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1 Proofs of Theorems
We will outline the proofs for the main theorems. We make the following assumptions:

(a) {Tli, Cli, Zli}, i = 1, . . . , n and l = 1, . . . , L are independent and identically distributed
where Tli = (Tli1, . . . , TliK)

T , Cli = (Cli1, . . . , CliK)
T , and Zli = (Zli1, . . . , ZliK)

T ;

(b) P{Ylik(t) = 1} > 0 for t ∈ [0, τ ] , i = 1, . . . , nl, k = 1, 2, and l = 1, . . . , L;

(c) |Zlik(0)|+
∫ τ
0 |dZlik(t)| < Dz < ∞, i = 1, . . . , nl, k = 1, 2, and l = 1, . . . , L almost surely

and Dz is a constant;

(d) The matrix Ak is positive definite for k = 1, 2 where Ak = ΣL
l=1qlEl(

∫ τ
0 Yl1k(t){Zl1k(t)

⊗2 −
[E{Yl1k(t)Zl1k(t)}/E{Yl1k(t)}]⊗2}dt) where ql = limn→∞ nl/n;

(e) For all k = 1, 2,
∫ τ
0 λ0k(t)dt < ∞;

To show the desired asymptotic properties for generalized case-cohort samples, the following con-
ditions are also needed:

(f) For all l = 1, . . . , L, limn→∞ α̃l = αl, where α̃l = ñl/nl and αl is a positive constant.

(g) limn→∞ nlk/nl = plk, where plk is a positive constant on [0,1] for all k = 1, 2 and l =
1, . . . , L.

(h) limn→∞ nl/n = ql, where ql is a positive constant on [0,1] for all l = 1, . . . , L.

The following lemmas are used in order to prove the theorems. The proof of Lemma 1.1 is in
Lin [1] and Lemma 1.2 is in Lemma A1 in Kang and Cai [2].
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Lemma 1.1 Let Hn(t) and Wn(t) be two sequences of bounded process. If we assume that the
following conditions: (1) sup0≤t≤τ ∥ Hn(t) − H(t) ∥→p 0 for some bounded process H(t),(2)
Hn(t) is monotone on [0, τ ] and (3) Wn(t) converges to zero-mean process with continuous sample
paths, hold for some constant τ , then

sup0≤t≤τ ∥
∫ t
0 {Hn(s)−H(s)} dWn(s) ∥→p 0,sup0≤t≤τ ∥

∫ t
0 Wn(s)d {Hn(s)−H(s)} ∥→p

0

Lemma 1.2 Let Bi(t), i = 1, . . . , n be independent and identically distributed real-valued random
process on [0, τ ] and denote random process vector, B(t) = [B1(t), . . . , Bn(t)] with EBi(t) ≡
µB(t), var Bi(0) < ∞, and var Bi(τ) < ∞. Let ξ = [ξ1, . . . , ξn] be random vector containing ñ
ones and n− ñ zeros with each permutation equally likely. Let ξ be independent of B(t). Suppose
that almost all paths of Bi(t) have finite variation. Then n−1/2 ∑n

i=1 ξi{Bi(t)− µB(t)} converges
weakly in l∞[0, τ ] to a zero-mean Gaussian process, and n−1 ∑n

i=1 ξi{Bi(t)−µB(t)} converges in
probability to zero uniformly in t.

The proof of Theorem 1
We first show the consistency of β̃. Denote Ũn = n−1Ũ . Based on the extension of Fourtz [3],

if the following conditions are satisfied (i) ∂Ũn(β)
∂βT exists and is continuous in an open neighborhood

B of β0, (ii) ∂Ũn(β)
∂βT is negative definite with probability going to one as n → ∞, (iii) -∂Ũn(β)

∂βT

converges to A(β0) in probability uniformly for β in an open neighborhood about β0, (iv) Ũn(β)
converges to 0 in probability, then, we can show that β̃ converges to β0 in probability. Note that
−∂Ũn(β)

∂βT = 1
n

∑L
l=1

∑nl
i=1

∑2
k=1

∫ τ
0 πlik(t)Ylik(t){Zlik(t)

⊗2 − Z̃k(t)
⊗2}dt

Definitely, condition (i) is satisfied. Conditions (ii) and (iii) also are satisfied due to uniform
convergence of Z̃k(t) to ek(t) for k = 1, 2, uniform convergence of α̃lk(t)

−1−α̃−1
l , γ̃l1k(t)−1−γ̃l1k,

and γ̃l2k(t)
−1 − γ̃l2k to zero, condition (c), and Lemma 1.2. n1/2Ũn(β) can be decomposed into

four parts:

n1/2Ũn(β) = n−1/2
L∑
l=1

nl∑
i=1

2∑
k=1

∫ τ

0
{Zlik(t)− ek(t)}dMlik(t)

+ n−1/2
L∑
l=1

nl∑
i=1

2∑
k=1

∫ τ

0
{πlik(t)− 1}{Zlik(t)− ek(t)}dMlik(t)

+ n−1/2
L∑
l=1

nl∑
i=1

2∑
k=1

∫ τ

0
{ek(t)− Z̃k(t)}dMlik(t)

+ n−1/2
L∑
l=1

nl∑
i=1

2∑
k=1

∫ τ

0
{πlik(t)− 1}{ek(t)− Z̃k(t)}dMlik(t) (1)

Since the first term on the right-hand side of (1) is the pseudo partial likelihood score func-
tion for the full likelihood, it is asymptotically zero-mean normal with covariance V a

lI(β0) =
n−1/2 ∑L

l=1 qlEl[
∑2

k=1Ql1k(β0)]
⊗2 where Qlik(t, β) =

∫ t
0{Zlik(t)− ek(t)}dMlik(t) Yin and Cai[4].

The third term can be written as
∑L

l=1 n
1/2
l n−1/2 ∑2

k=1

∫ τ
0 {ek(t)−Z̃k(t)}{n−1/2

l

∑nl
i=1 dMlik(t)}

and Ml1k(t), . . . ,Mlnk(t) is identically and independently distributed zero-mean random vari-
able for fixed t. Since M2

lik(0) < ∞ and M2
lik(τ) < ∞ are satisfied based on conditions (c)
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and (e), Mlik(t) is of bounded variation and therefore it can be written as a difference of two
monotone functions in t. From the example of 2.11.16 of van der Vaart and Wellner [5](p215),
n
−1/2
l

∑nl
i=1Mlik(t) converges weakly to a zero-mean Gaussian process, say PM,lk(t).

Since Z̃k(t) is of bounded variation and can be written as sum of two monotone functions in t,
the third and fourth terms on the right-hand side of (1) converge to zero in probability uniformly
in t as n → ∞ by Lemma 1.1 and boundness of πlik(t)− 1.

By using the asymptotic property of n1/2
l {α̃−1

lk (t)− α̃−1
l }, n1/2

l {γ̃−1
lmk(t)− γ̃−1

lmk}(m = 1, 2, 3, 4),
Glivenko-Cantelli lemma and Lemma 1.2, the second term on the right-hand side of (1) is asymp-
totically equivalent to

n−1/2
L∑
l=1

nl∑
i=1

2∑
k=1

2∏
j=1

(1−∆lij)(
ξli
α̃l

− 1)
∫ τ

0

[
Blik(β0, t)− Ylik(t)

El{
∏2

j=1(1−∆lij)B1k(β0, t)}
El{

∏2
j=1(1−∆lij)Yl1k(t)}

]
dt

+ n−1/2
L∑
l=1

nl∑
i=1

2∑
k=1

∆li1(1−∆li2)(
ηli1
γ̃l1k

− 1)

[
Qlik(β)−

∫ τ

0
Ylik(t)

El{dQlik(t, β)|θl10, ξl1 = 0}
El{Yl1k(t)|θl10}

]

+ n−1/2
L∑
l=1

nl∑
i=1

2∑
k=1

(1−∆li1)∆li2(
ηli2
γ̃l2k

− 1)

[
Qlik(β)−

∫ τ

0
Ylik(t)

El{dQlik(t, β)|θl01, ξl1 = 0}
El{Yl1k(t)|θl01}

]

+ n−1/2
L∑
l=1

nl∑
i=1

2∑
k=1

∆li1∆li2(
ηli1 + ηli2 − ηli1ηli2
γ̃l1k + γ̃l2k − γ̃l1kγ̃l2k

− 1)

× [Qlik(β)−
∫ τ

0
Ylik(t)

El{dQlik(t, β)|θl11, ξl1 = 0}
El{Yl1k(t)|θl11}

] (2)

where Blik(t, β) = {Zlik(t)− ek(t)}Ylik(t){λ0k(t) + βT
0 Zlik(t)}.

By Hájek [6]’s central limit theorem and conditions (c) and (f), the first term in (2) is asymp-
totically zero-mean normal random variable with covariance matrix

∑L
l=1 ql

1−αl

αl
V a
II,l(β0) where

V a
II,l(β0) is defined in Theorem 1.

It follows from Lemma 1.2 and Hájek [6]’s central limit theorem that the second, third, fourth,
and fifth terms are asymptotically zero-mean normal with covariance matrix

∑L
l=1 ql(1−αl)

∑2
k=1 V

a
III,lk(β0)

where V a
III,lk(β0) is defined in Theorem 1.

Since all five terms in (2)are mutually independent from conditional expectation arguments,
n1/2Ũn(β) is asymptotically normally distributed with mean zero and variance Σ. Therefore, Ũn(β)
converges to zero in probability and condition (iv) is satisfied.

Since all conditions (i), (ii), (iii) and (iv) by an extension of Fourtz [3] are satisfied, β̃ is
a consistent estimator of β0. By consistency of β̃ and Taylor expansion of Ũ(β), n1/2(β̃ − β0) is
asymptotically normally distributed with mean zero and with variance matrix A−1Σ(β0)A

−1 where
A =

∑2
k=1Ak.

The proof of Theorem 2
n1/2{Λ̃0k(β̃, t)− Λ0k(t)} can be decomposed into three parts:

n1/2{
∫ t

0

∑L
l=1

∑nl
i=1 πlik(u)(β0 − β̃)TZlik(u)du∑L
l=1

∑nl
i=1 πlik(u)Ylik(u)

+
∫ t

0

∑L
l=1

∑nl
i=1 dMlik(u)∑L

l=1

∑nl
i=1 πlik(u)Ylik(u)
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+
∫ t

0

∑L
l=1

∑nl
i=1(πlik(u)− 1)dMlik(u)∑L

l=1

∑nl
i=1 πlik(u)Ylik(u)

}. (3)

Due to the uniform convergence of Z̃k(t) to ek(t), the first term in (3) is asymptotically equiv-
alent to n1/2(β̃ − β0)lk(t) where lk(t) =

∫ τ
0 {−ek(u)}du.

The term {n−1 ∑L
l=1

∑nl
i=1 πlik(t)Ylik(t)}−1 can be written as the sum of two monotone func-

tions in u and converges to [
∑L

l=1 qlEl{Yl1k(t)}]−1 where
∑L

l=1 qlEl{Yl1k(u)} is bounded away
from zero and n−1/2 ∑L

l=1

∑nl
i=1 Mlik(u) converges to a zero-mean Gaussian process with continu-

ous sample paths. Therefore, it follows from Lemma 1.1 that the second term in (3) is asymptoti-
cally equivalent to

∫ t
0

1∑L

l=1
qlEl{Yl1k(t)}

d{n1/2 ∑L
l=1

∑nl
i=1Mlik(u)}.

Since {n−1 ∑L
l=1

∑nl
i=1 πlik(t)Ylik(t)}−1 converges to

∑L
l=1 qlEl{Yl1k(u)}−1, where

∑L
l=1 ql El{Yl1k(u)}

is bounded away from zero in probability uniformly and n−1 ∑L
l=1

∑nl
i=1

ξli
α̃l

×∏2
j=1(1−∆lij)Ylik(u)

converges to
∑L

l=1 qlEl{
∏2

j=1(1−∆l1j) Yl1k(u)β
T
0 Zl1k(u)} from Lemma 1.2, the third term in (3)

is asymptotically equivalent to

n−1/2
L∑
l=1

nl∑
i=1

(1− ξli
α̃l

)
2∏

j=1

(1−∆lij)
∫ t

0
Ylik(u)

×
[
βT
0 Zlik(u)−

El{
∏2

j=1(1−∆l1j)Yl1k(u)β
T
0 Zlik(u)}

El{
∏2

j=1(1−∆l1j)Yl1k(u)}

]
du∑L

l=1 qlEl{Yl1k(u)}

+ n−1/2
L∑
l=1

nl∑
i=1

(1− ξli)[

+ (
ηli1
γ̃l1k

− 1)∆li1(1−∆li2)
∫ t

0

1∑L
l=1 qlEl{Y11k(t)}

[
dMlik(u)− Ylik(u)

El{dMl1k(β0, u)|θl10, ξli = 0}
El{Yl1k(u)|θl10}

]

+ (
ηli2
γ̃l2k

− 1)(1−∆li1)∆li2

∫ t

0

1∑L
l=1 qlEl{Y11k(t)}

[
dMlik(u)− Ylik(u)

El{dMl1k(β0, u)|θl01, ξli = 0}
El{Yl1k(u)|θl01}

]

+ (
ηli1 + ηli1 − ηli2ηli2
γ̃l1k + γ̃l2k − γ̃l2kγ̃l2k

− 1)∆li1∆li2

∫ t

0

1∑L
l=1 qlEl{Y11k(t)}

×
[
dMlik(u)− Ylik(u)

El{dMl1k(β0, u)|θl11, ξli = 0}
El{Yl1k(u)|θl11}

]
],

Combining all results, we get

n1/2{Λ̃0k(β̃, t)− Λ0k(t)}

= n−1/2
L∑
l=1

nl∑
i=1

µlik(β0, t) + n−1/2
L∑
l=1

nl∑
i=1

(1− ξli
α̃l

)wlik(β0, t) + n−1/2
L∑
l=1

nl∑
i=1

νlik(β0, t) + op(1),

where

µlik(β, t) = lk(t)
TA−1

2∑
m=1

Qlim(β) +
∫ t

0

1∑L
l=1 qlEl{Yl1k(u)}

dMlik(u),
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wlik(β, t) = lk(t)
TA−1

2∑
m=1

2∏
j=1

(1−∆lij)

×
∫ τ

0
[Blim(β, u)−

Ylim(u)El{
∏2

j=1(1−∆l1j)Bl1m(β, u)}
El{

∏2
j=1(1−∆l1j)Yl1m(u)}

]du+
2∏

j=1

(1−∆lij)

×
∫ t

0
Ylik(u){βT

0 Zlik(u)−
E{∏2

j=1(1−∆l1j)Yl1k(u)β
T
0 Zl1k(u)}

E{∏2
j=1(1−∆l1j)Yl1k(u)}

· du∑L
l=1 qlEl{Yl1k(u)}

},

νlik(β, t) = lk(t)
TA−1

2∑
m=1

ν
(1)
lim(β, t) + ν

(2)
lim(β, t),

ν
(1)
lik (β, t) = ∆li1(1−∆li2)(1− ξli)(

ηli1
γ̃l1k

− 1)ν
(1)
lik,1(β, t)

+(1−∆li1)∆li2(1− ξli)(
ηli2
γ̃l2k

− 1)ν
(1)
lik,2(β, t),

+∆li1∆li2(1− ξli){(
ηli1 + ηli2 − ηli1ηli2
γ̃l1k + γ̃l2k − γ̃l1kγ̃l2k

− 1) + (
ηli2
γ̃l4k

− 1)}ν(1)
lim,3(β, t),

ν
(1)
lik,1(β, t) = Qlik(β, t)−

∫ τ

0
Ylik(t)

El{dQl1k(β, t)|θl10, ξl1 = 1}
El{Yl1k(t)|θl10}

,

ν
(1)
lik,2(β, t) = Qlik(β, t)−

∫ τ

0
Yik(t)

El{dQl1k(β, t)|θl01, ξl1 = 1}
El{Yl1k(t)|θl01}

,

ν
(1)
lik,3(β, t) = Qlik(β, t)−

∫ τ

0
Ylik(t)

El{dQl1k(β, t)|θl11, ξl1 = 1}
El{Yl1k(t)|θl11}

,

ν
(2)
lik (β, t) = (1− ξli){∆li1(1−∆li2)(

ηli1
γ̃1k

− 1)ν
(2)
lik,1(β, t) + (1−∆li1)∆li2(

ηli2
γ̃2k

− 1)ν
(2)
lik,2(β, t),

+∆li1∆li2{(
ηli1 + ηli2 − ηli1ηli2
γ̃1k + γ̃2k − γ̃1kγ̃2k

− 1) + (
ηli2
γ̃4k

− 1)}ν(2)
lik,3(β, t)},

ν
(2)
lik,1(β, t) =

∫ t

0

1∑L
l=1 qlEl{Yl1k(u)}

[dMlik(β, u)− Ylik(u)
El{dMl1k(β, u)|θl10, ξl1 = 0}

El{Yl1k(u)|θl10}
],

ν
(2)
lik,2(β, t) =

∫ t

0

1∑L
l=1 qlEl{Yl1k(u)}

[dMlik(β, u)− Ylik(u)
El{dMl1k(β, u)|θl01, ξl1 = 0}

El{Yl1k(u)|θl01}
],

ν
(2)
lik,3(β, t) =

∫ t

0

1∑L
l=1 qlEl{Yl1k(u)}

[dMlik(β, u)− Ylik(u)
El{dMl1k(β, u)|θl11, ξl1 = 0}

El{Yl1k(u)|θl11}
]

Let G(1)(t) = {G(1)
1 (t), G

(1)
2 (t)} where G(1)

k (t) = n−1/2 ∑L
l=1

∑nl
i=1 µlik(β, t), G(2)(t) = {G(2)

1 (t),

G
(2)
2 (t)} where G

(2)
k (t) = n−1/2 ∑L

l=1

∑nl
i=1(1 − ξli

α̃l
)wlik(β, t), and G(3)(t) = {G(3)

1 (t), G
(3)
2 (t)}

where G
(3)
k (t) = n−1/2 ∑L

l=1

∑nl
i=1 νlik(β, t). Then G(1)(t) converges weakly to a zero-mean Gaus-

sian process, G(1)(t) = {G(1)
1 (t),G(1)

2 (t)} in D[0, τ ]k where the covariance function between G(1)
j (t)

and G(1)
k (s) is E{µ1j(β0, t), µ1k(β, s)} by theorem 2 of Yin and Cai[4].

It can be shown that G(2)(t) converges weakly to a zero-mean Gaussian process G(2)(t) =

{G(2)
1 (t),G(2)

2 (t)} where covariance function G(2)
j (t) and G(2)

k (s) is 1−αl

αl
El{wl1j(β0, t), wl1k(β0, s)}
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by Lemma 1.2, Cramer-Wold device and the marginal tightness of G(2)
k (t) for each k.

Similarly, G(3)(t) converges weakly to a zero-mean Gaussian process. By the conditional ex-
pectation arguments, the three terms (G(1)(t), G(2)(t), G(3)(t)) are mutually independent. There-
fore, G(t) = G(1)(t) + G(2)(t) + G(3)(t) converges to a zero-mean Gaussian process G(t) =
G(1)(t) + G(2)(t) + G(3)(t).
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