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1. An Illustrative Run Through the Algorithm for Finding an Optimal

Decision List

In this section, we illustrate how the proposed algorithm for finding an optimal decision list

works. For simplicity, the patient covariate is assumed to be two-dimensional.

• The algorithm starts at Step 1.

– We choose Lmax = 5 and α = 0.05.

– We compute ã0 = arg maxa0∈A R̂ [{a0}]. Suppose the maximum found is R̂ [{ã0}] = 10.

Figure 1 shows the decision list {ã0}.

– We set Πtemp = ∅ and Πfinal = ∅.

[Figure 1 about here.]

• The algorithm proceeds to Step 2.

– The goal is to estimate the first clause (c1, a1).

– We compute (c̃1, ã1, ã
′
1) = arg max(c1,a1,a′1)∈C×A×A R̂ [{(c1, a1), a′1}]. This is done, concep-

tually, by evaluating R̂(·) at each element in C × A ×A. Suppose the maximum found is

R̂ [{(c̃1, ã1), ã′1}] = 15 and the clause c̃1 has the form x1 6 τ1. Figure 2 shows the decision

list {(c̃1, ã1), ã′1}.

– We compute ∆̂1 = R̂ [{(c̃1, ã1), ã′1}] − R̂ [{ã0}] and compare ∆̂1 to z1−α
{

V̂ar
(
∆̂1

)}1/2
.

In this case ∆̂1 = 15 − 10 = 5. Suppose we get V̂ar
(
∆̂1

)
= 4 after calculations. Since

5 > z0.95 × 41/2, we add two decision lists, {(c̃1, ã1), ã′1} and {(c̃′1, ã′1), ã1}, into the set

Πtemp and proceed to estimate the second clause (c2, a2).

– We make a remark on non-uniqueness here. The decision list {(c̃1, ã1), ã′1} can be equiva-

lently expressed as {(c̃′1, ã′1), ã1}, where c̃′1 is the negation of c̃1. Since these two decision lists

provide the same treatment recommendation to every patient, we have R̂[{(c̃′1, ã′1), ã1}] =

R̂[{(c̃1, ã1), ã′1}] = 15. However, their first clauses are different and may lead to consider-
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ably different final decision lists. Currently it is impossible to determine whether (c̃1, ã1) or

(c̃′1, ã
′
1) should be used in the first clause. Thus we add both decision lists into Πtemp, and

move on to building the second clause while keeping in mind that there are two possibilities,

(c̃1, ã1) and (c̃′1, ã
′
1), for the first clause. Figure 3 shows the decision list {(c̃′1, ã′1), ã1}. The

diagram is the same as in Figure 2 while the description is different.

[Figure 2 about here.]

[Figure 3 about here.]

• The algorithm proceeds to Step 3.

– We pick an element π from Πtemp. Currently Πtemp contains two decision lists: {(c̃1, ã1), ã′1}

and {(c̃′1, ã′1), ã1}. Suppose we get π = {(c̃1, ã1), ã′1}. We remove π from Πtemp.

– We compute (c̃2, ã2, ã
′
2) = arg max(c2,a2,a′2)∈C×A×A R̂ [{(c̃1, ã1), (c2, a2), a′2}]. During the

maximization (c̃1, ã1) is held fixed. Intuitively, this is to partition T (c̃1)c while keeping

T (c̃1) fixed. Suppose the maximum found is R̂[{(c̃1, ã1), (c̃2, ã2), ã′2}] = 16 and the clause

c̃2 has the form x2 6 τ21. Figure 4 shows the decision list {(c̃1, ã1), (c̃2, ã2), ã′2}.

– We compute ∆̂2 = R̂ [{(c̃1, ã1), (c̃2, ã2), ã′2}] − R̂ [{(c̃1, ã1), ã′1}] and compare ∆̂2 to

z1−α
{

V̂ar
(
∆̂2

)}1/2
. In this case ∆̂2 = 16 − 15 = 1. Suppose we get V̂ar

(
∆̂2

)
= 2.25

after calculations. Since ∆̂2 < z0.95

{
V̂ar
(
∆̂2

)}1/2
, the simpler, more parsimonious decision

list {(c̃1, ã1), ã′1} is preferred and added to Πfinal, while {(c̃1, ã1), (c̃2, ã2), ã′2} is discarded.

[Figure 4 about here.]

• The algorithm repeats Step 3.

– Step 3 is repeated since Πtemp contains another element π = {(c̃′1, ã′1), ã1}. We remove π

from Πtemp.

– We compute (c̃2, ã2, ã
′
2) = arg max(c2,a2,a′2)∈C×A×A R̂ [{(c̃′1, ã′1), (c2, a2), a′2}]. During the

maximization (c̃′1, ã
′
1) is held fixed. Intuitively, this is to partition T (c̃1) while keeping
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T (c̃1)c fixed. Suppose the maximum found is R̂[{(c̃′1, ã′1), (c̃2, ã2), ã′2})] = 18 and the clause

c̃2 has the form x2 6 τ22. Figure 5 shows the decision list {(c̃′1, ã′1), (c̃2, ã2), ã′2}.

– We compute ∆̂2 = R̂ [{(c̃′1, ã′1), (c̃2, ã2), ã′2}] − R̂ [{(c̃′1, ã′1), ã1}] and compare ∆̂2 to

z1−α
{

V̂ar
(
∆̂2

)}1/2
. In this case ∆̂2 = 18 − 15 = 3. Suppose we get V̂ar

(
∆̂2

)
= 2 after

calculations. Then we have ∆̂2 > z0.95

{
V̂ar
(
∆̂2

)}1/2
, which means that the second clause

significantly improves the performance of the decision list. Thus we add decision lists

{(c̃′1, ã′1), (c̃2, ã2), ã′2} and {(c̃′1, ã′1), (c̃′2, ã
′
2), ã2} to Πtemp.

– Here the non-uniqueness comes into play again. Consequently, although the decision lists

{(c̃′1, ã′1), (c̃2, ã2), ã′2} and {(c̃′1, ã′1), (c̃′2, ã
′
2), ã2} are equivalent, it is important to have both

of them added to Πtemp.

[Figure 5 about here.]

• The algorithm repeats Step 3.

– Now Πtemp contains two decision lists while Πfinal contains one. Thus Step 3 is repeated.

We first pick and remove an element π from Πtemp, say π = {(c̃′1, ã′1), (c̃2, ã2), ã′2}.

– Next, we will build a decision list of length 3 and the first two clauses being (c̃′1, ã
′
1) and

(c̃2, ã2). We compute (c̃3, ã3, ã
′
3) = arg max(c3,a3,a′3)∈C×A×A R̂ [{(c̃′1, ã′1), (c̃2, ã2), (c3, a3), a′3}].

During the maximization (c̃′1, ã
′
1) and (c̃2, ã2) are held fixed. Suppose the maximum found

is R̂[{(c̃′1, ã′1), (c̃2, ã2), (c̃3, ã3), ã′3}] = 20 and the clause c̃3 has the form x1 6 τ31. Figure 6

shows the decision list {(c̃′1, ã′1), (c̃2, ã2), (c̃3, ã3), ã′3}.

– We then compute ∆̂3 = R̂ [{(c̃′1, ã′1), (c̃2, ã2), (c̃3, ã3), ã′3}] − R̂ [{(c̃′1, ã′1), (c̃2, ã2), ã′2}] and

compare ∆̂3 to z1−α
{

V̂ar
(
∆̂3

)}1/2
. In this case ∆̂3 = 20 − 18 = 2. Suppose we get

V̂ar
(
∆̂3

)
= 3 after calculations. Then we have ∆̂3 < z0.95

{
V̂ar
(
∆̂3

)}1/2
. Thus the simpler,

more parsimonious, decision list {(c̃′1, ã′1), (c̃2, ã2), ã′2} is preferred. So we add {(c̃′1, ã′1), (c̃2, ã2), ã′2}

to Πfinal and drop {(c̃′1, ã′1), (c̃2, ã2), (c̃3, ã3), ã′3}.

[Figure 6 about here.]
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• The algorithm repeats Step 3.

– Since Πtemp contains one element π = {(c̃′1, ã′1), (c̃′2, ã
′
2), ã2}, we repeat Step 3 once again.

We remove π from Πtemp.

– We compute (c̃3, ã3, ã
′
3) = arg max(c3,a3,a′3)∈C×A×A R̂ [{(c̃′1, ã′1), (c̃′2, ã

′
2), (c3, a3), a′3}] while

keeping (c̃′1, ã
′
1) and (c̃′2, ã

′
2) fixed. Suppose R̂({(c̃′1, ã′1), (c̃′2, ã

′
2), (c̃3, ã3), ã′3}) = 20.5 and

the clause c̃3 has the form x1 6 τ32 and x2 > τ33. Figure 7 shows the decision list

{(c̃′1, ã′1), (c̃′2, ã
′
2), (c̃3, ã3), ã′3}.

– We compute ∆̂3 = R̂ [{(c̃′1, ã′1), (c̃′2, ã
′
2), (c̃3, ã3), ã′3}] − R̂ [{(c̃′1, ã′1), (c̃′2, ã

′
2), ã2}] and com-

pare ∆̂3 to z1−α
{

V̂ar
(
∆̂3

)}1/2
. In this case ∆̂1 = 20.5 − 18 = 2.5. Suppose we get

V̂ar
(
∆̂1

)
= 2.56 after calculations. Then we have ∆̂3 < z0.95

{
V̂ar
(
∆̂3

)}1/2
. So the simpler,

more parsimonious, decision list {(c̃′1, ã′1), (c̃′2, ã
′
2), ã2} is preferred. Consequently, we add

{(c̃′1, ã′1), (c̃′2, ã
′
2), ã2} to Πfinal and discard {(c̃′1, ã′1), (c̃′2, ã

′
2), (c̃3, ã3), ã′3}.

[Figure 7 about here.]

• The algorithm finishes Step 4, because Πtemp contains no element now.

• The algorithm proceeds to Step 5.

– We would like to pick a decision list from Πfinal that maximizes R̂(·).

– In this example, we have three decision lists in Πfinal: {(c̃1, ã1), ã′1} with estimated value

15, {(c̃′1, ã′1), (c̃2, ã2), ã′2} with estimated value 18, and {(c̃′1, ã′1), (c̃′2, ã
′
2), ã2} with estimated

value 18.

– We then choose the one with the maximal estimated value (with ties broken using

the first encountered). Therefore, the estimated optimal decision list π̃ is described by

{(c̃′1, ã′1), (c̃2, ã2), ã′2}, as shown in Figure 5.
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2. Asymptotic Properties of R̂(π) for a Given π

We shall derive some asymptotic properties of the doubly robust estimator R̂(π) introduced

in Section 2.2 in the main paper. In the next section, we will use these properties to derive

an estimator for Var
{
R̂(π1)− R̂(π2)

}
, which is used by our proposed algorithm for finding

an optimal decision list.

Hereafter denote the observed data for the ith subject by Oi = (XT
i , Ai, Yi)

T.

We first derive an i.i.d. representation of γ̂ = (γ̂T
1 , . . . , γ̂

T
m−1)T, the maximum likelihood

estimator of γ = (γT
1 , . . . , γ

T
m−1)T in the multinomial logistic regression model:

P(A = a|X = x) = exp (uTγa)

/{
1 +

m−1∑
j=1

exp (uTγj)

}
.

If u = u(x) ≡ 1, then the maximum likelihood estimator of ω(x, a) = P(A = a|X = x)

reduces to EnI(A = a). Thus the multinomial logistic regression model includes the sample

proportion as its special case. The log-likelihood function is

`t(γ) =
1

n

n∑
i=1

[
m−1∑
a=1

I(Ai = a)UT

i γa − log

{
1 +

m−1∑
a=1

exp(UT

i γa)

}]

=
1

n

n∑
i=1

[
m−1∑
a=1

I(Ai = a)UT

i Φaγ − log

{
1 +

m−1∑
a=1

exp(UT

i Φaγ)

}]
,

where Ui = u(Xi), q is the dimension of Ui, and Φ1 =
(
Iq | 0 q×(m−2)q

)
,Φ2 =

(
0 q×q | Iq |

0 q×(m−3)q

)
, . . . ,Φm−1 =

(
0 q×(m−2)q | Iq

)
are (m− 1) matrices of size q × (m− 1)q satisfying

Φaγ = γa. Hence we have

∂`t(γ)

∂γ
=

1

n

n∑
i=1

{
m−1∑
a=1

I(Ai = a)ΦT

aUi −
∑m−1

a=1 exp(UT
i Φaγ)ΦT

aUi

1 +
∑m−1

a=1 exp(UT
i Φaγ)

}
,

∂2`t(γ)

∂γ∂γT
= − 1

n

n∑
i=1

∑m−1
a=1 exp(UT

i Φaγ)ΦT
aUiU

T
i Φa

1 +
∑m−1

a=1 exp(UT
i Φaγ)

+
1

n

n∑
i=1

{
∑m−1

a=1 exp(UT
i Φaγ)ΦT

aUi}{
∑m−1

a=1 exp(UT
i Φaγ)UT

i Φa}
{1 +

∑m−1
a=1 exp(UT

i Φaγ)}2
. (1)

Denote γ0 as the maximizer of E`t(γ). By the likelihood theory, we have

√
n(γ̂ − γ0) = −

√
n

[
E
{
∂2`t(γ0)

∂γ∂γT

}]−1{
∂`t(γ0)

∂γ

}
+ op(1),

where the partial derivatives are given in (1), and op(1) denotes a random quantity that
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convergences to zero in probability. Define

ϕγ(Oi) = −
{
E
(
∂2`t(γ0)

∂γ∂γT

)}−1
{
m−1∑
a=1

I(Ai = a)ΦT

aUi −
∑m−1

a=1 exp(UT
i Φaγ0)ΦT

aUi

1 +
∑m−1

a=1 exp(UT
i Φaγ0)

}
.

Then we have

√
n(γ̂ − γ0) =

1√
n

n∑
i=1

ϕγ(Oi) + op(1).

Next we derive an i.i.d. representation of β̂ = (β̂T
1 , . . . , β̂

T
m)T, the maximum likelihood

estimator of β = (βT
1 , . . . , β

T
m)T in the generalized linear model:

g {E(Yi|Xi, Ai)} =
m∑
a=1

I(Ai = a)ZT

i βa.

We assume that Yi given Ai and Xi has an distribution in the exponential family with density

function

fYi(yi) = exp

{
yiθi − b(θi)

φ
+ c(yi, φ)

}
,

where θi and φ are parameters, and b(·) and c(·, ·) are known functions. Note that for normal

distribution φ is known as the dispersion parameter while for Bernoulli distribution φ is

always equal to one. For simplicity we assume g(·) is a canonical link function hereafter.

Then we have b′(·) ≡ g−1(·) and θi =
∑m

a=1 I(Ai = a)ZT
i βa. The log-likelihood function is

`o(β, φ) =
1

n

n∑
i=1

[
Yi
∑m

a=1 I(Ai = a)ZT
i βa − b {

∑m
a=1 I(Ai = a)ZT

i βa}
φ

+ c(Yi, φ)

]
=

1

n

n∑
i=1

[
Yi
∑m

a=1 I(Ai = a)ZT
i Ψaβ − b {

∑m
a=1 I(Ai = a)ZT

i Ψaβ}
φ

+ c(Yi, φ)

]
,

where r is the dimension of Zi, and Ψ1 =
(
Iq | 0 q×(m−1)q

)
,Ψ2 =

(
0 q×q | Iq | 0 q×(m−2)q

)
, . . . ,Ψm

=
(
0 q×(m−1)q | Iq

)
are m matrices of size q ×mq satisfying Ψaβ = βa. Then we have

∂`o(β, φ)

∂β
=

1

nφ

n∑
i=1

[
Yi − b′

{
m∑
a=1

I(Ai = a)ZT

i Ψaβ

}]{
m∑
a=1

I(Ai = a)ΨT

aZi

}
,

∂2`o(β, φ)

∂β∂βT
= − 1

nφ

n∑
i=1

b′′

{
m∑
a=1

I(Ai = a)ZT

i Ψaβ

}{
m∑
a=1

I(Ai = a)ΨT

aZiZ
T

i Ψa

}
.

By the property of the score function, we have

E
(
∂2`o(β0, φ0)

∂β∂φ

)
= −1

φ
E
(
∂`o(β0, φ0)

∂β

)
= 0.

Therefore, by the likelihood theory and the property of block diagonal matrix, we conclude
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that

√
n(β̂ − β0) = −

√
n

[
E
{
∂2`o(β0, φ0)

∂β∂βT

}]−1{
∂`o(β0, φ0)

∂β

}
+ op(1)

=
1√
n

n∑
i=1

ϕβ(Oi) + op(1),

where

ϕβ(Oi) =

(
E

[
b′′

(
m∑
a=1

I(Ai = a)ZT

i Ψaβ0

){
m∑
a=1

I(Ai = a)ΨT

aZiZ
T

i Ψa

}])−1

·

{
Yi − b′

(
m∑
a=1

I(Ai = a)ZT

i Ψaβ0

)}{
m∑
a=1

I(Ai = a)ΨT

aZi

}
.

Finally we derive an i.i.d. representation of R̂(π). To emphasize the dependence of ω(x, a)

and µ(x, a) on the parameters γ and β, in the following we write ω(x, a) as ω(x, a, γ) and

µ(x, a) as µ(x, a, β). Thus we have ω̂(x, a) = ω(x, a, γ̂) and µ̂(x, a) = µ(x, a, β̂). Note that

ω(x, a, γ) =
exp(uTΦaγ)∑m
j=1 exp(uTΦjγ)

,

µ(x, a, β) = b′(zTΨaβ),

for a = 1, . . . ,m, where Φm = 0 q×(m−1)q. Hence we have

∂ω(x, a, γ)

∂γ
=

exp(uTΦaγ)
{∑m

j=1 exp(uTΦjγ) · (ΦT
a − ΦT

j )u
}

{∑m
j=1 exp(uTΦjγ)

}2 ,

∂µ(x, a, β)

∂β
= b′′(zTΨaβ)ΨT

az. (2)

By Taylor expansion, we have

R̂(π) =
1

n

n∑
i=1

m∑
a=1

[
I(Ai = a)

ω(Xi, a, γ̂)

{
Yi − µ(Xi, a, β̂)

}
+ µ(Xi, a, β̂)

]
I{π(Xi) = a}

=
1

n

n∑
i=1

m∑
a=1

[
I(Ai = a)

ω(Xi, a, γ0)
{Yi − µ(Xi, a, β0)}+ µ(Xi, a, β0)

]
I{π(Xi) = a}

+
1

n

n∑
i=1

m∑
a=1

[
− I(Ai = a)

ω2(Xi, a, γ0)
{Yi − µ(Xi, a, β0)} I{π(Xi) = a}∂ω(Xi, a, γ0)

∂γ

]T

(γ̂ − γ0)

+
1

n

n∑
i=1

m∑
a=1

[{
− I(Ai = a)

ω(Xi, a, γ0)
+ 1

}
I{π(Xi) = a}∂µ(Xi, a, β0)

∂β

]T

(β̂ − β0) + op(1)

=
1

n

n∑
i=1

m∑
a=1

[
I(Ai = a)

ω(Xi, a, γ0)
{Yi − µ(Xi, a, β0)}+ µ(Xi, a, β0)

]
I{π(Xi) = a}
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+ E

(
m∑
a=1

[
− I(Ai = a)

ω2(Xi, a, γ0)
{Yi − µ(Xi, a, β0)} I{π(Xi) = a}∂ω(Xi, a, γ0)

∂γ

])T

(γ̂ − γ0)

+ E

(
m∑
a=1

[{
− I(Ai = a)

ω(Xi, a, γ0)
+ 1

}
I{π(Xi) = a}∂µ(Xi, a, β0)

∂β

])T

(β̂ − β0) + op(1).

Recall that

R(π) = E

(
m∑
a=1

[
I(Ai = a)

ω(Xi, a, γ0)
{Yi − µ(Xi, a, β0)}+ µ(Xi, a, β0)

]
I{π(Xi) = a}

)
.

Define

ϕR(Oi) =
m∑
a=1

[
I(Ai = a)

ω(Xi, a, γ0)
{Yi − µ(Xi, a, β0)}+ µ(Xi, a, β0)

]
I{π(Xi) = a}

− E

(
m∑
a=1

[
I(Ai = a)

ω(Xi, a, γ0)
{Yi − µ(Xi, a, β0)}+ µ(Xi, a, β0)

]
I{π(Xi) = a}

)

+ E

(
m∑
a=1

[
− I(Ai = a)

ω2(Xi, a, γ0)
{Yi − µ(Xi, a, β0)} I{π(Xi) = a}∂ω(Xi, a, γ0)

∂γ

])T

ϕγ(Oi)

+ E

(
m∑
a=1

[{
− I(Ai = a)

ω(Xi, a, γ0)
+ 1

}
I{π(Xi) = a}∂µ(Xi, a, β0)

∂β

])T

ϕβ(Oi), (3)

where ∂ω/∂γ and ∂µ/∂β are given in (2). Then we have

√
n
{
R̂(π)−R(π)

}
=

1√
n

n∑
i=1

ϕR(Oi) + op(1).

Therefore, by the central limit theorem and the Slutsky’s theorem, we conclude that

√
n
{
R̂(π)−R(π)

}
d→ N(0,E

{
ϕ2
R(Oi)

}
), (4)

where
d→ denotes convergence in distribution.

To estimate the asymptotic variance, we use the plug-in method. Namely, define ϕ̂R(Oi) as

in (3) except that expectations are replaced with sample averages and true values are replaced

with corresponding estimates. Then Var
(
R̂(π)

)
can be estimated by

∑n
i=1 ϕ̂

2
R(Oi)/n

2.
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3. Asymptotic Properties of R̂(π1)− R̂(π2)

Define ϕR1(Oi) as in (3) with π replaced by π1. Define ϕR2(Oi) as in (3) with π replaced by

π2. Define ϕ̂R1(Oi) and ϕ̂R2(Oi) similarly. Then we have

√
n
[{
R̂(π1)− R̂(π2)

}
− {R(π1)−R(π2)}

]
=

1√
n

n∑
i=1

{ϕR1(Oi)− ϕR2(Oi)}+ op(1)

d→ N(0,E {ϕR1(Oi)− ϕR2(Oi)}2).

Therefore, we can estimate Var
{
R̂(π1)− R̂(π2)

}
by

V̂ar
{
R̂(π1)− R̂(π2)

}
=

1

n2

n∑
i=1

{ϕ̂R1(Oi)− ϕ̂R2(Oi)}2 . (5)

The variance estimator V̂ar(∆j) used in the algorithm in Section 2.4.1 in the main pa-

per can be obtained via (5) with π1 =
{

(c1, a1), . . . , (cj−1, aj−1), (c̃j, ãj), ã
′
j

}
and π2 ={

(c1, a1), . . . , (cj−1, aj−1), a′j−1

}
.

4. Implementation Details of Finding an Optimal Decision List

4.1 Algorithm Description

We give an equivalent version of the proposed algorithm for finding an optimal decision list.

Compared to the algorithm presented in the main paper, this version makes use of recursive

calls to avoid explicit constructions of sets Πtemp and Πfinal, and facilitates the analysis of

time complexity. The algorithm is as follows.

Input: R̂(·), Lmax, α

Output: a decision list π̃ that maximize R̂(·)

ã0 = arg maxa0∈A R̂ [{a0}];

π̃ = FindList(1, {}, ã0);

The function FindList is defined below. When j = 1, we treat (c1, a1), . . . , (cj−1, aj−1)
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as an empty array. Thus when j = 1,
{

(c1, a1), . . . , (cj−1, aj−1), (c̃j, ãj), ã
′
j

}
is the same as

{(c̃1, ã1), ã′1} and
{

(c1, a1), . . . , (cj−1, aj−1), a′j−1

}
is the same as {a′0}.

Function FindList (j, {(c1, a1), . . . , (cj−1, aj−1)} , a′j−1)

(c̃j, ãj, ã
′
j) = arg max(cj ,aj ,a′j)∈C×A×A

R̂
[{

(c1, a1), . . . , (cj−1, aj−1), (cj, aj), a
′
j

}]
;

∆̂j = R̂
[{

(c1, a1), . . . , (cj−1, aj−1), (c̃j, ãj), ã
′
j

}]
− R̂

[{
(c1, a1), . . . , (cj−1, aj−1), a′j−1

}]
;

if ∆̂j < z1−α
{

V̂ar
(
∆̂j

)}1/2
then

π̃ =
{

(c1, a1), . . . , (cj−1, aj−1), a′j−1

}
;

else if j = Lmax then

π̃ =
{

(c1, a1), . . . , (cj−1, aj−1), (c̃j, ãj), ã
′
j

}
;

else

π̃1 = FindList(j + 1, {(c1, a1), . . . , (cj−1, aj−1), (c̃j, ãj)} , ã′j);

π̃2 = FindList(j + 1,
{

(c1, a1), . . . , (cj−1, aj−1), (c̃′j, ã
′
j)
}
, ãj),

where c̃′j = negation of c̃j;

π̃ = arg maxπ∈{π̃1,π̃2} R̂(π);

end

return π̃;

end

In the FindList function, a crucial step is to compute (c̃j, ãj, ã
′
j). A straightforward

implementation that involves a brute-force search over C × A × A can be time consuming.

We provide an efficient implementation below.

We observe that some calculations can be performed only once at the beginning of the

algorithm. First, define

ξ̂ia =
I(Ai = a)

ω(Xi, a, γ̂)

{
Yi − µ(Xi, a, β̂)

}
+ µ(Xi, a, β̂).
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Then we have

R̂(π) =
1

n

n∑
i=1

m∑
a=1

ξ̂iaI{π(Xi) = a}.

Second, for the ith subject, denote xij as the observed value of his/her jth covariate. For the

jth baseline covariate, there are sk = #Xj possible candidate cutoff values τj1 6 · · · 6 τjsj ,

which divides the real line into sk + 1 intervals:

(−∞, τj1], (τj1, τj2], . . . , (τj(sj−1), τjsj ], (τjsj ,∞).

Then we code the observed values x1j, . . . , xnj into indices b1j, . . . , bnj according to which

interval they fall.

In order to reduce the number of evaluations of R̂(·) when searching for the maximizer

over C × A × A, we organize the intermediate results as shown below. Let I = {i :

Xi ∈ T (c`)
c for all ` < j}. Then I contains all the subjects that have not had treatment

recommendations up to the jth clause. Since we have

nR̂(π) =
∑
i∈I

m∑
a=1

ξ̂iaI{π(Xi) = a}+
∑
i∈Ic

m∑
a=1

ξ̂iaI{π(Xi) = a}

and
∑

i∈Ic
∑m

a=1 ξ̂iaI{π(Xi) = a} is constant during the maximization, we focus on maxi-

mizing
∑

i∈I
∑m

a=1 ξ̂iaI{π(Xi) = a}, which reduces to maximizing

∑
i∈I

m∑
a=1

ξ̂iaI{i ∈ T (cj), a = aj}+
∑
i∈I

m∑
a=1

ξ̂iaI{i /∈ T (cj), a = a′j}. (6)

To identify the maximizer of (6), we first loop over all possible pairs of covariates. For each

pair of covariates, say the kth and the `th covariates, define D, a three-dimensional array

of size m × (sk + 1) × (s` + 1), as Dauv =
∑

i∈I ξ̂iaI(bik = u, bil = v). Next, we loop over

all possible cutoff values and construct the corresponding cj. The values of aj and a′j that

maximizes (6) for a given cj can be easily obtained due to the additive structure. After

enumerating all the possible conditions that cj may take, we can find out (c̃j, ãj, ã
′
j).
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4.2 Time Complexity Analysis

Since computing ξ̂ias requires O(nm) time and computing bijs requires O(np) time. The

calculations at the beginning of the algorithm take O(nm+ np) time in total.

The algorithm first computes ã0, which requires O(nm) time. Then it invokes a function call

FindList(1, {}, ã0). Due to the recursive nature of the FindList function, we will compute

the time complexity by establishing a recurrence relation between T (j) and T (j + 1), where

T (j) is the time complexity of the function call FindList (j, {(c1, a1), . . . , (cj, aj)}).

Suppose a call FindList (j, {(c1, a1), . . . , (cj, aj)}) is invoked. The running time can be

computed by going through the algorithm of the FindList function step-by-step as follows.

First, the function computes (c̃j, ãj, ã
′
j). A naive implementation would involve looping over

all the covariates, all the possible cutoff values and all the treatment options, whose running

time is O(nmp2s2), where s = maxj sj. However, the running time is greatly reduced if we

use the efficient implementation described previously. For a given pair of covariates, we can

compute Dauvs in O(nm) time. Then we can find out the maximum of (6) in O(ms2) time

by looping over all possible cutoff values. Therefore, the total time for computing (c̃j, ãj, ã
′
j)

is O{(n+ s2)mp2}.

Second, the function computes ∆̂j, which takes O(n) time.

Third, the function computes V̂ar
(
∆̂j

)
, whose running time is O(nmq + nmr), where q is

the dimension of Ui and r is the dimension of Zi. Since both Ui and Zi are known feature

vectors constructed from Xi, for most cases q and r are of the same order as p. So this step

takes O(nmp) time.

Fourth, the function executes the “if-then” statement. In the worst case, the function

makes two recursive calls, taking 2T (j + 1) time.

Combining these four steps, we have T (j) = O{(n + s2)mp2} + 2T (j + 1). The bound-
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ary condition is T (Lmax) = O{(n + s2)mp2}. Using backward induction, we get T (0) =

O{2Lmax(n+ s2)mp2}. Recall that s = maxj #Xj.

Combining T (0) with the running time before invoking FindList(1, {}, ã0), we obtain that

the time complexity of the entire algorithm is O[2Lmaxmp2{n+ (maxj #Xj)2}].

5. Implementation Details of Finding an Equivalent Decision List with

Minimal Cost

In this section we give an algorithmic description of the proposed method for finding an

equivalent decision list with minimal cost. Recall that two decision lists are called equivalent

if they give the same treatment recommendation for every patient in the population.

Input: a decision list π̄

Output: an equivalent decision list πmin with minimal cost Nmin

Identify atoms in π̄ as d1, . . . , dK ;

Compute Ia = {i : π̄(Xi) = a} for each a ∈ A;

Set πmin = {} and Nmin =∞;

FindMinCost (0, {}, πmin, Nmin);

The function FindMinCost is defined below.



14 Biometrics, 000 0000

Function FindMinCost (j, {(c1, a1), . . . , (cj, aj)}, πmin, Nmin)

Compute a lower bound of the cost as Nbd = N`
∑j

`=1 Pn(X ∈ R`)

+NjPn(X ∈ ∩j`=1Rc
`), where Pn denotes the empirical probability measure;

if Nbd > Nmin then return;

I = {i : Xi ∈ T (c`)
c for all ` 6 j};

if I ⊂ Ia0 for some a0 then

if N [{(c1, a1), . . . , (cj, aj), a0}] < Nmin then

πmin = {(c1, a1), . . . , (cj, aj), a0};

Nmin = N(πmin);

end

else

for 1 6 k1 < k2 6 K do

Let Ck1,k2 be the set consisting of all the logical clauses involving

dk1 or dk2 or both using conjunction, disjunction, and/or negation;

for cj+1 ∈ Ck1,k2 do

Jj+1 = {i ∈ I : Xi ∈ T (cj+1)};

if Jj+1 is non-empty and Jj+1 ⊂ Iaj+1
for some aj+1 ∈ A then

FindMinCost (j + 1, {(c1, a1), . . . , (cj, aj), (cj+1, aj+1)}, πmin, Nmin) ;

end

end

end

end
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6. Point Estimate and Prediction Interval for R(π̂) with Bootstrap Bias

Correction

In this section, we show how to estimate the value of the estimated treatment regime, R(π̂),

and how to construct a prediction interval for it.

6.1 Methodology

To measure how well the estimated treatment regime π̂ performs, it is often of interest to

construct an estimator of and a prediction interval for R(π̂). Since a natural candidate for

estimating R(π̂) is R̂(π̂), it may be tempting to construct a prediction interval centering at

R̂(π̂). However, R̂(π̂) is generally too optimistic to serve as an honest estimator of R(π̂).

It has an upward bias due to the maximization process. As a remedy, we suggest using

B bootstraps to correct this bias. Specifically, the perturbed version of R̂(π) in the bth

bootstrapping sample is

R̂∗b(π) =
1

n

n∑
i=1

(
Wi

m∑
a=1

[
I(Ai = a)

ω(Xi, a, γ̂∗)

{
Yi − µ(Xi, a, β̂

∗)
}

+ µ(Xi, a, β̂
∗)

]
I{π(Xi) = a}

)
,

where W1, . . . ,Wn are identically and independently distributed with standard exponential

distribution, γ̂∗ is the solution to

n∑
i=1

Wi

{
m−1∑
a=1

I(Ai = a)ΦT

aUi −
∑m−1

a=1 exp(UT
i Φaγ)ΦT

aUi

1 +
∑m−1

a=1 exp(UT
i Φaγ)

}
= 0,

and β̂∗ is the solution to

n∑
i=1

Wi

[
Yi − b′

{
m∑
a=1

I(Ai = a)ZT

i Ψaβ

}]{
m∑
a=1

I(Ai = a)ΨT

aZi

}
= 0.

Let π̂∗b be the maximizer of R̂∗b(π) over Π. Then the actual bias R̂(π̂)−R(π̂) can be estimated

by the corresponding bias in the bootstrap world: B̂ias =
∑B

b=1{R̂∗b(π̂∗b )− R̂(π̂∗b )}/B, where

B is the number of bootstrap samples. The final estimator of R(π̂) is R̂c(π̂) = R̂(π̂)− B̂ias.

To construct a prediction interval for R(π̂), we treat π̂ as a non-random quantity, and

then utilize the asymptotic normality of R̂(π̂) given in (4). Let zρ be the 100ρ percentile

of a standard normal distribution and σ̂2 = V̂ar
{
R̂(π̂)

}
. Then a (1 − α) × 100% prediction
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interval for R(π̂) is [
R̂c(π̂) + zα/2σ̂, R̂c(π̂) + z1−α/2σ̂

]
. (7)

A potential drawback of this interval is, though, that it ignores the variation introduced by

π̂. Nevertheless, our numerical experiences suggest that this extra variation is generally small

and the coverage probability is close to the nominal level. Taking into account the variability

of π̂ has to deal with the associated non-regularity issue, which is beyond the scope of this

paper.

As a final remark, for binary outcome we suggest to conduct the bias correction and

construct the prediction interval based on logit{R̂(·)} first and then transform back to the

original scale, where logit(v) = log{v/(1− v)}.

6.2 Simulations

We present the point estimate and the coverage probabilities of the plain prediction interval

and the prediction interval with bootstrap bias correction in Table 1. The setting used here is

exactly the same as that in Section 3 in the main paper. We can see that the bias correction

improves the coverage probability substantially in finite samples, especially as the number

of covariates gets larger. Besides, the bootstrap prediction interval is prone to overcoverage

for the binary response.

[Table 1 about here.]

7. Accuracy of Variable Selection

Consider the simulated experiments in the main paper. To quantify variable selection ac-

curacy, we compute the true positive rate, the number of signal variables included in the

decision list divided by the number of signal variables, and the false positive rate, the number

of noise variables included in the decision list divided by the number of noise variables. A
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variable is called a signal variable if it appears in φ(x, a) and is a noise variable otherwise,

irrespective of the actual functional form.

Table 2 presents the true positive rates and the false positive rates under different settings.

The proposed method consistently identifies signal variables and screens out noise variables

in most settings. The only exception is setting IV, where the optimal regime is far away

from being well approximated by decision lists. Thus the proposed approach loses power in

detecting useful covariates due to misspecifying the form of the regime.

[Table 2 about here.]

8. Impact of the Tuning Parameter in the Stopping Criterion

In the algorithm discussed in Section 2.4.1 in the main paper, we use a tuning parameter

α to control the building process of the decision list and we suggest to fix α at 0.95. In the

following we show that the final decision list is insensitive to the choice of α via simulation

study. The setting used here is exactly the same as that in Section 3 in the main paper. We

varied α among {0.9, 0.95, 0.99}.

Table 3 shows the impact of α on the value and the cost of the estimated regime. We can

see that the value and the cost as well as the accuracy of variable selection, averaged over

1000 replications, are very stable across different choices of α. Table 4 shows the impact of α

on the estimated regime. It is clear that α has little impact on the treatment recommendation

made by the estimated regime.

[Table 3 about here.]

[Table 4 about here.]
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9. Chronic Depression Data

In the application considered in Section 4.2 in the main paper, we applied the proposed

method to construct an interpretable and parsimonious treatment regime. We follow Gunter

et al. (2011) and Zhao et al. (2012), and use the following 50 covariates:

(1) Gender: 1 if female, 0 if male;

(2) Race: 1 if white, 0 otherwise;

(3) Marital status I: 1 if single, 0 otherwise;

(4) Marital status II: 1 if married or living with someone, 0 otherwise;

(5) Body mass index: continuous;

(6) Age at screening: continuous;

(7) Having difficulty in planning family activity: 1 if strongly agree, 2 if agree, 3 if disagree,

4 if strongly disagree;

(8) Supporting each other in the family: 1 if strongly agree, 2 if agree, 3 if disagree, 4 if

strongly disagree;

(9) Having problems with primary support group: 1 if yes, 0 if no;

(10) Having problems related to the social environment: 1 if yes, 0 if no;

(11) Having occupational problems: 1 if yes, 0 if no;

(12) Having economic problems: 1 if yes, 0 if no;

(13) Receiving psychotherapy for current depression: 1 if yes, 0 if no or don’t know;

(14) Receiving medication for current depression: 1 if yes, 0 if no or don’t know;

(15) Having received psychotherapy for past depressions: 1 if yes, 0 if no or don’t know;

(16) Having received medication for past depressions: 1 if yes, 0 if no or don’t know;

(17) Number of major depressive disorder (MDD) episodes: 1 if one, 2 if two, 3 if at least

three;

(18) Length of current MDD episode (in years): continuous;
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(19) Age at MDD onset: continuous;

(20) MDD severity: 1 if mild, 2 if moderate, 3 if severe;

(21) MDD type I: 1 if melancholic, 0 otherwise;

(22) MDD type II: 1 if atypical, 0 otherwise;

(23) Number of dysthymia episodes: 0 if zero, 1 if one, 2 if at least two;

(24) Generalized anxiety: 0 if absent or inadequate information, 1 if subthreshold, 2 if

threshold;

(25) Anxiety disorder (not otherwise specified): 0 if absent or inadequate information, 1 if

subthreshold, 2 if threshold;

(26) Panic disorder: 0 if absent or inadequate information, 1 if subthreshold, 2 if threshold;

(27) Social phobia: 0 if absent or inadequate information, 1 if subthreshold, 2 if threshold;

(28) Specific phobia: 0 if absent or inadequate information, 1 if subthreshold, 2 if threshold;

(29) Obsessive compulsive: 0 if absent or inadequate information, 1 if subthreshold, 2 if

threshold;

(30) Body dysmorphic disorder: 0 if absent or inadequate information, 1 if subthreshold, 2 if

threshold;

(31) Post-traumatic stress disorder: 0 if absent or inadequate information, 1 if subthreshold,

2 if threshold;

(32) Anorexia nervosa: 0 if absent or inadequate information, 1 if subthreshold, 2 if threshold;

(33) Alcohol abuse: 0 if absent, 1 if abuse, 2 if dependent;

(34) Drug abuse (including cannabis, stimulant, opioid, cocaine, hallucinogen): 0 if absent,

1 if abuse, 2 if dependent;

(35) Global assessment of functioning: continuous;

(36) Chronic depression diagnosis I: 1 if no antecedent dysthymia and continuous full-syndrome

type;
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(37) Chronic depression diagnosis II: 1 if no antecedent dysthymia and incomplete recovery

type;

(38) Chronic depression diagnosis III: 1 if superimposed on antecedent dysthymia;

(39) Chronic depression severity: integer between 1 (normal) and 7 (extremely ill);

(40) Hamilton anxiety rating scale (HAM-A) total score: continuous;

(41) HAM-A psychic anxiety score: continuous;

(42) HAM-A somatic anxiety score: continuous;

(43) Hamilton depression rating scale (HAM-D) total score: continuous;

(44) HAM-D anxiety/somatic score: continuous;

(45) HAM-D cognitive disturbance score: continuous;

(46) HAM-D retardation score: continuous;

(47) HAM-D sleep disturbance: continuous;

(48) Inventory of Depressive Symptoms - Self Report (IDS-SR) anxiety/arousal score: con-

tinuous;

(49) IDS-SR general/mood cognition score: continuous;

(50) IDS-SR sleep score: continuous.

10. Consistency of the decision list

Since the consistency of the decision list is difficult to analyze theoretically, we present some

empirical evidence that the decision list tends to be consistent. We follow the simulated

experiments considered in Section 4 in the main paper but increase the sample size. We

consider settings I and V only as the optimal regime in other settings cannot be representable

as a decision list.

The sample sizes considered and the associated results are presented in Table 5. For

continuous response, the proposed method correctly identifies the form and the important

covariates for treatment decision. As n increases, the loss in value decreases and the probabil-
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ity of recommending the best treatment increases. Also, the mean squared error of estimating

the cutoff values decreases at the rate of n−1. Results for binary response is qualitatively

similar. Nevertheless, we may need a even larger sample size for the asymptotics to work.

Therefore, the simulation results provides evidence that the proposed method is consistent.

[Table 5 about here.]
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ã0

x2

x1

Everyone ã0.

Figure 1. Diagram and description of the decision list {ã0}.

ã1 ã′1

τ1

x2

x1

If x1 6 τ1 then ã1;
else ã′1.

Figure 2. Diagram and description of the decision list {(c̃1, ã1), ã′1}.
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If x1 > τ1 then ã′1;
else ã1.

Figure 3. Diagram and description of the decision list {(c̃′1, ã′1), ã1}.
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If x1 6 τ1 then ã1;
else if x2 6 τ21 then ã2;
else ã′2.

Figure 4. Diagram and description of the decision list {(c̃1, ã1), (c̃2, ã2), ã′2}. It is possible
that ã2 = ã1 or ã′2 = ã1.
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x1

If x1 > τ1 then ã′1;
else if x2 6 τ22 then ã2;
else ã′2.

Figure 5. Diagram and description of the decision list {(c̃′1, ã′1), (c̃2, ã2), ã′2}. It is possible
that ã2 = ã′1 or ã′2 = ã′1.
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ã3 ã′3
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If x1 > τ1 then ã′1;
else if x2 6 τ22 then ã2;
else if x1 6 τ31 then ã3;
else ã′3.

Figure 6. Diagram and description of the decision list {(c̃′1, ã′1), (c̃2, ã2), (c̃3, ã3), ã′3}. Some
of the values of ã′1, ã2, ã3, ã

′
3 can be equal.
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ã′2

ã3

ã′3

τ22

τ1

τ33

τ32

x2

x1

If x1 > τ1 then ã′1;
else if x2 > τ22 then ã′2;
else if x1 6 τ32 and x2 > τ33 then ã3;
else ã′3.

Figure 7. Diagram and description of the decision list {(c̃′1, ã′1), (c̃′2, ã
′
2), (c̃3, ã3), ã′3}. Some

of the values of ã′1, ã
′
2, ã3, ã

′
3 can be equal.
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Table 1
Point estimate and coverage probabilities of prediction intervals with and without bootstrap bias correction. Plain-PI
refers to the coverage probability of the plain prediction interval, and Corrected-PI refers to the coverage probability

of the bias-corrected prediction interval.

p Setting
Continuous response Binary response

R(π̂) R̂c(π̂) Plain-PI Corrected-PI R(π̂) R̂c(π̂) Plain-PI Corrected-PI

10

I 2.78 2.78 0.95 0.94 0.77 0.76 0.97 0.96
II 2.70 2.73 0.93 0.95 0.71 0.72 0.89 0.97
III 2.59 2.61 0.95 0.95 0.73 0.74 0.88 0.96
IV 2.89 2.98 0.88 0.94 0.71 0.72 0.63 0.98
V 2.90 2.90 0.95 0.95 0.75 0.75 0.76 0.96
VI 3.98 4.01 0.93 0.95 0.79 0.79 0.97 0.99
VII 3.22 3.27 0.86 0.94 0.77 0.77 0.77 1.00

50

I 2.76 2.75 0.94 0.94 0.76 0.76 0.82 0.98
II 2.70 2.72 0.93 0.94 0.71 0.71 0.80 0.96
III 2.59 2.59 0.94 0.95 0.73 0.73 0.63 0.98
IV 2.89 2.96 0.88 0.94 0.71 0.72 0.48 0.98
V 2.87 2.87 0.93 0.94 0.74 0.74 0.33 0.96
VI 3.95 3.99 0.91 0.94 0.78 0.79 0.89 0.99
VII 3.21 3.27 0.88 0.94 0.76 0.77 0.63 0.99

Table 2
Accuracy of variable selection using decision list. TPR is the true positive rate and FPR is the false positive rate.

p Setting
Continuous response Binary response

TPR FPR TPR FPR

10

I 1.00 0.00 1.00 0.07
II 1.00 0.00 1.00 0.04
III 1.00 0.00 1.00 0.11
IV 0.93 0.00 0.79 0.07
V 1.00 0.07 1.00 0.20
VI 1.00 0.05 1.00 0.10
VII 0.94 0.00 0.98 0.04

50

I 1.00 0.01 1.00 0.04
II 1.00 0.00 1.00 0.02
III 1.00 0.00 0.99 0.04
IV 0.93 0.00 0.73 0.02
V 1.00 0.02 0.99 0.06
VI 1.00 0.02 1.00 0.03
VII 0.94 0.00 0.97 0.02
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Table 3
The impact of α on the value and the cost of the estimated regime. In the header, α is the tuning parameter in the
stopping criterion; R(π̂) is the mean outcome under the estimated regime π̂, computed on a test set of 106 subjects;
N(π̂) is the cost of implementing the estimated regime π̂, computed on the same test set; TPR is the true positive

rate, namely, the number of signal variables involved in π̂ divided by the number of signal variables; FPR is the false
positive rate, namely, the number of noise variables involved in π̂ divided by the number of noise variables. Recall

that p is the dimension of patient covariates.

p Setting
α = 0.9 α = 0.95 α = 0.99

R(π̂) N(π̂) TPR FPR R(π̂) N(π̂) TPR FPR R(π̂) N(π̂) TPR FPR

Continuous response

10

I 2.78 1.65 1.00 0.01 2.78 1.65 1.00 0.00 2.78 1.65 1.00 0.00
II 2.71 1.66 1.00 0.00 2.70 1.66 1.00 0.00 2.69 1.66 1.00 0.00
III 2.59 1.69 1.00 0.00 2.59 1.69 1.00 0.00 2.59 1.69 1.00 0.00
IV 2.89 2.51 0.93 0.00 2.89 2.51 0.93 0.00 2.89 2.51 0.92 0.00
V 2.90 1.91 1.00 0.07 2.90 1.91 1.00 0.07 2.90 1.91 1.00 0.07
VI 3.98 1.61 1.00 0.06 3.98 1.61 1.00 0.05 3.98 1.61 1.00 0.05
VII 3.22 2.56 0.94 0.00 3.22 2.56 0.94 0.00 3.21 2.56 0.94 0.00

50

I 2.75 1.96 1.00 0.01 2.76 1.96 1.00 0.01 2.78 1.96 1.00 0.00
II 2.70 1.66 1.00 0.00 2.70 1.66 1.00 0.00 2.69 1.66 1.00 0.00
III 2.58 1.75 1.00 0.00 2.59 1.75 1.00 0.00 2.59 1.75 1.00 0.00
IV 2.89 2.54 0.93 0.00 2.89 2.54 0.93 0.00 2.89 2.54 0.92 0.00
V 2.87 2.19 1.00 0.03 2.87 2.19 1.00 0.02 2.88 2.19 1.00 0.02
VI 3.95 1.70 1.00 0.02 3.95 1.70 1.00 0.02 3.95 1.70 1.00 0.02
VII 3.22 2.56 0.94 0.00 3.21 2.56 0.94 0.00 3.21 2.56 0.93 0.00

Binary response

10

I 0.76 2.16 1.00 0.12 0.77 2.16 1.00 0.07 0.77 2.16 1.00 0.02
II 0.71 1.75 1.00 0.06 0.71 1.75 1.00 0.04 0.71 1.75 1.00 0.02
III 0.73 2.24 1.00 0.15 0.73 2.24 1.00 0.11 0.74 2.24 0.99 0.04
IV 0.71 2.48 0.81 0.08 0.71 2.48 0.79 0.07 0.71 2.48 0.70 0.06
V 0.75 2.64 1.00 0.24 0.75 2.64 1.00 0.20 0.75 2.64 1.00 0.16
VI 0.79 2.11 1.00 0.11 0.79 2.11 1.00 0.10 0.79 2.11 1.00 0.10
VII 0.77 2.87 0.98 0.06 0.77 2.87 0.98 0.04 0.76 2.87 0.97 0.02

50

I 0.75 2.87 1.00 0.05 0.76 2.87 1.00 0.04 0.76 2.87 1.00 0.02
II 0.71 1.93 1.00 0.02 0.71 1.93 1.00 0.02 0.71 1.93 0.99 0.01
III 0.72 2.68 0.99 0.04 0.73 2.68 0.99 0.04 0.73 2.68 0.99 0.02
IV 0.71 2.65 0.75 0.02 0.71 2.65 0.73 0.02 0.71 2.65 0.66 0.02
V 0.73 3.32 0.99 0.07 0.74 3.32 0.99 0.06 0.74 3.32 0.99 0.05
VI 0.78 2.47 1.00 0.03 0.78 2.47 1.00 0.03 0.78 2.47 1.00 0.02
VII 0.76 3.04 0.97 0.02 0.76 3.04 0.97 0.02 0.76 3.04 0.95 0.01
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Table 4
The impact of α on the estimated regime. In the header, α is the tuning parameter in the stopping criterion and π̂α
is the regime such obtained. For each pair of regimes π̂α and π̂α′ , we report the probability that they recommend the

same treatment for a randomly selected patient in the population. Mathematically, this is to compute
P{π̂α(X) = π̂α′(X)|π̂α, π̂α′} and then average over 1000 replications, where X is generated in the same way as in

Section 3 in the main paper.

p Setting π̂0.9 vs. π̂0.95 π̂0.95 vs. π̂0.99 π̂0.9 vs. π̂0.99

Continuous response

10

I 0.998 0.998 0.996
II 0.986 0.975 0.961
III 0.993 0.992 0.986
IV 0.997 0.997 0.993
V 0.999 1.000 0.998
VI 0.998 0.997 0.995
VII 0.991 0.988 0.979

50

I 0.984 0.985 0.970
II 0.986 0.977 0.962
III 0.988 0.989 0.976
IV 0.998 0.996 0.994
V 0.993 0.995 0.988
VI 0.997 0.997 0.993
VII 0.991 0.989 0.980

Binary response

10

I 0.971 0.969 0.941
II 0.978 0.964 0.944
III 0.971 0.952 0.926
IV 0.983 0.955 0.941
V 0.973 0.969 0.944
VI 0.992 0.993 0.985
VII 0.976 0.968 0.944

50

I 0.973 0.946 0.920
II 0.980 0.958 0.942
III 0.971 0.947 0.925
IV 0.985 0.962 0.947
V 0.965 0.939 0.913
VI 0.985 0.985 0.969
VII 0.974 0.955 0.930
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Table 5
Consistency of the decision list. In the header, n is the sample size; p is the number of predictors. Loss is

R(πopt)−R(π̂), namely, the difference between the the value under the estimated regime and the value under the
optimal regime. Pr(best) is P{π̂(X) = πopt(X)|π̂}, namely, the probability that the treatment recommended by the
estimate regime coincides with the treatment recommended by the optimal regime. Loss and Pr(best) are averaged
over 1000 replications. Correct is the proportion of π̂ having the same form and covariates as πopt among 1000

replications; MSE1 is the mean squared error of the estimated cutoff for X1; MSE2 is the mean squared error of the
estimated cutoff for X2.

Setting n p Loss Pr(best) Correct MSE1(×n) MSE2(×n)

Continuous response

I 104 10 0.0023 0.9982 1.00 4.24 6.87
I 105 10 0.0006 0.9995 1.00 4.30 6.50
I 106 10 0.0002 0.9998 1.00 4.06 6.32
I 104 50 0.0022 0.9982 1.00 4.60 6.91
I 105 50 0.0006 0.9995 1.00 4.24 6.49
I 106 50 0.0002 0.9998 1.00 4.22 6.48

V 104 10 0.0039 0.9975 1.00 6.08 5.27
V 105 10 0.0010 0.9994 1.00 5.86 4.70
V 106 10 0.0003 0.9998 1.00 5.46 4.54
V 104 50 0.0036 0.9977 1.00 6.10 5.33
V 105 50 0.0010 0.9994 1.00 5.96 4.54
V 106 50 0.0003 0.9998 1.00 5.69 4.51

Binary response

I 104 10 0.0007 0.9966 1.00 8.13 10.93
I 105 10 0.0001 0.9994 1.00 5.71 6.05
I 106 10 0.0000 0.9999 1.00 5.27 5.61
I 104 50 0.0007 0.9965 1.00 9.72 11.15
I 105 50 0.0001 0.9994 1.00 5.71 6.29
I 106 50 0.0000 0.9998 1.00 5.41 5.78

V 104 10 0.0094 0.9447 0.79 7.81 22.66
V 105 10 0.0081 0.9547 0.96 4.14 6.33
V 106 10 0.0079 0.9563 0.97 3.89 5.03
V 104 50 0.0099 0.9418 0.70 6.63 14.36
V 105 50 0.0078 0.9567 0.96 3.97 6.14
V 106 50 0.0081 0.9550 0.97 3.96 5.10


