	(a)	2.56	±	0.4
1622	L	(a)	1625	L	(a)	2.78	±	0.5

1625	М	(d)	1622	М	(d)	2.79	±	0.5
1625	М	(d)	1625	М	(d)	2.57	±	0.4
1625	Μ	(d)	1626	М	(d)	3.05	±	0.8
1625	М	(d)	1629	М	(d)	2.67	±	0.4
1626	Е	(e)	1625	E	(e)	3.02	±	0.8
1628	Q	(g)	1629	Q	(g)	2.67	±	0.4
1629	L	(a)	1625	L	(a)	2.70	±	0.5
1629	L	(a)	1628	L	(a)	2.67	±	0.4
1629	L	(a)	1629	L	(a)	2.75	±	0.4
1629	L	(a)	1632	L	(a)	3.23	±	0.6
1632	А	(d)	1629	А	(d)	3.27	±	0.6
1632	А	(d)	1632	А	(d)	2.76	±	0.4
1632	А	(d)	1633	А	(d)	3.82	±	0.6
1632	А	(d)	1636	А	(d)	4.18	±	0.9
1633	Ν	(e)	1632	N	(e)	3.83	±	0.6
1635	Μ	(g)	1636	М	(g)	2.80	±	0.5
1635	Μ	(g)	1640	М	(g)	3.73	±	1.2
1636	А	(a)	1632	А	(a)	4.22	±	0.9
1636	А	(a)	1635	А	(a)	2.80	±	0.5
1636	А	(a)	1636	А	(a)	2.79	±	0.5
1639	А	(d)	1639	А	(d)	2.49	±	0.3
1639	А	(d)	1640	А	(d)	4.10	±	1.0
1639	А	(d)	1643	А	(d)	3.70	±	1.0
1640	Q	(e)	1635	Q	(e)	3.76	±	1.2
1640	Q	(e)	1639	Q	(e)	4.05	±	1.0
1642	Q	(g)	1643	Q	(g)	2.84	±	0.5
1643	V	(a)	1639	V	(a)	3.69	±	0.9

1643	V	(a)	1642	V	(a)	2.86	±	0.5
1643	V	(a)	1643	V	(a)	2.48	±	0.3
1643	V	(a)	1646	V	(a)	2.70	±	0.4
1646	L	(d)	1643	L	(d)	2.68	±	0.4
1646	L	(d)	1646	L	(d)	2.40	±	0.2
1646	L	(d)	1647	L	(d)	2.85	±	0.5
1646	L	(d)	1650	L	(d)	2.63	±	0.3
1647	Q	(e)	1646	Q	(e)	2.88	±	0.5
1649	L	(g)	1650	L	(g)	2.52	±	0.3
1650	L	(a)	1646	L	(a)	2.61	±	0.3
1650	L	(a)	1649	L	(a)	2.52	±	0.3
1650	L	(a)	1650	L	(a)	2.71	±	0.3
1650	L	(a)	1653	L	(a)	2.98	±	0.4
1653	Т	(d)	1650	Т	(d)	2.98	±	0.4
1653	Т	(d)	1653	Т	(d)	2.49	±	0.3
1653	Т	(d)	1654	Т	(d)	3.12	±	0.6
1653	Т	(d)	1657	Т	(d)	2.70	±	0.4
1654	Q	(e)	1653	Q	(e)	3.17	±	0.6
1656	Q	(g)	1657	Q	(g)	2.57	±	0.3
1657	L	(a)	1653	L	(a)	2.72	±	0.4
1657	L	(a)	1656	L	(a)	2.57	±	0.3
1657	L	(a)	1657	L	(a)	2.65	±	0.3
1657	L	(a)	1660	L	(a)	3.23	±	0.4
1660	А	(d)	1657	А	(d)	3.20	±	0.4
1660	А	(d)	1660	А	(d)	2.75	±	0.4
1660	А	(d)	1661	А	(d)	3.60	±	0.6
1660	А	(d)	1664	А	(d)	3.96	±	0.7

1661	V	(e)	1660	V	(e)	3.64	±	0.6
1663	А	(g)	1664	А	(g)	3.12	±	0.6
1664	N	(a)	1660	N	(a)	3.94	±	0.7
1664	N	(a)	1663	N	(a)	3.13	±	0.6
1664	N	(a)	1664	N	(a)	2.27	±	0.6
1664	N	(a)	1667	N	(a)	3.16	±	0.6
1667	L	(d)	1664	L	(d)	3.12	±	0.6
1667	L	(d)	1667	L	(d)	2.39	±	0.2
1667	L	(d)	1668	L	(d)	2.97	±	0.5
1667	L	(d)	1671	L	(d)	2.64	±	0.5
1668	K	(e)	1667	K	(e)	3.00	±	0.6
1670	N	(g)	1671	N	(g)	3.11	±	0.7
1671	Ι	(a)	1667	Ι	(a)	2.62	±	0.4
1671	Ι	(a)	1670	Ι	(a)	3.12	±	0.7
1671	Ι	(a)	1671	Ι	(a)	2.35	±	0.2
1671	Ι	(a)	1674	Ι	(a)	3.28	±	0.9
1674	V	(d)	1671	V	(d)	3.23	±	0.8
1674	V	(d)	1674	V	(d)	2.52	±	0.3
1674	V	(d)	1675	V	(d)	3.67	±	0.8
1674	V	(d)	1678	V	(d)	3.40	±	0.8
1675	E	(e)	1674	E	(e)	3.73	±	0.8
1677	R	(g)	1678	R	(g)	3.16	±	0.7
1677	R	(g)	1682	R	(g)	4.89	±	1.8
1678	N	(a)	1674	N	(a)	3.42	±	0.8
1678	N	(a)	1677	N	(a)	3.22	±	0.7
1678	N	(a)	1678	N	(a)	2.45	±	0.5
1678	Ν	(a)	1681	Ν	(a)	3.08	±	0.5

1681	L	(d)	1	678	L	(d)	-	3.08	±	0.5
1681	L	(d)	1	681	L	(d)	/	2.45	±	0.3
1681	L	(d)	1	682	L	(d)	, ,	2.79	±	0.5
1681	L	(d)	1	685	L	(d)		2.54	±	0.3
1682	Q	(e)	1	677	Q	(e)	2	4.96	±	1.8
1682	Q	(e)	1	681	Q	(e)		2.83	±	0.5
1684	E	(g)	1	685	E	(g)	,	3.30	±	0.8
1684	E	(g)	1	689	E	(g)	2	4.22	±	2.9
1685	L	(a)	1	681	L	(a)		2.56	±	0.4
1685	L	(a)	1	684	L	(a)		3.40	±	0.8
1685	L	(a)	1	685	L	(a)		2.53	±	0.3
1685	L	(a)	1	688	L	(a)		3.16	±	0.8
1688	L	(d)	1	685	L	(d)		3.12	±	0.7
1688	L	(d)	1	688	L	(d)		2.55	±	0.4
1688	L	(d)	1	689	L	(d)	-	3.98	±	1.5
1689	R	(e)	1	684	R	(e)	2	4.35	±	2.9
1689	R	(e)	1	688	R	(e)	,	3.97	±	1.5

Residu	e number and Type	S.	ASA (Å ²)
1526	L	114.5	± 19.8
1538	М	127.4	± 12.1
1559	L	111.0	± 13.9
1563	L	110.0	± 9.5
1591	L	112.8	± 9.0
1612	L	98.5	± 11.0
1627	Ι	107.8	± 8.1
1635	М	97.4	± 17.4
1649	L	101.0	± 6.3
1655	Ι	106.2	± 8.1
1673	Ι	99.7	± 11.7
1680	L	113.6	± 10.0
1690	L	115.3	± 20.5
1702	М	127.6	± 12.0
1723	L	114.6	± 8.3
1727	L	111.2	± 9.2
1755	L	113.3	± 9.2
1776	L	98.1	± 11.1
1791	Ι	107.5	± 8.4
1799	М	98.5	± 17.4
1813	L	101.0	± 6.3
1819	Ι	106.9	± 7.9
1837	Ι	100.2	± 11.7
1844	L	113.6	± 10.1

Table S3. SASA ($Å^2$) of hydrophobic residues that are solvent exposed, averaged over a combined trajectory of three independent simulations.