Supplemental Material

 Table S1.
 Bacterial strains and plasmids used in this study.

Strain or plasmid	Description	Reference
Strains <i>E. coli</i>		
XL1 Blue	recA1 endA1 gyrA96 thi-1 hsdR17 supE44 relA1 lac [F' proAB laclg7\M15 Tn10 (Tet ^r)]	Stratagene
W3110	Wild-type, $F^{-}I^{-}$ rph-1 INV(<i>rrnD</i> , <i>rrnE</i>)1 <i>rph-1</i>	<i>E. coli</i> Genetic Stock Center (Yale)
W3110∆ <i>eptA</i> (CH030)	W3110, ∆ <i>eptA</i>	(Herrera <i>et al.</i> , 2010)
BN2	K-12 BW25113, $\Delta pagP$, $\Delta lpxT$, $\Delta eptA$, $\Delta lpxM$	(Needham <i>et al.</i> , 2013)
SM10	<i>thi-1 thr leu tonA lacY supE recA</i> :: RP4-2-Tc::Mu (Kan ^r)	(de Lorenzo and Timmis, 1994)
P. aeruginosa		
PA14	Wild-type, UCBPP-PA14	(Liberati <i>et al.</i> , 2006)
PA14∆ <i>eptA</i> _{Pa}	PA14, ∆ <i>eptA</i> _{Pa}	This study
PA14∆colR	PA14, $\Delta colR$	This study
PA14∆ <i>col</i> S	PA14, <i>∆col</i> S	This study
Plasmids		
pACYC184	Low copy-number cloning vector, tet ^R , cam ^R	Novagen
pPA14_58610	pACYC184 containing PA14_58610 coding sequence and RBS	This study
pPA14_21210	pACYC184 containing PA14_21210 coding	This study
pPA14_39020	pACYC184 containing PA14_39020 ($eptA_{Pa}$) coding sequence and RBS	This study
pWSK29	Low copy vector, T7 and T3 RNA	(Wang and
	polymerase promoters, ampicillin resistance	Kushner, 1991)
p <i>lpxE</i> _{Fn}	pWSK29 containing <i>F. novicida lpxE</i>	(Wang <i>et al.</i> , 2004)
p <i>lpxF</i> _{Fn}	pWSK29 containing <i>F. novicida lpxF</i>	(Wang <i>et al.</i> , 2006)
pEX1.8	Medium copy-number cloning vector, pEX1	(Pearson <i>et al.</i> ,
	Carrying <i>Ori</i> (<i>P. aeruginosa</i>) as 1.8-KD	1997)
	from $nRO1614$ in Styl site	
pentA _{Pe}	nEX1.8 containing entApp. coding sequence	This study
	and RBS	
p <i>eptA</i> nprom	pEX1.8 containing <i>eptA</i> Pa coding sequence and native promoter	This study

Strain or plasmid ppmrA	Description pEX1.8 containing <i>pmrA</i> coding sequence and RBS	Reference This study
pphoP	pEX1.8 containing <i>phoP</i> coding sequence and RBS	This study
p <i>colR</i>	pEX1.8 containing <i>coIR</i> coding sequence and RBS	This study
p <i>coIR</i> _{nprom}	pEX1.8 containing <i>coIR</i> coding sequence and native <i>coIRS</i> promoter	This study
pco/S _{nprom}	pEX1.8 containing <i>co</i> /S coding sequence and native <i>co</i> /RS promoter	This study
pEX18Gm	Suicide (gene replacement) vector, <i>oriT</i> + <i>sacB</i> +, pUC18 MCS, gentamycin resistance	(Hoang <i>et al.</i> , 1998)
pEX18Gm: <i>eptA</i> del	pEX18Gm containing assembly PCR product of 1Kb upstream and downstream flanking regions of <i>eptA</i> coding sequence	This study
pEX18Gm: <i>colR</i> del	pEX18Gm containing assembly PCR product of 1Kb upstream and downstream flanking regions of <i>colR</i> coding sequence	This study
pEX18Gm: <i>colS</i> del	pEX18Gm containing assembly PCR product of 1Kb upstream and downstream flanking regions of <i>co/S</i> coding sequence	This study

Table S2. Oligonucleotides used in this study.

Primer	Sequence (5'-3')	Application
5' PA14_58610	GCGATATCCCATCGAACGAGGCTA	Used to clone PA14_58610
	ICGIGIC	and native RBS into
3' PA14_58610	CGCGGATCCGCGTCAGCCTTCGTT	pACYC184
_	CGGCTG	
5' PA14_21210	CGAGCGATATCTCAGGAGTTGCTT	Used to clone PA14_21210
_	CAATGGGT	and native RBS into
3' PA14_21210	CGCGGATCCTCACTGGGCTGCCCT	pACYC184
_	GGG	
5' PA14_39020	CGAGCGATATCCAGTGAAGATCCG	Used to clone PA14_39020
_	TGCCCATG	(eptA _{Pa}) and native RBS into
3' PA14_39020	CGATGTCGACTCAGGAAGCCGGC	pACYC184

Primer	Sequence (5'-3') GGCTCCT	Application
5' PAeptA	CGAGCGAATTCCAGTGAAGATCCG TGCCCATG	Used to clone <i>eptA</i> _{Pa} into pEX1.8
3' PAeptA	CGATAAGCTTTCAGGAAGCCGGCG GCTCCT	P · · · · ·
5' <i>eptA</i> outdel	GAGAGCTCGAAGCGTCCGACGGT GTCCAG	Used to clone upstream <i>eptA</i> _{Pa} flanking region and for assembly PCR to generate pEX18Gm: <i>eptA</i> del
3' <i>eptA</i> outdel	GAGGATCCGTCCCGATGAACCACC CGCA	Used to clone downstream eptA _{Pa} flanking region and for assembly PCR to generate pEX18Gm:eptAdel
5' <i>eptA</i> indel	GATCCGTGCCCATGTCGAAAGCCG AGGAAGCGTCTGGCCAGGAG	Used to clone downstream <i>eptA</i> _{Pa} flanking region
3' eptAindel	CTCCTGGCCAGACGCTTCCTCGGC TTTCGACATGGGCACGGATC	Used to clone upstream <i>eptA</i> _{Pa} flanking region
5' PAeptA _{nprom}	ACGCGTCGACGAAATTCACAGAAG GGTTTCCCG	Used to clone $eptA_{Pa}$ and native promoter (nprom) into
3' PAeptA _{nprom}	CAAGACGTCGACTCGCCGGGTCG TATCAGGAA	pEX1.8
5' PApmrA	CGGAATTCATGAGAATACTGCTGG CCGAGGACGACCT	Used to clone <i>pmrA</i> into pEX1.8
3' PApmrA	CCCAAGCTTTCAGGGCGCCGGCT GGTC	
5' PAphoP	CGGAATTCATGAAACTGCTGGTAG TGGAAGACGAGG	Used to clone <i>phoP</i> into pEX1.8
3' PAphoP	CCCAAGCTTTCACCGGCAGCGCTC GGTG	P = 1112
5' PAcolR	CGGAATTCATGCGAATACTGGTGG	Used to clone <i>coIR</i> into nEX1.8
3' PAcolR	CCCAAGCTTTTATACTCCATTCGGC	
5' <i>colR</i> outdel	GTTCTACATGAAGGTGCCCATCGA GTTCGG	Used to clone upstream <i>colR</i> flanking region and for assembly PCR to generate pEX18Gm: <i>colR</i> del
3' <i>colR</i> outdel	CGCAGCAGTGGCGCGTTGAACTG	Used to clone downstream colR flanking region and for assembly PCR to generate pEX18Gm:colRdel
5' <i>colR</i> indel	GGACATGCGAATACTGGTGGAGCC	Used to clone downstream

Primer	Sequence (5'-3') GAATGGAGTATAAGC	Application colR flanking region
3' <i>colR</i> indel	GCTTATACTCCATTCGGCTCCACC AGTATTCGCATGTCC	Used to clone upstream <i>colR</i> flanking region
5' co/Soutdel	CGGAATTCCGAGGAACAGCCAGG GGTTGAATGGAC	Used to clone upstream <i>co/S</i> flanking region and for assembly PCR to generate pEX18Gm: <i>co/S</i> del
3' co/Soutdel	CGGGATCCCACGCGAATACCAAGC GACTCGAAGGC	Used to clone downstream co/S flanking region and for assembly PCR to generate pEX18Gm:co/Sdel
5' co/Sindel	GAGGAGCCGAATGGAGTATAAGCT CGATGTTGCTTGACGA	Used to clone downstream co/S flanking region
3' co/Sindel	TCGTCAAGCAACATCGAGCTTATA	Used to clone upstream <i>co/S</i> flanking region
5' PAcolRnprom	ACGCGTCGACCGATCACCAGTTGC TTGAC	Used to clone <i>colR</i> and native promoter (nprom) into
3' PAcolRnprom	GAGGAGCCGAATGGAGTATAAAAG CTTGC	pEX1.8
5' PAco/Snprom	CGCGGATCCCGATCACCAGTTGCT TGAC	Used to clone <i>colRS</i> native promoter (nprom) into
3' PAco/Snprom	GCGAATTCGTCCCACTCCTTCGCA GGA	pEX1.8
5' PAcolS	GCGAATTCATGGAGTATAAGCAGA GCCTCGC	Used to clone <i>co</i> /S into pEX1.8
3' PAcolS	GGAAGCTTTCAAGCAACATCGAGT AAAACTTCGAACC	
5' q <i>clpX</i>	AAGAAGGTTCTGGCGGTAGC	qPCR analysis of <i>clpX</i>
3' qclpX	ATGTTCTCGACATCCTCGCC	transcription
5' q <i>eptA</i>	TGCCCTGCATGTTCTCCAAC	qPCR analysis of eptA
3' q <i>eptA</i>	GATCCTTGCTCTCGCTCAGG	transcription
5' q <i>arnT</i>	GGCTATGCCAACCTCGACCC	qPCR analysis of <i>arnT</i>
3' q <i>arnT</i>	GCGAGGAAGCCCTTGGTCAG	transcription

References:

Herrera, C.M., Hankins, J.V., and Trent, M.S. (2010) Activation of PmrA inhibits LpxTdependent phosphorylation of lipid A promoting resistance to antimicrobial peptides. *Mol Microbiol* **76**: 1444–1460.

Hoang, T.T., Karkhoff-Schweizer, R.R., Kutchma, A.J., and Schweizer, H.P. (1998) A broad-host-range FIp-FRT recombination system for site-specific excision of

chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants. *Gene* **212**: 77–86.

Liberati, N.T., Urbach, J.M., Miyata, S., Lee, D.G., Drenkard, E., Wu, G., *et al.* (2006) An ordered, nonredundant library of Pseudomonas aeruginosa strain PA14 transposon insertion mutants. *Proc Natl Acad Sci U S A* **103**: 2833–2838.

Lorenzo, V. de, and Timmis, K.N. (1994) Analysis and construction of stable phenotypes in gram-negative bacteria with Tn5- and Tn10-derived minitransposons. *Methods Enzymol* **235**: 386–405.

Needham, B.D., Carroll, S.M., Giles, D.K., Georgiou, G., Whiteley, M., and Trent, M.S. (2013) Modulating the innate immune response by combinatorial engineering of endotoxin. *Proc Natl Acad Sci* **110**: 1464–1469.

Pearson, J.P., Pesci, E.C., and Iglewski, B.H. (1997) Roles of Pseudomonas aeruginosa las and rhl quorum-sensing systems in control of elastase and rhamnolipid biosynthesis genes. *J Bacteriol* **179**: 5756–5767.

Wang, R.F., and Kushner, S.R. (1991) Construction of versatile low-copy-number vectors for cloning, sequencing and gene expression in Escherichia coli. *Gene* **100**: 195–199.

Wang, X., Karbarz, M.J., McGrath, S.C., Cotter, R.J., and Raetz, C.R.H. (2004) MsbA Transporter-dependent Lipid A 1-Dephosphorylation on the Periplasmic Surface of the Inner Membrane: TOPOGRAPHY OF FRANCISELLA NOVICIDA LpxE EXPRESSED IN ESCHERICHIA COLI. *J Biol Chem* **279**: 49470–49478.

Wang, X., McGrath, S.C., Cotter, R.J., and Raetz, C.R.H. (2006) Expression cloning and periplasmic orientation of the Francisella novicida lipid A 4'-phosphatase LpxF. *J Biol Chem* **281**: 9321–9330.

Supplemental Figures:

Fig S1. Identification of a functional *P. aeruginosa* pEtN transferase (*eptA*_{Pa}) in *E. coli*. A) *P. aeruginosa eptA* orthologs were heterologously expressed in K-12 *E. coli* strain W3110 Δ *eptA*. PA14_39020 and *eptA*_{Ec} were able to modify lipid A. B) MALDI-TOF MS analysis of lipid A isolated from Δ *eptA* + empty vector shows no pEtN addition to lipid A, while (C) expression of PA14_39020 reveals pEtN modification.

Fig S2. UVPD mass spectrum and fragmentation map of doubly deprotonated lipid A prepared from BN2 + $peptA_{Pa}$ [M_r = 1710.03]. Key fragments and cleavage sites that support the identification and location of the 4' modification are shown in red font. The precursor ion is marked with an asterisk.

Fig S3. UVPD mass spectrum and fragmentation map of doubly deprotonated lipid A prepared from BN2 + $peptA_{Pa}$ + p/pxE [M_r = 1630.06]. Key fragments and cleavage sites that support the identification and location of the 4' modification are shown in red font. The precursor ion is marked with an asterisk.

Fig S4. UVPD mass spectrum and fragmentation map of singly deprotonated lipid A prepared from PA14 + peptAPa [M_r = 1489.91]. Key fragments and cleavage sites that support the identification and location of the 4' modification are shown in red font. The precursor ion is marked with an asterisk.

Fig S5. Excess zinc induces transcription of $eptA_{Pa}$. Semi-quantitative RT-PCR shows no detectable $eptA_{Pa}$ transcription in PA14 cells grown in LB alone, while addition of 1mM ZnSO₄ results in detectable transcription. No transcription of $eptA_{Pa}$ is visualized in PA14 Δ *colR* grown in LB with 1mM ZnSO₄. When this mutant is complemented, $eptA_{Pa}$ transcription in response to 1mM ZnSO₄ can once again be seen. The stably expressed housekeeping gene *clpX* was used as a control.

Fig S6. Deletion of *co/S* results in loss of Zn^{2+} -induced pEtN modification of *P. aeruginosa* lipid A. Lipid A was isolated from ³²P-labeled cells grown in LB broth and separated by TLC. Lipid A species modified with pEtN were observed in PA14 supplemented with 1mM ZnSO₄ (lane 2). Deletion of *co/S* resulted in no pEtN modification of lipid A in response to Zn^{2+} (lane 3). Modification is restored in the mutant complemented with *co/S* (lane 4).