Supplementary data for: Amino acid positions subject to multiple co-evolutionary constraints can be robustly identified by their eigenvector network centrality scores

Daniel J. Parente, J. Christian Ray, and Liskin Swint-Kruse

Software

Software implementing EVC analysis is available at both https://sourceforge.net/projects/coevolutils/ and https://github.com/djparente/coevol-utils. Software implementing the MARS-Prot algorithm is available at https://github.com/djparente/mars.

Supplementary Methods

MARS-Prot algorithm

List of Tables

MSA characteristics and subsampling controls	3
Comparison of top Lacl subfmaily MEW and EVC positions to mutational outcomes	3
Correlation of EVC scores with maximum edge weight for each position	4
Correlation of eigenvector centrality (EVC) scores with degree centrality (DC) scores	4
Maximum edge weight (MEW) fails to reconcile alternative algorithms	5
Comparison of Lacl/GalR top EVC positions to available experimental and computational data	6
	MSA characteristics and subsampling controls

2

List of Figures

S1	Phylogenetic trees for Lacl/Gal and Aldolase	8
S2	Comparison of pairwise co-evolution scores from the 90% and 50% ensembles	9
S3	Comparison of EVC and MEW scores for each position.	10
S4	Comparison of centrality scores: Aldolase	12
S5	Comparison of centrality scores: Lacl/GalR	12
S6	Correlation matrix, Pairwise-vs-Pairwise co-evolution scores: Aldolase	14
S7	Correlation matrix, Pairwise-vs-Pairwise co-evolution scores: Lacl/GalR	15
S8	Correlation matrix, Subtracted pairwise-vs-Subtracted pairwise co-evolution scores: Aldolase	16
S9	Correlation matrix, Subtracted pairwise-vs-Subtracted pairwise co-evolution scores: LacI/GaIR	17
S10	Comparison of the Lacl/GalR top 20 pairwise co-evolution scores and mutation outcomes	18
S11	Correlation matrix, EVC-vs-EVC co-evolution scores: Aldolase	20
S12	Correlation matrix, EVC-vs-EVC co-evolution scores: LacI/GaIR	21
S13	Correlation matrix, Subtracted EVC-vs-Subtracted EVC co-evolution scores: Aldolase	22
S14	Correlation matrix, Subtracted EVC-vs-Subtracted EVC co-evolution scores: Lacl/GaIR	23
S15	Global structural analysis of aldolase EVC scores	24
S16	Global structural analysis of Lacl/GlaR EVC scores	25

Supplementary Methods: MARS-Prot

Multiple sequence alignments (MSAs) allow aspects of protein sequence, structure and function to be understood in the context of their evolutionary history. Despite the many tools that automate MSA construction, producing accurate models for protein families with low sequence identity relationships (<30%) remains an open research question and still requires significant manual optimization. [1–3]

A second difficulty is that, once constructed, alignments are not static models. Extensive ongoing genomic sequencing and high-throughput structure determination [4] requires MSAs to be updated with new data. Many automated methods for constructing sequence alignments do not preserve prior, manual optimizations. To solve this problem, we developed the algorithm MARS-Prot (Maintainer of Alignments using Reference Sequences for Proteins), to facilitate the updating of manually-curated sequence alignments.

Our strategy for integrating new sequences into an existing alignment is to first align them against a "reference sequence" already present in the alignment. The reference sequence is then used to thread in the new sequences into the first, manually-adjusted ("target") MSA.

In practice, MARS-Prot accepts two FASTAformatted MSAs as input: the target alignment into which new sequences are to be integrated, and a "guide" alignment containing (a) a subset of sequences shared with the target alignment ("reference sequences") plus (b) new sequences to be added. Note that the reference sequence(s) must be identical in the two MSAs. Alignment of the two MSAs is accomplished using a modified form of the Needleman-Wunsch global alignment algorithm. [5] For a pair of sequences, an optimal alignment, A, can be found by maximizing the objective function:

$$z(A) = \sum_{i \cong j} [S(i,j)] + n_g p_g + n_r p_r$$
(1)

S(i, j) is the score assigned to every column *i* from

the target alignment aligned with column j in the guide alignment, n_g is the number of gaps, n_r is the number of insertions and p_g and p_r are (negatively-valued) gap and insertion penalties, respectively. For Needleman-Wunsch alignment of two sequences, S(i, j) is typically taken to be the value in a specified substitution matrix (e.g. BLOSUM62) for the two residues at aligned positions. S(i, j) can be generalized to perform profileprofile alignment by computing a profile sum-of-pairs score [6].

To incorporate constraints on that alignment derived from the reference sequences, the objective function was modified by setting:

$$y(A) = \sum_{i \cong j} [G(i, j)] + \delta * z(A)$$
(2)

G(i,j) describes constraints on the alignment. Reference sequences are weakly constrained to align with themselves. Formally, if alignment of column i in the target alignment with column j in the guide alignment causes N reference sequences to align correctly at that position, then G(i,j)=N. Delta (δ) is a constant chosen to require |S(i,j)|<1. This objective function therefore prioritizes maximization of constraints imposed by the reference sequences above maximization of substitution matrix scores.

Thus, constraints defined by the reference sequences are used to thread a sequence into the target alignment while allowing conventional profile-profile alignment to occur at regions of ambiguity (that is, at unconstrained columns). This objective function can be maximized using the Needleman-Wunsch algorithm [5] in O(nm) time and O(nm) space for two input MSAs containing n and m columns, respectively. In practice, the execution time of MARS-Prot is negligible (usually <10 seconds on real biological datasets).

Final alignments generated by MARS-Prot contain only one copy of each reference sequence. All alignments generated by automatic methods should be manually inspected prior to additional analyses.

# of sequences									
	Seq. ID.		Subs	ampled		Cor	relation (R^2)	²)	
Alignment	Range (%)	Full	90%	50%	ELSC	McBASC	OMES	SCA	ZNMI
Aldolase Lacl/GalR	19-99 19-99	1562 351	500 316	278 176	0.993 0.978	0.996 0.995	0.996 0.990	0.990 0.969	0.978 0.982

Table S1: MSA characteristics and subsampling controls. The two MSAs analyzed in this study were subjected to the ensemble-based co-evolution analysis (see Methods). The total number of sequences (full) in each of the alignments, as well as the number of sequences in the "90%" and "50%" ensembles are shown (see text for description of aldolase). The coefficient of determination (Pearson squared correlation coefficient, R^2) for the co-evolution scores in the large and small ensembles are also shown. The very high agreement indicates that MSA size and composition does not significantly influence co-evolutionary results. These data are shown graphically in Supplementary Figure S2.

		MEW		EVC
Rank	Position	Mutational Sensitivity	Position	Mutational Sensitivity
1	80	0.62	281	0.25
2	66	0.77	330	n.d.
3	63	0.17	226	0.42
4	253	0.67	112	0.00
5	152	0.15	126	0.00
6	281	0.25	242	0.54
7	112	0.00	162	0.00
8	254	0.53	204	0.00
9	226	0.42	202	0.08
10	126	0.00	105	0.00
11	202	0.08	88	1.00
12	113	0.38	234	0.00
13	24	0.46	103	0.00
14	162	0.00	108	0.00
15	108	0.00	317	0.00
16	242	0.53	63	0.17
17	267	0.46	139	0.50
18	40	0.08	267	0.46
19	163	0.17	113	0.38
20	258	0.00	230	0.08

Table S2: Comparison of top Lacl subfamily MEW and EVC positions to mutational outcomes. The top 20 consensus positions with largest maximum-edge weight (MEW) or eigenvector centrality (EVC) scores are shown, along with their mutational sensitivities. Mutational sensitivity is defined as the fraction of variants in the comprehensive Lacl mutagenesis data (which comprises 12 or 13 substitutions per position) with non-wild-type phenotypes [10]. Note that many of these positions have low mutational sensitivity (<25%, bold values), which indicates these are not important positions. This incongruent result likely arises from a large number of redundant sequences in the Lacl subfamily used for the calculations (see Methods in main text). "n.d.": Not determined.

	Coefficient of a	determination (Spearman R^2)
Method	Lacl/GalR	Aldolase
ELSC	0.72	0.78
McBASC	0.57	0.89
OMES	0.67	0.91
SCA	0.63	0.60
ZNMI	< 0.01	0.01

Table S3: Correlation of EVC scores with maximum edge weight for each position. The non-parametric coefficient of determination (Spearman R^2) is shown for the correlation between subtracted-network EVC scores and the maximum edge weight (pairwise co-evolution score) for each position. The correlation between MEW and EVC was inconsistent with respect to either algorithm- or family-specific outcomes. Several positions with high EVC scores would have been missed if the top pairwise co-evolution scores were thresholded. Thus, EVC calculations reveal a distinct (though overlapping) set of evolutionary constraints compared to pairwise co-evolution calculations. These data are shown graphically in Supplementary Figure S2.

	Coefficient of	determination (Spearman R^2)
Method	Lacl/GalR	Aldolase
ELSC	0.998	0.987
McBASC	0.999	0.990
OMES	0.999	0.986
SCA	0.999	0.997
ZNMI	0.996	0.996

Table S4: Correlation of eigenvector centrality scores (EVC) with degree centrality (DC) scores. For each algorithm (row) and protein family (column), the non-parametric coefficient of determination (Spearman R^2) is shown for the correlation between EVC and DC scores. Both EVC and DC scores were calculated from the subtracted, pairwise co-evolution networks. Degree centrality is not robust to renormalization in the ZNMI method, but all other comparisons show strong agreement between the centrality scores. These data are shown graphically in Supplementary Figs. S4-S5.

Coefficient of determination (Spearman						R^2)		
				Aldolase		l	_acl/GalF	2
Algorithms			ALL	MEW	EVC	ALL	MEW	EVC
ELSC	VS	McBASC	0.48	0.58	0.74	0.09	0.27	0.50
ELSC	VS	OMES	0.64	0.65	0.78	0.37	0.57	0.73
ELSC	VS	SCA	0.19	0.40	0.43	0.02	0.31	0.32
ELSC	VS	ZNMI	0.44	0.01	0.79	0.23	0.21	0.60
McBASC	VS	OMES	0.59	0.66	0.75	0.14	0.21	0.38
McBASC	VS	SCA	0.20	0.14	0.26	0.08	0.05	0.36
McBASC	VS	ZNMI	0.48	0.03	0.69	0.18	0.51	0.34
OMES	VS	SCA	0.25	0.40	0.31	0.31	0.30	0.55
OMES	VS	ZNMI	0.50	0.04	0.85	0.46	0.19	0.69
SCA	VS	ZNMI	0.35	0.01	0.61	0.18	0.03	0.47
Median	ovement		-0.02	0.22		0.03	0.29	

Table S5: Maximum edge weight (MEW) fails to reconcile alternative algorithms. Correlation between ALL pairwise co-evolution scores (unsubtracted), MEW scores, and subtracted EVC scores are compared. The median improvements (as compared to the correlation between ALL edges) for MEW and EVC scores are shown in the last row. MEW scores fail to reconcile disagreement between alternative algorithms.

Table S6: Comparison of LacI/GalR top eigenvector central positions to available experimental and computational data. Positions fall into three classes: those (I) involved in DNA binding, (II) involved in allosteric propagation, and (III) involved in allosteric effector binding. Structural contacts at the DNA and allosteric effector binding sites and across the inter-monomer interface were determined from analysis of LacI, CcpA, PurR and TreR structures, as described in [7]. The "core pivot" is a "hinge" of three strands near the allosteric effector binding site that undergoes conformational change to rearrange the N- and C-regulatory subdomains from an "open" to "closed" conformation around the allosteric effector ligand; it includes positions 161-164, 290-293 and 318-322. [8]. IPTG, isopropyl β -D-1-thiogalactopyranoside; ONPF, orthonitrophenyl- β -D-fucopyranoside; I^s phenotype, loss of allosteric response to effector binding; SBMD, Stochastic boundary molecular dynamics; TMD, targeted molecular dynamics.

Position	Evidence Type	System	Description	References
			Class I DNA Binding	
17	Structural Mutational	Lacl Lacl	DNA contact Mutations reduce repression	[9] [10]
27	Mutational	Lacl	Mutation to Phe reduces repression	[10]
29	Structural	LacI/GalR	DNA contact	[9, 11]
	Mutational	Lacl	Many mutations reduce repression; Ala and Glu induce cold sensitivity	[10]
51	Structural	LacI/GalR	Linker region	[9, 11, 12]
	Mutational	Lacl	Many mutations reduce repression	[10]
	Mutational	Lacl/GalR	Mutants in many chimeric paralogs tune repression strength	[13]
	Mutational	Lacl	Mutants reduce repression	[10]
55	Structural	LacI/GalR	Linker region	[9, 11, 12]
	Mutational	PurŔ	Mutations abolish (Ile, Arg, Val) or enhance (Ala) DNA binding	[14]
	Mutational	PurR	Val mutants prevent PurR from forming func- tional dimers.	[14]
	Mutational	LacI/GaIR	Mutants in many chimeric paralogs tune repres- sion strength	[13]
	Mutational	Lacl	Mutations reduce or abolish DNA binding	[10]
57	Structural	LacI/GalR	DNA contact and in the linker region	[9, 11, 12]
	Mutational	Lacl	Many mutations abolish repression	[10]
		Cla	ss II Allosteric Propagation	
52	Structural Mutational	Lacl/GalR Lacl	Located in the hinge-helix of the linker Val52Cys disrupts allosteric response under ox- idizing conditions without impairing allosteric effector binding; Allostery is intact under re- ducing conditions	[9, 11, 12] [15]
	Mutational	Lacl	Various amino acid substitutions alter DNA binding affinity and specificity and/or impair allosteric response	[16]
	Mutational	Lacl/GalR	Mutants in many chimeric paralogs tune repres- sion strength	[13]
	Mutational	Lacl	Mutations yield I ^s phenotype or reduce repression strength	[10]
98	Structural	Lacl/GalR	Inter-monomer regulatory N-subdomain inter- face	[9, 11, 12]
	Computational Mutational	Lacl Lacl	Dynamic motions observed during TMD Critical for allosteric response propagation	[8] [17]

Continued on next page

	Tai	ble	S6 –	Continued	from	previous	page
--	-----	-----	------	-----------	------	----------	------

Mutational pencotype[10]117Structural Computational MutationalLacl/GaRLinker-regulatory domain interface[11, 12]118Computational MutationalLacl/GaRDynamic motions observed during TMD[8]119MutationalLaclGln117Trp in tryptophan-less Lach has compro- mised allosteric effector binding, despite the considerable distance between Gln117 and the allosteric effector binding.[10]157MutationalLaclMutations reduce repression[10]157MutationalLaclMutations to Leu and Ser are heat-sensitive type and/or are heat-sensitive[8, 9, 12, 19, 20]201StructuralLacl/GaRCore pivot[8, 9, 12, 19, 20]321StructuralLaclMutatis reduce repression, yield an 1 ⁶ pheno type and/or are heat-sensitive type and/or are heat-sensitive[21] 20]321StructuralLaclDynamic motions observed during TMD Mutational[8] 20]122StructuralCacpMutatis reduce repression, yield an 1 ⁶ pheno type and/or are heat-sensitive[21] 20]123StructuralCacpAEffector-ligand contacting site[19]124StructuralTargeted and stochastic boundary molecular hydrogen bonding in allosteric intermediate state[22] 21]125StructuralLaclMutations yield 1 ⁶ phenotype[10]126StructuralLaclMutations yield 1 ⁶ phenotype[10]127StructuralLaclMutational yield 1 ⁶ phenotype <th>Position</th> <th>Evidence Type</th> <th>System</th> <th>Description</th> <th>References</th>	Position	Evidence Type	System	Description	References
117 Structural Computational Mutational Lacl/GaIR Linker-regulatory domain interface [11, 12] 117 Computational Mutational Lacl Dynamic motions observed during TMD [8] 118 Mutational Lacl Mutational in tryptophan-less Lacl has compro- mised allosteric effector binding, despite the considerable distance between Gln117 and the allosteric effector binding site. [10] 157 Mutational Lacl Mutations reduce repression [10] 157 Mutational Lacl Mutations reduce repression, yield an 1° pheno- type and/or are heat-sensitive [10] 291 Structural Lacl/GaIR Core pivot [8] 9, 12, 19, 20] 321 Structural Lacl Dynamic motions observed during TMD Mutational [8] [10] 321 Structural Lacl Dynamic rescue function of incompetent Tyr282Asp repressor [10] 125 Structural CcpA Effector-ligand contacting site [20] 126 Structural CcpA Effector-ligand contacting site [21] 127 Structural Lacl Mutational [22] [22] Mutational Lacl <		Mutational	Lacl	Mutants reduce repression and/or yield an I^s	[10]
Computational Mutational Lacl Dynamic motions observed during TMD Gin117Trp in tryptophan-less Lacl has compro- mised allosteric effector binding, despite the considerable distance between Gin117 and the allosteric effector binding site. [10] 157 Mutational Lacl Mutations reduce repression type and/or are heat-sensitive [10] 291 Structural Lacl/GaIR Core pivot [8], 9, 12, 19, 20] 321 Structural Lacl/GaIR Core pivot [8], 9, 12, 19, 20] 321 Structural Lacl/GaIR Core pivot [8], 9, 12, 19, 20] 321 Structural Lacl/GaIR Core pivot [8], 9, 12, 19, 20] 321 Structural Lacl Mutants reduce repression, yield an 1 ^e pheno- type and/or are heat-sensitive [21] 321 Structural Lacl Mutants reduce repression, yield an 1 ^e pheno- type and/or are heat-sensitive [21] 321 Structural Lacl Targeted and stochastic boundary molecular dynamics (TMD and SBMD) reveals 125/149 [31] 325 Structural TeR Effector-ligand contacting site state [32] 326 Structural Lacl	117	Structural	Lacl/GalR	Linker-regulatory domain interface	[11, 12]
Mutational Lacl Gin117Trp in tryptophan-less Lacl has compromised allosteric effector binding, despite the considerable distance between Gin117 and the allosteric effector binding site. [10] 157 Mutational Lacl Mutations reduce repression [10] 291 Structural Lacl Mutations to Leu and Ser are heat-sensitive [10] 291 Structural Lacl/GaIR Core pivot [8, 9, 12, 19, 20] 321 Structural Lacl/GaIR Mutants reduce repression, yield an 1 ^e phenotype and/or are heat-sensitive [8, 9, 12, 19, 20] 321 Structural Lacl Dynamic motions observed during TMD [8] Mutational Lacl Mutants reduce repression, yield an 1 ^e phenotype and/or are heat-sensitive [21] Computational Lacl Mutants reduce repression, yield an 1 ^e phenotype and/or are heat-sensitive [21] 125 Structural CacpA Effector-ligand contacting site and stochastic boundary molecular dynamics (TMD and SBMD) reveals 125/149 [22] 126 Structural Lacl Mutations yield 1 ^e phenotype [10] 127 Structural Lacl Mutations yield 1 ^e phenotype [20] 128 Structural		Computational	Lacl	Dynamic motions observed during TMD	[8]
mised allosteric effector binding, despite the considerable distance between Gln117 and the allosteric effector binding site. Image: Construct of the construct of the considerable distance between Gln117 and the allosteric effector binding site. [10] 157 Mutational Lacl Mutations reduce repression [10] 291 Structural Lacl/GalR Core pivot [8, 9, 12, 19, 20] 321 Structural Lacl/GalR Core pivot [8, 9, 12, 19, 20] 321 Structural Lacl Mutants reduce repression, yield an l ³ pheno- type and/or are heat-sensitive [8] 321 Structural Lacl Dynamic motions observed during TMD [8] Mutational Lacl Mutants rescue function of incompetent Tyr282Asp repressor [10] 102 Structural CopA Effector-ligand contacting site functional [20] 102 Structural TreR Effector-ligand contacting site dynamics (TMD and SBMD) reveals 125/149 hydrogen bonding in allosteric intermediate state [21] 103 Structural Lacl Mutations yield 'f phenotype [10] 110 Lacl Mutations yield 'f phenotype [10] 111 Lacl Mutations yield 'f phenotype [10] 112 Structural Lacl Mutations yield 'f phenotype [10] <		Mutational	Lacl	GIn117Trp in tryptophan-less Lacl has compro-	[18]
Mutational Lacl Mutations reduce repression [10] 157 Mutational Lacl Mutations reduce repression [10] 291 Structural Lacl Mutations to Leu and Ser are heat-sensitive [8, 9, 12, 19, 20] 291 Mutational Lacl Mutations reduce repression, yield an 1 ^s phenotyty per and/or are heat-sensitive [10] 321 Structural Lacl/GalR Core pivot [8, 9, 12, 19, 20] 321 Structural Lacl/GalR Ore pivot [8, 9, 12, 19, 20] Computational Lacl Mutatis reduce repression, yield an 1 ^s phenotyty [21] Mutational Lacl Mutatis rescue function of incompetent Tyr282Asp repressor [21] Mutational Lacl Mutatis reduce repression, yield an 1 ^s phenotyty [21] 102 Structural TreR Effector-ligand contacting site [22] 125 Structural TreR Effector-ligand contacting site [22] 126 Structural Lacl 125Ala/149Ala mutant has reduced IPTG effector binding affinity and inverted response to anti-inducer ONPF [22]				mised allosteric effector binding, despite the	
Mutational Lacl Mutations reduce repression [10] 157 Mutational Lacl Mutations to Leu and Ser are heat-sensitive [10] 291 Structural Lacl/GalR Core pivot [8, 9, 12, 19, 20] 321 Structural Lacl Mutants reduce repression, yield an I ^s phenotype and/or are heat-sensitive [8, 9, 12, 19, 20] 321 Structural Lacl Dynamic motions observed during TMD [8] 321 Structural Lacl Dynamic motions observed during TMD [8] Mutational Lacl Mutants reduce repression, yield an I ^s phenotype and/or are heat-sensitive [21] Mutational Lacl Mutants reduce repression, yield an I ^s phenotype and/or are heat-sensitive [21] 125 Structural CocpA Effector-ligand contacting site [19] 126 Structural Lacl Targeted and stochastic boundary molecular dynamics (TMD and SBMD) reveals 125/149 [22] 127 Mutational Lacl 125Ala/149Ala mutant has reduced IPTG effector-ligand contacting site [19] 150 Structural Lacl				considerable distance between Gln117 and the	
Mutational 157 Lacl Mutational Lacl Mutations Lacl Mutations to Leu and Ser are heat-sensitive [10] [10] 291 Structural Mutational 201 Lacl/GalR Lacl/GalR Core pivot Core pivot Mutational Lacl Mutation reduce repression, yield an 1 ^s pheno- type and/or are heat-sensitive 20] [10] 321 Structural Mutational Mutational Mutational Lacl Lacl Dynamic motions observed during TMD Mutational [8] 9, 12, 19, 20] Computational Mutational Lacl Lacl Dynamic motions observed during TMD Mutational [8] 102 Structural Computational Lacl Mutants reduce repression, yield an 1 ^s pheno- type and/or are heat-sensitive [10] 102 Structural Computational Lacl CocpA Effector-ligand contacting site Infector-ligand contacting site Mutational [20] 125 Structural Computational Lacl 125Ala/149Ala mutant has reduced IPTG ef- fector binding affinity and inverted response to anti-inducer ONPF [10] Mutational Lacl Mutations yield 1 ^s phenotype [10] 150 Structural Lacl Galac Mutations yield 1 ^s phenotype [10] 160 Structural Lacl Galac Mutations yield 1 ^s phenotype [10] 161 Structural Lacl </td <td></td> <td></td> <td></td> <td>allosteric effector binding site.</td> <td></td>				allosteric effector binding site.	
157 Mutational Structural Lacl/GalR Core pivot [10] 291 Structural Lacl/GalR Core pivot [8, 9, 12, 19, 20] Mutational Lacl Mutatins reduce repression, yield an 1 ^s pheno- type and/or are heat-sensitive [10] 321 Structural Lacl/GalR Core pivot [8, 9, 12, 19, 20] 321 Structural Lacl/GalR Core pivot [8, 9, 12, 19, 20] Computational Mutational Lacl Dynamic motions observed during TMD [8] Mutational Lacl Mutatins rescue function of incompetent Tyr282Asp repressor [10] 102 Structural CcpA Effector-ligand contacting site TreR [20] 125 Structural CcpA Effector-ligand contacting site Mutational [21] 126 Structural TreR Effector-ligand contacting site fector binding affinity and inverted respone to anti-inducer ONPF [22] Mutational Lacl Mutations yield 1 ^s phenotype [10] 150 Structural TreR Effector-ligand contacting site fector binding affinity and inverted respone to anti-inducer ONPF [10] 160 Structural Lacl<		Mutational	Lacl	Mutations reduce repression	[10]
291 Structural Lacl/GalR Core pivot [8, 9, 12, 19, 20] Mutational Lacl Mutants reduce repression, yield an 1 ^r pheno-type and/or are heat-sensitive [10] 321 Structural Lacl/GalR Core pivot [8, 9, 12, 19, 20] 321 Structural Lacl/GalR Core pivot [8] 321 Structural Lacl/GalR Core pivot [8] Computational Lacl Dynamic motions observed during TMD [8] Mutational Lacl Mutants rescue function of incompetent Tyr282Asp repressor [10] Mutational Lacl Mutants reduce repression, yield an 1 ^s pheno-type and/or are heat-sensitive [20] Class III Allosteric Effector Binding 102 Structural CcpA Effector-ligand contacting site Tree [10] 125 Structural Lacl Targeted and stochastic boundary molecular state [22] Mutational Lacl 125Ala/149Ala mutant has reduced IPTG effector binding affinity and inverted response to anti-inducer ONPF [10] Mutational Lacl Mutations yield I' phenotype [10] 160 Structural Lacl <td>157</td> <td>Mutational</td> <td>Lacl</td> <td>Mutations to Leu and Ser are heat-sensitive</td> <td>[10]</td>	157	Mutational	Lacl	Mutations to Leu and Ser are heat-sensitive	[10]
Mutational Lacl Mutants reduce repression, yield an 1 ^s pheno- type and/or are heat-sensitive [10] 321 Structural Lacl/GalR Core pivot [8, 9, 12, 19, 20] 321 Structural Lacl/GalR Core pivot [8] Mutational Lacl Dynamic motions observed during TMD [8] Mutational Lacl Mutants rescue function of incompetent Tyr282Asp repressor [10] Mutational Lacl Mutants reduce repression, yield an 1 ^s pheno- type and/or are heat-sensitive [10] 102 Structural CcpA Effector-ligand contacting site TreR [20] 125 Structural CcpA Effector-ligand contacting site dynamics (TMD and SBMD) reveals 125/149 [22] Mutational Lacl 125Ala/149Ala mutant has reduced IPTG effector binding affinity and inverted response to anti-inducer ONPF [10] 150 Structural TreR Effector-ligand contacting site fector-bigand contacting site [10] 160 Structural Lacl Mutations yield I ^s phenotype [10] 150 Structural Lacl/GalR Adjacent to core pivot 20] 161 Structural Lacl	291	Structural	LacI/GalR	Core pivot	[8, 9, 12, 19,
Mutational Lacl Mutants reduce repression, yield an I* pheno- type and/or are heat-sensitive [10] 321 Structural Lacl/GalR Core pivot [8, 9, 12, 19, 20] 321 Structural Lacl Mutants rescue function of incompetent Tyr282Asp repressor [21] Mutational Lacl Mutants reduce repression, yield an I* pheno- type and/or are heat-sensitive [21] 102 Structural CcpA Effector-ligand contacting site Computational [20] 102 Structural TcrR Effector-ligand contacting site dynamics (TMD and SBMD) reveals 125/149 hydrogen bonding in allosteric intermediate state [22] Mutational Lacl Mutations yield I* phenotype [10] 150 Structural TreR Effector-ligand contacting site state [19] 160 Structural Lacl Mutations yield I* phenotype [10] 161 Structural Lacl Mutations yield I* phenotype [10] 161 Structural Lacl Mutations soberved during TMD [8] 193 Structural Lacl Effector-ligand contacting site ype [9] [10] 200 Struc		NA		NA	20]
321 Structural Lacl/GaIR Core pivot [8, 9, 12, 19, 20] 321 Structural Lacl/GaIR Core pivot [8] 201 Computational Lacl Dynamic motions observed during TMD [8] Mutational Lacl Mutants rescue function of incompetent [21] Mutational Lacl Mutants reduce repression, yield an 1 ^s phenotype and/or are heat-sensitive [20] Class III Allosteric Effector Binding 102 Structural CcpA Effector-ligand contacting site [19] 125 Structural TreR Effector-ligand contacting site [22] Mutational Lacl Targeted and stochastic boundary molecular dynamics (TMD and SBMD) reveals 125/149 hydrogen bonding in allosteric intermediate state Mutational Lacl 125Ala/149Ala mutant has reduced IPTG effector-ligand contacting site [19] 150 Structural TreR Effector-ligand contacting site [19] 150 Structural Lacl Mutations yield I ^s phenotype [10] 160 Structural Lacl Mutations yield I ^s phenotype [10] 161 Struc		Mutational	Laci	Mutants reduce repression, yield an 1° pheno-	[10]
321 Structural Lacl/Gain Core privit 20 Computational Lacl Dynamic motions observed during TMD [8] Mutational Lacl Mutants rescue function of incompetent [21] Tyr282Asp repressor Mutational Lacl Mutants reduce repression, yield an 1 ^s phenotype and/or are heat-sensitive [10] Class III Allosteric Effector Binding 102 Structural CcpA Effector-ligand contacting site [20] 125 Structural TreR Effector-ligand contacting site [19] Computational Lacl Targeted and stochastic boundary molecular [22] Mutational Lacl 125Ala/149Ala mutant has reduced IPTG effector binding affinity and inverted response to anti-inducer ONPF [10] Mutational Lacl Mutations yield I ^s phenotype [10] 150 Structural Lacl Mutations yield I ^s phenotype [10] 160 Structural Lacl Mutations yield I ^s phenotype [10] 161 Structural Lacl Mutations abolish repression or yield I ^s phenotype [10] 161 Structural Lacl<	201	Structural	Lack/CalP	type and/or are neat-sensitive	[0 0 10 10
Computational Lacl Dynamic motions observed during TMD [8] Mutational Lacl Mutants rescue function of incompetent [21] Mutational Lacl Mutants reduce repression, yield an 1 ^s phenotype and/or are heat-sensitive [10] 102 Structural CcpA Effector-ligand contacting site [10] 125 Structural TcR Effector-ligand contacting site [19] Computational Lacl Targeted and stochastic boundary molecular dynamics (TMD and SBMD) reveals 125/149 [22] Mutational Lacl 125Ala/149Ala mutant has reduced IPTG effector-ligand contacting site [10] 150 Structural TreR Effector-ligand contacting site [10] 150 Structural TreR Effector-ligand contacting site [10] 150 Structural TreR Effector-ligand contacting site [10] 160 Structural Lacl Mutations yield 1 ^s phenotype [10] 161 Structural Lacl Mutations abolish repression or yield 1 ^s phenotype [10] 161 Structural Lacl Mutations abolish repression or yield 1 ^s phenotype	521	Structural	Laci/ Gaik	Core pivol	[0, 9, 12, 19, 20]
Computational Laci Mutants rescue function of incompetent [21] Mutational CopA Effector-ligand contacting site [10] 125 Structural CopA Effector-ligand contacting site [19] Computational Laci Targeted and stochastic boundary molecular dynamics (TMD and SBMD) reveals 125/149 hydrogen bonding in allosteric intermediate state Mutational Laci 125Ala/149Ala mutant has reduced IPTG effector binding affinity and inverted response to anti-inducer ONPF [10] Mutational Laci Mutations yield I ^s phenotype [10] 150 Structural TreR Effector-ligand contacting site [19] 160 Structural Laci Mutations yield I ^s phenotype [10] 161 Struct		Computational	Lacl	Dynamic motions observed during TMD	20j [8]
Mutational Laci Mutants reduce repressor Interpretation of memorypetine [10] Mutational Laci Mutants reduce repressor [10] 102 Structural CcpA Effector-ligand contacting site [20] 125 Structural TreR Effector-ligand contacting site [19] Computational Laci Targeted and stochastic boundary molecular dynamics (TMD and SBMD) reveals 125/149 [22] Mutational Laci Targeted and stochastic boundary molecular dynamics (TMD and SBMD) reveals 125/149 [22] Mutational Laci 125Ala/149Ala mutant has reduced IPTG effector binding affinity and inverted response to anti-inducer ONPF [10] Mutational Laci Mutations yield I ^s phenotype [10] 150 Structural TreR Effector-ligand contacting site [19] Mutational Laci Mutations yield I ^s phenotype [10] [10] 160 Structural TreR Effector-ligand contacting site [9] Mutational Laci Mutations yield I ^s phenotype [10] 161 Structural Laci Effector-ligand contacting site [9] </td <td></td> <td>Mutational</td> <td>Lacl</td> <td>Mutants rescue function of incompetent</td> <td>[0]</td>		Mutational	Lacl	Mutants rescue function of incompetent	[0]
Mutational Lacl Mutants reduce repression, yield an I ^s pheno- type and/or are heat-sensitive [10] 102 Structural CcpA Effector-ligand contacting site [20] 125 Structural TreR Effector-ligand contacting site [19] 220 Structural TreR Effector-ligand contacting site [19] 221 Structural TreR Effector-ligand contacting site [19] 222 Mutational Lacl Targeted and stochastic boundary molecular [22] Mutational Lacl 125Ala/149Ala mutant has reduced IPTG effector binding affinity and inverted response to anti-inducer ONPF [22] Mutational Lacl Mutations yield I ^s phenotype [10] 150 Structural TreR Effector-ligand contacting site [19] 160 Structural Lacl Mutations yield I ^s phenotype [10] 161 Structural Lacl Mutations abolish repression or yield I ^s pheno- type [10] 161 Structural Lacl Dynamic motions observed during TMD [8] 193 Structural Lacl Dynamic motions observed during TMD <td></td> <td>matational</td> <td>Luci</td> <td>Tyr282Asp repressor</td> <td>[]</td>		matational	Luci	Tyr282Asp repressor	[]
type and/or are heat-sensitive Class III Allosteric Effector Binding 102 Structural CcpA Effector-ligand contacting site [20] 125 Structural TreR Effector-ligand contacting site [19] 126 Computational Lacl Targeted and stochastic boundary molecular dynamics (TMD and SBMD) reveals 125/149 hydrogen bonding in allosteric intermediate state [22] Mutational Lacl 125Ala/149Ala mutant has reduced IPTG effector binding affinity and inverted response to anti-inducer ONPF [10] Mutational Lacl Mutations yield I ⁶ phenotype [10] 150 Structural TreR Effector-ligand contacting site [19] 160 Structural Lacl Mutations yield I ⁶ phenotype [10] 161 Structural Lacl Mutations yield I ⁶ phenotype [10] 161 Structural Lacl Mutations observed during TMD [8] 193 Structural Lacl Dynamic motions observed during TMD [8] 193 Structural Lacl Dynamic motions observed during TMD [8] 204 Structural Lacl <td></td> <td>Mutational</td> <td>Lacl</td> <td>Mutants reduce repression, yield an l^s pheno-</td> <td>[10]</td>		Mutational	Lacl	Mutants reduce repression, yield an l^s pheno-	[10]
102 Structural CcpA Effector-ligand contacting site [20] 125 Structural TreR Effector-ligand contacting site [19] 226 Computational Lacl Targeted and stochastic boundary molecular dynamics (TMD and SBMD) reveals 125/149 hydrogen bonding in allosteric intermediate state [22] Mutational Lacl 125Ala/149Ala mutant has reduced IPTG effector binding affinity and inverted response to anti-inducer ONPF [10] 150 Structural TreR Effector-ligand contacting site [19] 150 Structural TreR Effector-ligand contacting site [19] 160 Structural Lacl Mutations yield I ^s phenotype [10] 161 Structural Lacl Mutations yield I ^s phenotype [10] 161 Structural Lacl Mutations solish repression or yield I ^s pheno-type [10] 161 Structural Lacl Dynamic motions observed during TMD [8] 193 Structural Lacl/GalR Effector-ligand contacting site [9] 204 Structural Lacl/GalR Effector-ligand contacting site [9] 205				type and/or are heat-sensitive	
102 Structural CcpA Effector-ligand contacting site [20] 125 Structural TreR Effector-ligand contacting site [19] Computational Lacl Targeted and stochastic boundary molecular dynamics (TMD and SBMD) reveals 125/149 hydrogen bonding in allosteric intermediate state [22] Mutational Lacl 125Ala/149Ala mutant has reduced IPTG ef- fector binding affinity and inverted response to anti-inducer ONPF [10] 150 Structural TreR Effector-ligand contacting site [19] 160 Structural Lacl Mutations yield 1 ^s phenotype [10] 160 Structural Lacl Mutations yield 1 ^s phenotype [10] 161 Structural Lacl Mutations yield 1 ^s phenotype [10] 161 Structural Lacl Mutations abolish repression or yield 1 ^s pheno- type [9] 193 Structural Lacl/GalR Effector-ligand contacting site [9, 12, 19] 200 Structural Lacl/GalR Effector-ligand contacting site [9, 12, 19] 193 Structural Lacl Dynamic motions observed during TMD [8] 200			Class	III Allosteric Effector Binding	
125 Structural Computational TreR Lacl Effector-ligand contacting site Targeted and stochastic boundary molecular dynamics (TMD and SBMD) reveals 125/149 hydrogen bonding in allosteric intermediate state [22] Mutational Lacl 125Ala/149Ala mutant has reduced IPTG ef- fector binding affinity and inverted response to anti-inducer ONPF [22] Mutational Lacl Mutations yield I ^s phenotype [10] 150 Structural TreR Effector-ligand contacting site [19] 160 Structural Lacl Mutations yield I ^s phenotype [10] 161 Structural Lacl Mutations yield I ^s phenotype [10] 161 Structural Lacl Mutations abolish repression or yield I ^s pheno- type [9] 193 Structural Lacl/GalR Effector-ligand contacting site [9] 193 Structural Lacl/GalR Effector-ligand contacting site [9] 193 Structural Lacl/GalR Effector-ligand contacting site [9] 200 Structural Lacl/GalR Effector-ligand contacting site [9] 204 Mutational Lacl Mutations observed during TMD [8]	102	Structural	СсрА	Effector-ligand contacting site	[20]
ComputationalLaclTargeted and stochastic boundary molecular dynamics (TMD and SBMD) reveals 125/149 hydrogen bonding in allosteric intermediate state[22]MutationalLacl125Ala/149Ala mutant has reduced IPTG ef- fector binding affinity and inverted response to anti-inducer ONPF[22]MutationalLacl125Ala/149Ala mutant has reduced IPTG ef- fector binding affinity and inverted response to anti-inducer ONPF[10]150StructuralTreREffector-ligand contacting site[19]160StructuralLaclMutations yield Is phenotype[10]160StructuralLaclMutations yield Is phenotype[10]161StructuralLaclMutations yield Is phenotype[10]161StructuralLaclEffector-ligand contacting site[9]161StructuralLaclDynamic motions observed during TMD[8]193StructuralLaclDynamic motions observed during TMD[8]193StructuralLaclMutations yield Is phenotype[10]200StructuralLacl/GalREffector-ligand contacting site[9, 12, 19]201MutationalLaclMutations yield Is phenotype[10]202StructuralLacl/GalREffector-ligand contacting site[9, 12, 20]203StructuralLacl/GalREffector-ligand contacting site[9, 12, 20]204StructuralLaclMutations reduce repression or yield Is pheno- type[10]205StructuralLac	125	Structural	TreR	Effector-ligand contacting site	[19]
dynamics (TMD and SBMD) reveals 125/149 hydrogen bonding in allosteric intermediate stateMutationalLacl125Ala/149Ala mutant has reduced IPTG ef- fector binding affinity and inverted response to anti-inducer ONPF[22]MutationalLaclMutations yield Is phenotype[10]150StructuralTreREffector-ligand contacting site[19]MutationalLaclMutations yield Is phenotype[10]160StructuralLaclMutations yield Is phenotype[10]161StructuralLaclMutations yield Is phenotype[10]161StructuralLaclMutations abolish repression or yield Is pheno- type[10]193StructuralLaclDynamic motions observed during TMD[8]193StructuralLacl/GalREffector-ligand contacting site[9, 12, 19]200StructuralLacl/GalREffector-ligand contacting site[9, 12, 19]201StructuralLacl/GalREffector-ligand contacting site[9, 12, 20]193StructuralLacl/GalREffector-ligand contacting site[9, 12, 20]204StructuralLacl/GalREffector-ligand contacting site[9, 12, 20]205StructuralLacl/GalREffector-ligand contacting site[9, 12, 20]206StructuralLacl/GalREffector-ligand contacting site[9, 12, 20]202StructuralLacl/GalREffector-ligand contacting site[9, 12, 20]203StructuralLaclMutations redu		Computational	Lacl	Targeted and stochastic boundary molecular	[22]
hydrogen bonding in allosteric intermediate stateMutationalLacl125Ala/149Ala mutant has reduced IPTG ef- fector binding affinity and inverted response to anti-inducer ONPF[22]MutationalLaclMutations yield Is phenotype[10]150StructuralTreREffector-ligand contacting site[19]MutationalLaclMutations yield Is phenotype[10]160StructuralLaclMutations yield Is phenotype[10]161StructuralLaclMutations yield Is phenotype[10]161StructuralLaclMutations abolish repression or yield Is pheno- type[10]193StructuralLaclDynamic motions observed during TMD[8]193StructuralLaclDynamic motions observed during TMD[8]193StructuralLaclMutations yield Is phenotype[10]200StructuralLacl/GalREffector-ligand contacting site[9, 12, 19]201ComputationalLaclDynamic motions observed during TMD[8]193StructuralLacl/GalREffector-ligand contacting site[9, 12, 20]204StructuralLacl/GalREffector-ligand contacting site[9, 12, 20]205MutationalLaclMutations reduce repression or yield Is pheno- type[10]201StructuralLacl/GalREffector-ligand contacting site[9, 12, 20]202StructuralLacl/GalREffector-ligand contacting site[9, 12, 20]20				dynamics (TMD and SBMD) reveals 125/149	
stateMutationalLacl125Ala/149Ala mutant has reduced IPTG effector binding affinity and inverted response to anti-inducer ONPF[22]MutationalLaclMutations yield Is phenotype[10]150StructuralTreREffector-ligand contacting site[19]MutationalLaclMutations yield Is phenotype[10]160StructuralLacl/GalRAdjacent to core pivot[8, 9, 12, 19, 20]161StructuralLaclMutations yield Is phenotype[10]161StructuralLaclMutations does below to core pivot[9]161StructuralLaclMutations abolish repression or yield Is phenotype[10]163StructuralLaclDynamic motions observed during TMD[8]193StructuralLaclDynamic motions observed during TMD[8]193StructuralLaclMutations yield Is phenotype[10]200StructuralLacl/GalREffector-ligand contacting site[9, 12, 19]201ComputationalLaclDynamic motions observed during TMD[8]202StructuralLacl/GalREffector-ligand contacting site[9, 12, 20]MutationalLaclMutations yield Is phenotype[10]202StructuralLacl/GalREffector-ligand contacting site[9, 12, 20]MutationalLaclMutations reduce repression or yield Is phenotype[10]203StructuralLacl/GalREffector-ligand contacting site[9, 12, 20] <td></td> <td></td> <td></td> <td>hydrogen bonding in allosteric intermediate</td> <td></td>				hydrogen bonding in allosteric intermediate	
Mutational Lacl 125Ala/149Ala mutant has reduced IPTG ef- fector binding affinity and inverted response to anti-inducer ONPF [22] Mutational Lacl Mutations yield I ^s phenotype [10] 150 Structural TreR Effector-ligand contacting site [19] Mutational Lacl Mutations yield I ^s phenotype [10] 160 Structural Lacl/GalR Adjacent to core pivot [8, 9, 12, 19, 20] Mutational Lacl Mutations yield I ^s phenotype [10] 161 Structural Lacl Effector-ligand contacting site [9] Mutational Lacl Mutations abolish repression or yield I ^s pheno- type [10] 161 Structural Lacl Dynamic motions observed during TMD [8] 193 Structural Lacl/GalR Effector-ligand contacting site [9, 12, 19] Computational Lacl Mutations yield I ^s phenotype [10] 220 Structural Lacl/GalR Effector-ligand contacting site [9, 12, 19] Computational Lacl Mutations yield I ^s phenotype [10] 220 Structural Lac				state	[00]
Mutational Lacl Mutations yield I ^s phenotype [10] 150 Structural TreR Effector-ligand contacting site [19] 160 Structural Lacl Mutations yield I ^s phenotype [10] 160 Structural Lacl Mutations yield I ^s phenotype [10] 161 Structural Lacl Mutations yield I ^s phenotype [10] 161 Structural Lacl Mutations yield I ^s phenotype [10] 161 Structural Lacl Effector-ligand contacting site [9] Mutational Lacl Mutations abolish repression or yield I ^s pheno- type [10] 193 Structural Lacl/GalR Effector-ligand contacting site [9, 12, 19] 200 Computational Lacl Dynamic motions observed during TMD [8] 193 Structural Lacl/GalR Effector-ligand contacting site [9, 12, 19] 200 Structural Lacl/GalR Effector-ligand contacting site [9, 12, 20] 219 Mutational Lacl Mutations reduce repression or yield I ^s pheno- type [10] 220		Mutational	Lacl	125Ala/149Ala mutant has reduced IPTG ef-	[22]
MutationalLaclMutations yield Is phenotype[10]150StructuralTreREffector-ligand contacting site[19]160StructuralLaclMutations yield Is phenotype[10]160StructuralLacl/GalRAdjacent to core pivot[8, 9, 12, 19, 20]161StructuralLaclMutations yield Is phenotype[10]161StructuralLaclEffector-ligand contacting site[9]161StructuralLaclMutations abolish repression or yield Is pheno- type[10]193StructuralLaclDynamic motions observed during TMD[8]193StructuralLaclDynamic motions observed during TMD[8]193StructuralLaclMutations yield Is phenotype[10]220StructuralLacl/GalREffector-ligand contacting site[9, 12, 19]220StructuralLacl/GalREffector-ligand contacting site[9, 12, 20]220StructuralLacl/GalREffector-ligand contacting site[9, 12, 20]220StructuralLacl/GalREffector-ligand contacting site[9, 12, 20]220StructuralLacl/GalREffector-ligand contacting site[9, 12, 20]MutationalLaclMutations reduce repression or yield Is pheno- type[10]202StructuralLaclMutations reduce repression or yield Is pheno- type[10]				fector binding affinity and inverted response to	
150 Structural TreR Effector-ligand contacting site [19] 160 Structural Lacl Mutations yield 1 ^s phenotype [10] 160 Structural Lacl/GalR Adjacent to core pivot [8, 9, 12, 19, 20] Mutational Lacl Mutations yield 1 ^s phenotype [10] 161 Structural Lacl Mutations yield 1 ^s phenotype [10] 161 Structural Lacl Effector-ligand contacting site [9] Mutational Lacl Mutations abolish repression or yield 1 ^s pheno- type [10] 193 Structural Lacl/GalR Effector-ligand contacting site [9, 12, 19] 200 Computational Lacl Dynamic motions observed during TMD [8] 193 Structural Lacl/GalR Effector-ligand contacting site [9, 12, 20] Mutational Lacl Mutations yield 1 ^s phenotype [10] 220 Structural Lacl/GalR Effector-ligand contacting site [9, 12, 20] Mutational Lacl Mutations reduce repression or yield 1 ^s pheno- type [10] 202 Structural		Mutational		Anti-Inducer ONPF Mutations yield I ^s phonotype	[10]
150 Structural Herry Effector ligand contacting site [15] Mutational Lacl Mutations yield Is phenotype [10] 160 Structural Lacl/GalR Adjacent to core pivot [8, 9, 12, 19, 20] Mutational Lacl Mutations yield Is phenotype [10] 161 Structural Lacl Effector-ligand contacting site [9] Mutational Lacl Mutations abolish repression or yield Is pheno- type [10] Computational Lacl Dynamic motions observed during TMD [8] 193 Structural Lacl/GalR Effector-ligand contacting site [9, 12, 19] Computational Lacl Dynamic motions observed during TMD [8] 193 Structural Lacl/GalR Effector-ligand contacting site [9, 12, 19] 200 Structural Lacl/GalR Effector-ligand contacting site [9, 12, 20] 210 Structural Lacl/GalR Effector-ligand contacting site [9, 12, 20] 220 Structural Lacl/GalR Effector-ligand contacting site [9, 12, 20] 220 Structural Lacl/	150	Structural	TreR	Effector-ligand contacting site	[10]
160 Structural Lacl/GalR Adjacent to core pivot [8, 9, 12, 19, 20] 161 Structural Lacl Mutations yield I ^s phenotype [10] 161 Structural Lacl Effector-ligand contacting site [9] 161 Structural Lacl Effector-ligand contacting site [9] 161 Structural Lacl Mutations abolish repression or yield I ^s pheno- [10] 162 Computational Lacl Dynamic motions observed during TMD [8] 193 Structural Lacl/GalR Effector-ligand contacting site [9, 12, 19] 193 Structural Lacl/GalR Effector-ligand contacting site [9, 12, 19] 200 Structural Lacl/GalR Effector-ligand contacting site [9, 12, 20] 201 Structural Lacl/GalR Effector-ligand contacting site [9, 12, 20] 202 Structural Lacl/GalR Effector-ligand contacting site [9, 12, 20] 203 Structural Lacl/GalR Effector-ligand contacting site [9, 12, 20] 203 Structural Lacl Mutations reduce repression or yiel	150	Mutational	Lacl	Mutations vield 1 ^s phenotype	[10]
Mutational Lacl Mutations yield Is phenotype [10] 161 Structural Lacl Effector-ligand contacting site [9] 161 Structural Lacl Effector-ligand contacting site [9] 161 Structural Lacl Mutations abolish repression or yield Is pheno- type [10] 193 Structural Lacl/GalR Effector-ligand contacting site [9, 12, 19] Computational Lacl Dynamic motions observed during TMD [8] 193 Structural Lacl/GalR Effector-ligand contacting site [9, 12, 19] Computational Lacl Dynamic motions observed during TMD [8] 193 Structural Lacl/GalR Effector-ligand contacting site [9, 12, 20] Mutational Lacl Mutations yield Is phenotype [10] 220 Structural Lacl/GalR Effector-ligand contacting site [9, 12, 20] Mutational Lacl Mutations reduce repression or yield Is pheno- type [10] 202 Structural Lacl Structural [10]	160	Structural	Lacl/GalR	Adjacent to core pivot	[8, 9, 12, 19,
Mutational Lacl Mutations yield Is phenotype [10] 161 Structural Lacl Effector-ligand contacting site [9] Mutational Lacl Mutations abolish repression or yield Is pheno- type [10] 193 Structural Lacl Dynamic motions observed during TMD [8] 193 Structural Lacl/GalR Effector-ligand contacting site [9, 12, 19] Computational Lacl Dynamic motions observed during TMD [8] 193 Structural Lacl/GalR Effector-ligand contacting site [9, 12, 19] Computational Lacl Mutations yield Is phenotype [10] 220 Structural Lacl/GalR Effector-ligand contacting site [9, 12, 20] Mutational Lacl Mutations reduce repression or yield Is pheno- type [10] 202 Structural Lacl/GalR Effector-ligand contacting site [10] type Structural Lacl Mutations reduce repression or yield Is pheno- type [10]					20]
161 Structural Mutational Lacl Effector-ligand contacting site Mutations abolish repression or yield 1 ^s pheno- type [9] 193 Structural Computational Mutational Lacl Dynamic motions observed during TMD [8] 193 Structural Computational Mutational Lacl Dynamic motions observed during site [9, 12, 19] 200 Structural Mutational Lacl Mutations yield 1 ^s phenotype [10] 220 Structural Mutational Lacl/GalR Effector-ligand contacting site [9, 12, 20] 202 Structural Mutational Lacl Mutations reduce repression or yield 1 ^s pheno- type [10]		Mutational	Lacl	Mutations yield I ^s phenotype	[10]
MutationalLaclMutations abolish repression or yield 1s pheno- type[10]193ComputationalLaclDynamic motions observed during TMD[8]193StructuralLacl/GalREffector-ligand contacting site[9, 12, 19]ComputationalLaclDynamic motions observed during TMD[8]193StructuralLaclDynamic motions observed during TMD[8]200StructuralLaclMutations yield 1s phenotype[10]201StructuralLacl/GalREffector-ligand contacting site[9, 12, 20]MutationalLaclMutations reduce repression or yield 1s pheno- type[10]202StructuralTroPEffector ligand contacting site[10]	161	Structural	Lacl	Effector-ligand contacting site	[9]
typeComputationalLaclDynamic motions observed during TMD[8]193StructuralLacl/GalREffector-ligand contacting site[9, 12, 19]ComputationalLaclDynamic motions observed during TMD[8]MutationalLaclMutations yield Is phenotype[10]220StructuralLacl/GalREffector-ligand contacting site[9, 12, 20]MutationalLaclMutations reduce repression or yield Is pheno- type[10]		Mutational	Lacl	Mutations abolish repression or yield I ^s pheno-	[10]
Computational 193LaclDynamic motions observed during TMD[8]193Structural Computational MutationalLacl/GalREffector-ligand contacting site[9, 12, 19]200Structural MutationalLaclDynamic motions observed during TMD[8]220Structural MutationalLacl/GalREffector-ligand contacting site[9, 12, 20]202Structural MutationalLaclMutations reduce repression or yield Is pheno- type[10]				type	
193Structural Computational MutationalLacl/GalREffector-ligand contacting site[9, 12, 19]220Structural MutationalLaclDynamic motions observed during TMD[8]220Structural MutationalLaclMutations yield Is phenotype[10]220Structural MutationalLacl/GalREffector-ligand contacting site[9, 12, 20]202Structural MutationalLaclMutations reduce repression or yield Is pheno- type[10]		Computational	Lacl	Dynamic motions observed during TMD	[8]
Computational Lacl Dynamic motions observed during TMD [8] Mutational Lacl Mutations yield I ^s phenotype [10] 220 Structural Lacl/GalR Effector-ligand contacting site [9, 12, 20] Mutational Lacl Mutations reduce repression or yield I ^s pheno- type [10]	193	Structural	LacI/GalR	Effector-ligand contacting site	[9, 12, 19]
Wutational Laci Mutations yield Is phenotype [10] 220 Structural Lacl/GalR Effector-ligand contacting site [9, 12, 20] Mutational Lacl Mutations reduce repression or yield Is pheno- [10] 202 Structural Lacl Effector-ligand contacting site [10] 203 Structural TroP Effector ligand contacting site [10]		Computational	Lacl	Dynamic motions observed during IMD	[8] [10]
220 Structural Laci/Gark Ellector-ligand contacting site [9, 12, 20] Mutational Laci Mutations reduce repression or yield I ^s pheno- [10] type 202 Structural TroP Effector ligand contacting site [10]	220	IVIUTATIONAL	Laci / CalP	IVIUTATIONS YIELD I' phenotype	[10] [0_12_20]
type 202 Structural TraP Effector ligand contacting site [10]	220	Mutational		Litector-ligand contacting site Mutations reduce repression or yield 18 phone	[9, 1∠, ∠0] [1∩]
202 Structural TroD Effector ligand contacting site [10]		withatiolidi	LdCI	type	[TO]
	293	Structural	TreR	Effector-ligand contacting site	[19]
Computational Lacl Dynamic motions observed during TMD [8]	200	Computational	Lacl	Dynamic motions observed during TMD	[8]
Mutational Lacl Mutations yield I ^s phenotype [10]		Mutational	Lacl	Mutations yield I ^s phenotype	[10]

Figure S1: Phylogenetic trees for LacI/GalR and Aldolase. Maximum-likelihood phylogenetic trees were inferred for (a) LacI/GalR and (b) aldolasefamilies using RAxML 7.0.3 [23] with default parameters under the PROTGAMMABLOSUM62 substitution model. Visualizations were produced using the standalone version of PhyloWidget [24] with an "unrooted" layout. Within a panel, branch lengths indicate relative evolutionary divergence time.

Figure S2: Comparison of scores from the 90% and 50% ensemble calculations. Pairwise co-evolution scores for the 90% (x-axis) and 50% (y-axis) ensembles are compared for all algorithms (rows) and each family (columns). Linear (Pearson) correlation coefficients are summarized in Supplementary Table S1. The excellent agreement indicates that the number of sequences in each MSA does not influence co-evolutionary results.

Figure S3: Comparison of EVC and MEW scores for each position. On each graph, the EVC (eigenvector centrality, x-axis) and MEW (maximum pairwise coevolution score, y-axis) were plotted for all protein positions. Data for each algorithm are in the graph rows and for each family are in the graph columns. Horizontal and vertical blue lines indicate the top 20 highest scoring positions (upper right quadrant). The Jaccard indices for set similarity of top EVC and MEW scores are shown in the titles (parentheses). This parameter ranges from 0.0 (no overlap) to 1.0 (perfect agreement) and is not limited by any threshold (i.e. top 10 positions). The extremely poor agreement of ZNMI may be due to double normalization steps (MI to NMI followed by NMI to ZNMI) employed the the algorithm.

Figures S4-S5. Comparison of eigenvector centrality (EVC) and degree centrality (DC) scores for the aldolase and Lacl/GalR families. Both EVC and DC scores were calculated from the subtracted, pairwise co-evolution networks for the algorithms listed on each panel. Degree centrality is not robust to renormalization in the ZNMI method, but all other comparisons show strong agreement between the two types of centrality scores. For each comparison, values for the non-parametric coefficient of determination (Spearman R^2) are listed in Supplementary Table III.

Figure S4: Comparison of centrality scores: Aldolase.

Figure S5: Comparison of centrality: LacI/GaIR.

Figures S6-S9. Correlation matrix scatter plots: Pairwise co-evolution scores. For the protein family noted on each page, the diagonal panels show the distribution of unsubtracted (Figs. S6-S7) or subtracted (Figs. S8-S9) pairwise co-evolution scores assigned by each algorithm. In the off-diagonal panels, the scores from each algorithm were compared to those from the other algorithms. Points are shown with partial transparency to show the density of points in the scatter plot. R^2 values are shown in Table 1 in the main text. These graphics were made using the Pandas python library (http://pandas.pydata.org/).

Figure S6: Correlation matrix, Pairwise-vs-Pairwise co-evolution scores: Aldolase

Figure S7: Correlation matrix, Pairwise-vs-Pairwise co-evolution scores: Lacl/GalR

Figure S8: Correlation matrix, Subtracted pairwise-vs-Subtracted pairwise co-evolution scores: Aldolase

Figure S9: Correlation matrix, Subtracted pairwise-vs-Subtracted pairwise co-evolution scores: LacI/GaIR

Top 20 Pairwise Co-evolution Nodes

Figure S10: Comparison of the Lacl/GalR top 20 pairwise co-evolution scores and mutation outcomes. For each algorithm, the top 20 pairwise, subtracted co-evolution scores were compared to mutagenesis outcomes in Lacl. The Y axes reflect the percent of 12-13 substitutions that resulted in an altered Lacl phenotype [10].

Figures S11-S14. Correlation matrix scatter plots: EVC scores. For the protein family noted on each page, the diagonal panels show the distribution of unsubtracted (Figs. S11-S12) or subtracted (Figs. S13-S14) EVC scores assigned by each algorithm. In the off-diagonal panels, the scores from each algorithm were compared to those from other algorithms. Points are shown with partial transparency to show the density of points in the scatter plot. R^2 values are shown in Table 1 in the main text. These graphics were made using the Pandas python library (http://pandas.pydata.org/).

Figure S11: Correlation matrix, EVC-vs-EVC co-evolution scores: Aldolase

Figure S12: Correlation matrix, EVC-vs-EVC co-evolution scores: Lacl/GalR

Figure S13: Correlation matrix, Subtracted EVC-vs-Subtracted EVC co-evolution scores: Aldolase

Figure S14: Correlation matrix, Subtracted EVC-vs-Subtracted EVC co-evolution scores: LacI/GaIR

Figure S15: Global structural analysis of aldolase EVC scores. Positions in one monomer of tetrameric aldolase (human aldolase isoform C, PDB: 1XFB [25]) were color-coded by the rank order of their eigenvector centrality score (high scores, magenta; low scores, green). The rest of the complex (gray) is displayed with reduced opacity to allow EVC scores along the tetrameric interface to be visualized. Three views of the complex are shown: (A) front (active site side), (B) back, (C) tetrameric interface, and (D) internal. In general, larger EVC scores (magenta) are assigned to the side with the active site (A), the tetrameric interface (C) and interior (D) than are assigned to back side, opposite the active site (B). Positions not assigned an EVC score (e.g. highly conserved active site residues) were colored brown.

Figure S16: Global structural analysis of Lacl/GalR EVC scores. The structure of Lacl (PDB: 1efa; [9]) is colorcoded based on the rank order of each positions' EVC score (high scores, magenta; low scores green). Conserved positions are shown in gray. The DNA (gray) and allosteric effector (black spacefilling) ligands are also shown. Molecular graphics were created in UCSF Chimera 1.8. [26]

References

- J. Pei, B. H. Kim, and N. V. Grishin. PROMALS3D: a tool for multiple protein sequence and structure alignments. *Nucleic Acids Res.*, 36(7):2295–2300, Apr 2008.
- [2] J. Pei. Multiple protein sequence alignment. Curr. Opin. Struct. Biol., 18(3):382–386, Jun 2008.
- [3] S. Tungtur, D. J. Parente, and L. Swint-Kruse. Functionally important positions can comprise the majority of a protein's architecture. *Proteins*, 79(5):1589–1608, May 2011.
- [4] D. Lee, T. A. de Beer, R. A. Laskowski, J. M. Thornton, and C. A. Orengo. 1,000 structures and more from the MCSG. BMC Struct. Biol., 11:2, 2011.
- [5] S. B. Needleman and C. D. Wunsch. A general method applicable to the search for similarities in the amino acid sequence of two proteins. J. Mol. Biol., 48(3):443–453, Mar 1970.
- [6] R. C. Edgar. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics, 5:113, Aug 2004.
- [7] D. J. Parente and L. Swint-Kruse. Multiple Co-Evolutionary Networks Are Supported by the Common Tertiary Scaffold of the Lacl/GalR Proteins. *PLoS ONE*, 8(12):e84398, 2013.
- [8] T. C. Flynn, L. Swint-Kruse, Y. Kong, C. Booth, K. S. Matthews, and J. Ma. Allosteric transition pathways in the lactose repressor protein core domains: asymmetric motions in a homodimer. *Protein Sci.*, 12(11):2523– 2541, Nov 2003.
- [9] C. E. Bell and M. Lewis. A closer view of the conformation of the Lac repressor bound to operator. Nat. Struct. Biol., 7(3):209–214, Mar 2000.
- [10] J. Suckow, P. Markiewicz, L. G. Kleina, J. Miller, B. Kisters-Woike, and B. Muller-Hill. Genetic studies of the Lac repressor. XV: 4000 single amino acid substitutions and analysis of the resulting phenotypes on the basis of the protein structure. J. Mol. Biol., 261(4):509–523, Aug 1996.
- [11] M. A. Schumacher, G. S. Allen, M. Diel, G. Seidel, W. Hillen, and R. G. Brennan. Structural basis for allosteric control of the transcription regulator CcpA by the phosphoprotein HPr-Ser46-P. *Cell*, 118(6):731–741, Sep 2004.
- [12] M. A. Schumacher, A. Glasfeld, H. Zalkin, and R. G. Brennan. The X-ray structure of the PurR-guanine-purF operator complex reveals the contributions of complementary electrostatic surfaces and a water-mediated hydrogen bond to corepressor specificity and binding affinity. J. Biol. Chem., 272(36):22648–22653, Sep 1997.
- [13] S. Meinhardt, M. W. Manley, D. J. Parente, and L. Swint-Kruse. Rheostats and toggle switches for modulating protein function. *PLoS ONE*, 8(12):e83502, 2013.
- [14] K. Y. Choi and H. Zalkin. Role of the purine repressor hinge sequence in repressor function. J. Bacteriol., 176(6):1767–1772, Mar 1994.
- [15] C. M. Falcon, L. Swint-Kruse, and K. S. Matthews. Designed disulfide between N-terminal domains of lactose repressor disrupts allosteric linkage. J. Biol. Chem., 272(43):26818–26821, Oct 1997.
- [16] H. Zhan, L. Swint-Kruse, and K. S. Matthews. Extrinsic interactions dominate helical propensity in coupled binding and folding of the lactose repressor protein hinge helix. *Biochemistry*, 45(18):5896–5906, May 2006.
- [17] H. Zhan, M. Camargo, and K. S. Matthews. Positions 94-98 of the lactose repressor N-subdomain monomermonomer interface are critical for allosteric communication. *Biochemistry*, 49(39):8636–8645, Oct 2010.
- [18] A. Ozarowski, J. K. Barry, K. S. Matthews, and A. H. Maki. Ligand-induced conformational changes in lactose repressor: a phosphorescence and ODMR study of single-tryptophan mutants. *Biochemistry*, 38(21):6715– 6722, May 1999.

- [19] U. Hars, R. Horlacher, W. Boos, W. Welte, and K. Diederichs. Crystal structure of the effector-binding domain of the trehalose-repressor of Escherichia coli, a member of the Lacl family, in its complexes with inducer trehalose-6-phosphate and noninducer trehalose. *Protein Sci.*, 7(12):2511–2521, Dec 1998.
- [20] M. A. Schumacher, G. Seidel, W. Hillen, and R. G. Brennan. Structural mechanism for the fine-tuning of CcpA function by the small molecule effectors glucose 6-phosphate and fructose 1,6-bisphosphate. J. Mol. Biol., 368(4):1042–1050, May 2007.
- [21] L. Swint-Kruse, C. R. Elam, J. W. Lin, D. R. Wycuff, and K.S. Matthews. Plasticity of quaternary structure: twenty-two ways to form a Lacl dimer. *Protein Sci.*, 10(2):262–276, Feb 2001.
- [22] J. Xu, S. Liu, M. Chen, J. Ma, and K. S. Matthews. Altering residues N125 and D149 impacts sugar effector binding and allosteric parameters in Escherichia coli lactose repressor. *Biochemistry*, 50(42):9002–9013, Oct 2011.
- [23] A. Stamatakis, T. Ludwig, and H. Meier. RAxML-III: a fast program for maximum likelihood-based inference of large phylogenetic trees. *Bioinformatics*, 21(4):456–463, Feb 2005.
- [24] G. E. Jordan and W. H. Piel. PhyloWidget: web-based visualizations for the tree of life. *Bioinformatics*, 24(14):1641–1642, Jul 2008.
- [25] T. L. Arakaki, J. A. Pezza, M. A. Cronin, C. E. Hopkins, D. B. Zimmer, D. R. Tolan, and K. N. Allen. Structure of human brain fructose 1,6-(bis)phosphate aldolase: linking isozyme structure with function. *Protein Sci.*, 13(12):3077–3084, Dec 2004.
- [26] E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt, E. C. Meng, and T. E. Ferrin. UCSF Chimera-a visualization system for exploratory research and analysis. *J Comput Chem*, 25(13):1605– 1612, Oct 2004.