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Supplementary Methods: MARS-Prot

Multiple sequence alignments (MSAs) allow aspects
of protein sequence, structure and function to be under-
stood in the context of their evolutionary history. De-
spite the many tools that automate MSA construction,
producing accurate models for protein families with low
sequence identity relationships (<30%) remains an open
research question and still requires significant manual
optimization. [1–3]

A second difficulty is that, once constructed, align-
ments are not static models. Extensive ongoing ge-
nomic sequencing and high-throughput structure deter-
mination [4] requires MSAs to be updated with new
data. Many automated methods for constructing se-
quence alignments do not preserve prior, manual op-
timizations. To solve this problem, we developed the
algorithm MARS-Prot (Maintainer of Alignments using
Reference Sequences for Proteins), to facilitate the up-
dating of manually-curated sequence alignments.

Our strategy for integrating new sequences into an
existing alignment is to first align them against a ”ref-
erence sequence” already present in the alignment. The
reference sequence is then used to thread in the new
sequences into the first, manually-adjusted (”target”)
MSA.

In practice, MARS-Prot accepts two FASTA-
formatted MSAs as input: the target alignment into
which new sequences are to be integrated, and a “guide”
alignment containing (a) a subset of sequences shared
with the target alignment (“reference sequences”) plus
(b) new sequences to be added. Note that the refer-
ence sequence(s) must be identical in the two MSAs.
Alignment of the two MSAs is accomplished using a
modified form of the Needleman-Wunsch global align-
ment algorithm. [5] For a pair of sequences, an optimal
alignment, A, can be found by maximizing the objective
function:

z(A) = ∑
i∼= j

[S(i, j)]+ng pg +nr pr (1)

S(i, j) is the score assigned to every column i from

the target alignment aligned with column j in the guide
alignment, ng is the number of gaps, nr is the number
of insertions and pg and pr are (negatively-valued) gap
and insertion penalties, respectively. For Needleman-
Wunsch alignment of two sequences, S(i, j) is typically
taken to be the value in a specified substitution ma-
trix (e.g. BLOSUM62) for the two residues at aligned
positions. S(i, j) can be generalized to perform profile-
profile alignment by computing a profile sum-of-pairs
score [6].

To incorporate constraints on that alignment derived
from the reference sequences, the objective function was
modified by setting:

y(A) = ∑
i∼= j

[G(i, j)]+δ ∗ z(A) (2)

G(i, j) describes constraints on the alignment. Refer-
ence sequences are weakly constrained to align with
themselves. Formally, if alignment of column i in the
target alignment with column j in the guide alignment
causes N reference sequences to align correctly at that
position, then G(i, j) = N. Delta (δ ) is a constant cho-
sen to require |S(i, j)|< 1. This objective function there-
fore prioritizes maximization of constraints imposed by
the reference sequences above maximization of substi-
tution matrix scores.

Thus, constraints defined by the reference sequences
are used to thread a sequence into the target alignment
while allowing conventional profile-profile alignment to
occur at regions of ambiguity (that is, at unconstrained
columns). This objective function can be maximized us-
ing the Needleman-Wunsch algorithm [5] in O(nm) time
and O(nm) space for two input MSAs containing n and
m columns, respectively. In practice, the execution time
of MARS-Prot is negligible (usually <10 seconds on real
biological datasets).

Final alignments generated by MARS-Prot contain
only one copy of each reference sequence. All align-
ments generated by automatic methods should be man-
ually inspected prior to additional analyses.
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# of sequences
Seq. ID. Subsampled Correlation (R2)

Alignment Range (%) Full 90% 50% ELSC McBASC OMES SCA ZNMI
Aldolase 19-99 1562 500 278 0.993 0.996 0.996 0.990 0.978
LacI/GalR 19-99 351 316 176 0.978 0.995 0.990 0.969 0.982

Table S1: MSA characteristics and subsampling controls. The two MSAs analyzed in this study were subjected
to the ensemble-based co-evolution analysis (see Methods). The total number of sequences (full) in each of
the alignments, as well as the number of sequences in the “90%” and “50%” ensembles are shown (see text for
description of aldolase). The coefficient of determination (Pearson squared correlation coefficient, R2) for the
co-evolution scores in the large and small ensembles are also shown. The very high agreement indicates that MSA
size and composition does not significantly influence co-evolutionary results. These data are shown graphically in
Supplementary Figure S2.

MEW EVC
Rank Position Mutational Sensitivity Position Mutational Sensitivity
1 80 0.62 281 0.25
2 66 0.77 330 n.d.
3 63 0.17 226 0.42
4 253 0.67 112 0.00
5 152 0.15 126 0.00
6 281 0.25 242 0.54
7 112 0.00 162 0.00
8 254 0.53 204 0.00
9 226 0.42 202 0.08
10 126 0.00 105 0.00
11 202 0.08 88 1.00
12 113 0.38 234 0.00
13 24 0.46 103 0.00
14 162 0.00 108 0.00
15 108 0.00 317 0.00
16 242 0.53 63 0.17
17 267 0.46 139 0.50
18 40 0.08 267 0.46
19 163 0.17 113 0.38
20 258 0.00 230 0.08

Table S2: Comparison of top LacI subfamily MEW and EVC positions to mutational outcomes. The top 20
consensus positions with largest maximum-edge weight (MEW) or eigenvector centrality (EVC) scores are shown,
along with their mutational sensitivities. Mutational sensitivity is defined as the fraction of variants in the
comprehensive LacI mutagenesis data (which comprises 12 or 13 substitutions per position) with non-wild-type
phenotypes [10]. Note that many of these positions have low mutational sensitivity (<25%, bold values), which
indicates these are not important positions. This incongruent result likely arises from a large number of redundant
sequences in the LacI subfamily used for the calculations (see Methods in main text). “n.d.”: Not determined.
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Coefficient of determination (Spearman R2)
Method LacI/GalR Aldolase
ELSC 0.72 0.78
McBASC 0.57 0.89
OMES 0.67 0.91
SCA 0.63 0.60
ZNMI < 0.01 0.01

Table S3: Correlation of EVC scores with maximum edge weight for each position. The non-parametric coefficient
of determination (Spearman R2) is shown for the correlation between subtracted-network EVC scores and the
maximum edge weight (pairwise co-evolution score) for each position. The correlation between MEW and EVC was
inconsistent with respect to either algorithm- or family-specific outcomes. Several positions with high EVC scores
would have been missed if the top pairwise co-evolution scores were thresholded. Thus, EVC calculations reveal
a distinct (though overlapping) set of evolutionary constraints compared to pairwise co-evolution calculations.
These data are shown graphically in Supplementary Figure S2.

Coefficient of determination (Spearman R2)
Method LacI/GalR Aldolase
ELSC 0.998 0.987
McBASC 0.999 0.990
OMES 0.999 0.986
SCA 0.999 0.997
ZNMI 0.996 0.996

Table S4: Correlation of eigenvector centrality scores (EVC) with degree centrality (DC) scores. For each algorithm
(row) and protein family (column), the non-parametric coefficient of determination (Spearman R2) is shown for
the correlation between EVC and DC scores. Both EVC and DC scores were calculated from the subtracted,
pairwise co-evolution networks. Degree centrality is not robust to renormalization in the ZNMI method, but all
other comparisons show strong agreement between the centrality scores. These data are shown graphically in
Supplementary Figs. S4-S5.
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Coefficient of determination (Spearman R2)
Aldolase LacI/GalR

Algorithms ALL MEW EVC ALL MEW EVC
ELSC vs McBASC 0.48 0.58 0.74 0.09 0.27 0.50
ELSC vs OMES 0.64 0.65 0.78 0.37 0.57 0.73
ELSC vs SCA 0.19 0.40 0.43 0.02 0.31 0.32
ELSC vs ZNMI 0.44 0.01 0.79 0.23 0.21 0.60

McBASC vs OMES 0.59 0.66 0.75 0.14 0.21 0.38
McBASC vs SCA 0.20 0.14 0.26 0.08 0.05 0.36
McBASC vs ZNMI 0.48 0.03 0.69 0.18 0.51 0.34
OMES vs SCA 0.25 0.40 0.31 0.31 0.30 0.55
OMES vs ZNMI 0.50 0.04 0.85 0.46 0.19 0.69
SCA vs ZNMI 0.35 0.01 0.61 0.18 0.03 0.47

Median improvement −0.02 0.22 0.03 0.29

Table S5: Maximum edge weight (MEW) fails to reconcile alternative algorithms. Correlation between ALL
pairwise co-evolution scores (unsubtracted), MEW scores, and subtracted EVC scores are compared. The median
improvements (as compared to the correlation between ALL edges) for MEW and EVC scores are shown in the
last row. MEW scores fail to reconcile disagreement between alternative algorithms.
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Table S6: Comparison of LacI/GalR top eigenvector central positions to available experimental and computational
data. Positions fall into three classes: those (I) involved in DNA binding, (II) involved in allosteric propagation,
and (III) involved in allosteric effector binding. Structural contacts at the DNA and allosteric effector binding sites
and across the inter-monomer interface were determined from analysis of LacI, CcpA, PurR and TreR structures,
as described in [7]. The “core pivot” is a “hinge” of three strands near the allosteric effector binding site that
undergoes conformational change to rearrange the N- and C-regulatory subdomains from an “open” to “closed”
conformation around the allosteric effector ligand; it includes positions 161-164, 290-293 and 318-322. [8].
IPTG, isopropyl β -D-1-thiogalactopyranoside; ONPF, orthonitrophenyl-β -D-fucopyranoside; Is phenotype, loss of
allosteric response to effector binding; SBMD, Stochastic boundary molecular dynamics; TMD, targeted molecular
dynamics.

Position Evidence Type System Description References
Class I DNA Binding

17 Structural LacI DNA contact [9]
Mutational LacI Mutations reduce repression [10]

27 Mutational LacI Mutation to Phe reduces repression [10]
29 Structural LacI/GalR DNA contact [9, 11]

Mutational LacI Many mutations reduce repression; Ala and Glu
induce cold sensitivity

[10]

51 Structural LacI/GalR Linker region [9, 11, 12]
Mutational LacI Many mutations reduce repression [10]
Mutational LacI/GalR Mutants in many chimeric paralogs tune repres-

sion strength
[13]

Mutational LacI Mutants reduce repression [10]
55 Structural LacI/GalR Linker region [9, 11, 12]

Mutational PurR Mutations abolish (Ile, Arg, Val) or enhance
(Ala) DNA binding

[14]

Mutational PurR Val mutants prevent PurR from forming func-
tional dimers.

[14]

Mutational LacI/GalR Mutants in many chimeric paralogs tune repres-
sion strength

[13]

Mutational LacI Mutations reduce or abolish DNA binding [10]
57 Structural LacI/GalR DNA contact and in the linker region [9, 11, 12]

Mutational LacI Many mutations abolish repression [10]
Class II Allosteric Propagation

52 Structural LacI/GalR Located in the hinge-helix of the linker [9, 11, 12]
Mutational LacI Val52Cys disrupts allosteric response under ox-

idizing conditions without impairing allosteric
effector binding; Allostery is intact under re-
ducing conditions

[15]

Mutational LacI Various amino acid substitutions alter DNA
binding affinity and specificity and/or impair al-
losteric response

[16]

Mutational LacI/GalR Mutants in many chimeric paralogs tune repres-
sion strength

[13]

Mutational LacI Mutations yield Is phenotype or reduce repres-
sion strength

[10]

98 Structural LacI/GalR Inter-monomer regulatory N-subdomain inter-
face

[9, 11, 12]

Computational LacI Dynamic motions observed during TMD [8]
Mutational LacI Critical for allosteric response propagation [17]

Continued on next page
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Table S6 – Continued from previous page
Position Evidence Type System Description References

Mutational LacI Mutants reduce repression and/or yield an Is
phenotype

[10]

117 Structural LacI/GalR Linker-regulatory domain interface [11, 12]
Computational LacI Dynamic motions observed during TMD [8]
Mutational LacI Gln117Trp in tryptophan-less LacI has compro-

mised allosteric effector binding, despite the
considerable distance between Gln117 and the
allosteric effector binding site.

[18]

Mutational LacI Mutations reduce repression [10]
157 Mutational LacI Mutations to Leu and Ser are heat-sensitive [10]
291 Structural LacI/GalR Core pivot [8, 9, 12, 19,

20]
Mutational LacI Mutants reduce repression, yield an Is pheno-

type and/or are heat-sensitive
[10]

321 Structural LacI/GalR Core pivot [8, 9, 12, 19,
20]

Computational LacI Dynamic motions observed during TMD [8]
Mutational LacI Mutants rescue function of incompetent

Tyr282Asp repressor
[21]

Mutational LacI Mutants reduce repression, yield an Is pheno-
type and/or are heat-sensitive

[10]

Class III Allosteric Effector Binding
102 Structural CcpA Effector-ligand contacting site [20]
125 Structural TreR Effector-ligand contacting site [19]

Computational LacI Targeted and stochastic boundary molecular
dynamics (TMD and SBMD) reveals 125/149
hydrogen bonding in allosteric intermediate
state

[22]

Mutational LacI 125Ala/149Ala mutant has reduced IPTG ef-
fector binding affinity and inverted response to
anti-inducer ONPF

[22]

Mutational LacI Mutations yield Is phenotype [10]
150 Structural TreR Effector-ligand contacting site [19]

Mutational LacI Mutations yield Is phenotype [10]
160 Structural LacI/GalR Adjacent to core pivot [8, 9, 12, 19,

20]
Mutational LacI Mutations yield Is phenotype [10]

161 Structural LacI Effector-ligand contacting site [9]
Mutational LacI Mutations abolish repression or yield Is pheno-

type
[10]

Computational LacI Dynamic motions observed during TMD [8]
193 Structural LacI/GalR Effector-ligand contacting site [9, 12, 19]

Computational LacI Dynamic motions observed during TMD [8]
Mutational LacI Mutations yield Is phenotype [10]

220 Structural LacI/GalR Effector-ligand contacting site [9, 12, 20]
Mutational LacI Mutations reduce repression or yield Is pheno-

type
[10]

293 Structural TreR Effector-ligand contacting site [19]
Computational LacI Dynamic motions observed during TMD [8]
Mutational LacI Mutations yield Is phenotype [10]
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Figure S1: Phylogenetic trees for LacI/GalR and Aldolase. Maximum-likelihood phylogenetic trees were in-
ferred for (a) LacI/GalR and (b) aldolasefamilies using RAxML 7.0.3 [23] with default parameters under the
PROTGAMMABLOSUM62 substitution model. Visualizations were produced using the standalone version of
PhyloWidget [24] with an “unrooted” layout. Within a panel, branch lengths indicate relative evolutionary diver-
gence time.
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Figure S2: Comparison of scores from the 90% and 50% ensemble calculations. Pairwise co-evolution scores for
the 90% (x-axis) and 50% (y-axis) ensembles are compared for all algorithms (rows) and each family (columns).
Linear (Pearson) correlation coefficients are summarized in Supplementary Table S1. The excellent agreement
indicates that the number of sequences in each MSA does not influence co-evolutionary results.
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Figure S3: Comparison of EVC and MEW scores for each position. On each graph, the EVC (eigenvector centrality,
x-axis) and MEW (maximum pairwise coevolution score, y-axis) were plotted for all protein positions. Data for
each algorithm are in the graph rows and for each family are in the graph columns. Horizontal and vertical blue
lines indicate the top 20 highest scoring positions (upper right quadrant). The Jaccard indices for set similarity of
top EVC and MEW scores are shown in the titles (parentheses). This parameter ranges from 0.0 (no overlap) to
1.0 (perfect agreement) and is not limited by any threshold (i.e. top 10 positions). The extremely poor agreement
of ZNMI may be due to double normalization steps (MI to NMI followed by NMI to ZNMI) employed the the
algorithm.
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Figures S4-S5. Comparison of eigenvector centrality (EVC) and degree centrality (DC) scores for the aldolase
and LacI/GalR families. Both EVC and DC scores were calculated from the subtracted, pairwise co-evolution
networks for the algorithms listed on each panel. Degree centrality is not robust to renormalization in the ZNMI
method, but all other comparisons show strong agreement between the two types of centrality scores. For each
comparison, values for the non-parametric coefficient of determination (Spearman R2) are listed in Supplementary
Table III.
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Figure S4: Comparison of centrality scores: Aldolase. Figure S5: Comparison of centrality: LacI/GalR.
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Figures S6-S9. Correlation matrix scatter plots: Pairwise co-evolution scores. For the protein family noted on
each page, the diagonal panels show the distribution of unsubtracted (Figs. S6-S7) or subtracted (Figs. S8-S9)
pairwise co-evolution scores assigned by each algorithm. In the off-diagonal panels, the scores from each algorithm
were compared to those from the other algorithms. Points are shown with partial transparency to show the density
of points in the scatter plot. R2 values are shown in Table 1 in the main text. These graphics were made using
the Pandas python library (http://pandas.pydata.org/).
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Figure S6: Correlation matrix, Pairwise-vs-Pairwise co-evolution scores: Aldolase
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Figure S7: Correlation matrix, Pairwise-vs-Pairwise co-evolution scores: LacI/GalR
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Figure S8: Correlation matrix, Subtracted pairwise-vs-Subtracted pairwise co-evolution scores: Aldolase
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Figure S9: Correlation matrix, Subtracted pairwise-vs-Subtracted pairwise co-evolution scores: LacI/GalR
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Figure S10: Comparison of the LacI/GalR top 20 pairwise co-evolution scores and mutation outcomes. For each
algorithm, the top 20 pairwise, subtracted co-evolution scores were compared to mutagenesis outcomes in LacI.
The Y axes reflect the percent of 12-13 substitutions that resulted in an altered LacI phenotype [10].
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Figures S11-S14. Correlation matrix scatter plots: EVC scores. For the protein family noted on each page, the
diagonal panels show the distribution of unsubtracted (Figs. S11-S12) or subtracted (Figs. S13-S14) EVC scores
assigned by each algorithm. In the off-diagonal panels, the scores from each algorithm were compared to those
from other algorithms. Points are shown with partial transparency to show the density of points in the scatter
plot. R2 values are shown in Table 1 in the main text. These graphics were made using the Pandas python library
(http://pandas.pydata.org/).
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Figure S11: Correlation matrix, EVC-vs-EVC co-evolution scores: Aldolase
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Figure S12: Correlation matrix, EVC-vs-EVC co-evolution scores: LacI/GalR
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Figure S13: Correlation matrix, Subtracted EVC-vs-Subtracted EVC co-evolution scores: Aldolase
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Figure S14: Correlation matrix, Subtracted EVC-vs-Subtracted EVC co-evolution scores: LacI/GalR
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Figure S15: Global structural analysis of aldolase EVC scores. Positions in one monomer of tetrameric aldolase
(human aldolase isoform C, PDB: 1XFB [25]) were color-coded by the rank order of their eigenvector centrality
score (high scores, magenta; low scores, green). The rest of the complex (gray) is displayed with reduced opacity
to allow EVC scores along the tetrameric interface to be visualized. Three views of the complex are shown:
(A) front (active site side), (B) back, (C) tetrameric interface, and (D) internal. In general, larger EVC scores
(magenta) are assigned to the side with the active site (A), the tetrameric interface (C) and interior (D) than are
assigned to back side, opposite the active site (B). Positions not assigned an EVC score (e.g. highly conserved
active site residues) were colored brown.
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Figure S16: Global structural analysis of LacI/GalR EVC scores. The structure of LacI (PDB: 1efa; [9]) is color-
coded based on the rank order of each positions’ EVC score (high scores, magenta; low scores green). Conserved
positions are shown in gray. The DNA (gray) and allosteric effector (black spacefilling) ligands are also shown.
Molecular graphics were created in UCSF Chimera 1.8. [26]
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