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Additional file 1

Figure S1. The temperature-mortality relationship and Koppen climate classification of some tropical/subtropical cities.

This figure was modified from the paper: Gasparrini A, Guo Y, Hashizume M, Lavigne E, Zanobetti A, Schwartz J, et al. Mortality risk
attributable to high and low ambient temperature: a multicountry observational study. Lancet. 2015;386(9991):369-75

The L-shaped temperature-mortality in these tropical/subtropical cities were reproduced from Figure S1 in above mentioned paper.
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Additional file 2

Model selection procedure

We used a negative binomial coupled with a distributed lag nonlinear model (DLNM) to examine
the temperature effect on all-cause mortality. Negative binomial distribution was employed to
adjust for the Poisson over-dispersion of daily death count Yt (3). In addition, DLNM was applied
to describe the nonlinear effect of temperature (in the temperature-mortality dimension) and lag
(in the lag-mortality dimension) simultaneously (4). The general model is specified as follows:

Yt~ Negative binomial (L)

Log (Yi) = a + p1*Ti1 + f2* DOWi+ £3*NCS (time, df=i/year) + p4*NCS(relative humidity, df=3)
+ fs*NCS(dewpoint temperature, df=3)

where « is the intercept; t is the day of the observation; Y is daily all-cause death count on day t;
Tt1 is a matrix obtained by applying the “cross-basis” DLNM functions to temperature, f1 is the
vector of coefficients for T, and | is the lag days. According to previous studies, the natural cubic
spline (NCS) with three degrees of freedom (df) was selected to control for potential confounding
factors (i.e. daily average relative humidity and daily average dewpoint temperature) (5, 6). Time
is a continuous variable ranging from 1 on the starting day of observation to 1811 on the final day
of observation within five years of data (2009-2013). To adjust for the long-term trend and
seasonality, we used NCS smoothing for the time variable with i degrees of freedom per year. The
day of the week on day t (DOW:) was used to control for the effect of weekday on daily mortality

(e.g. on the weekends, mortality tended to be higher than that on week days).

There are varieties of possible models can be chosen in Equation 1 due to the flexible choice of
DLNM functions as well as the choice of df for controlling seasonality and long term trend (i.e. i
value). In this study, we attempted to propose an objective-oriented procedure for the ultimate
model selection through four steps. This selection procedure strictly follows the AIC rule (i.e. a
smaller AIC value is the better model) which has been used in environmental epidemiology time

series regression analyses (6, 7). The four steps of ultimate model selection are described as below:
Step 1: Goodness of fit for seasonal and long-term trend control.

First, we fitted a simpler model from Equation 1 with the weekday and time variables:



Log (Y¢) = a + DOW+ NCS (time, df =i/year) 2

We then changed the df per year (i.e. i value) from 1 to 24 and chose the best fit i value based on
the smallest AIC value.

Step 2: Determine the best combination of df between the temperature-mortality and lag-mortality

dimensions using NCS-NCS cross-basis functions.

First, we held the maximum lag values at 14, 21, and 28 respectively. These values were most
frequently used in previous studies (2, 8-10).

Secondly, we applied the cross-basis functions to the temperature variable (Tt1), and varied the df
of NCS from 4 to 10 in the temperature dimension as well as in the lag dimension. The R code for
this purpose is specified below; for more details please refer to the "dInmTS" vignette in R

software:

> Ty <- crosshasis (temp, lag=14, argvar=list (fun="ns", df=k, cen=median(temp),

arglag=list(fun="ns", df=j,logknots(14, j-2)

This R code implies that k is the df of NCS in the temperature dimension; j is the df of NCS in the
lag dimension. After that, we updated the Equation 2 with the temperature variable after applying
cross-basis functions (i.e., Tti) and the best value of df per year controlling for seasonality and

long-term trend, which is shown below:
Log (Yt) = o + DOW+ NCS (time, df=i/year) + Tt (3)
Step 3: Checking the necessity for controlling relative humidity and dew point temperature.

We updated Equation 3 with relative humidity and dew point temperature and observed how the
AIC value changed. If the AIC value is significantly smaller than the smallest AIC of model in
Equation 3, then relative humidity and dew point temperature should be controlled. Otherwise,

these two variables are excluded.
Step 4: Checking the best temperature indicator.

So far, in Equation 3 we used the average temperature as the temperature indicator. However, we
also checked the performance of minimum and maximum temperatures by updating Tt using these

two temperature indicators.



Model selection results:

As described in the model selection procedure above, we performed model selection based on the
AIC rule (i.e. a smaller AIC is the better model) and followed the four steps. In Step 1, our analysis
showed that the df value per year of time variable equal to 5 (i value) was the best value as the
control for seasonality and long-term trend. In Step 2, we observed that the maximum lag value
equal to 28 with 4 df for the temperature (k value) and 5 df for the lag (j value) were the best values
resulting in the smallest AIC at 7533.287. According to the default function of "dlnm™ package
(4), “k=4” means three internal knots at equally-spaced percentiles in the temperature dimension
and “j=5" means three internal knots equally spaced on the log values of lag. In Step 3, the AIC
value was 7538.729 when controlling for relative humidity and was 7538.147 when controlling
for dew point temperature. These values were higher than the smallest AIC value in Step 2, which
indicated that it was not necessary to include relative humidity and dew point temperature in the
model. In Step 4, the AIC showed that the average temperature was slightly better compared to
minimum and maximum temperatures in the Hue data set. Therefore, we chose to report the
average temperature. In summary, the ultimate model in quantifying temperature-mortality
relationship was "NCS - NCS" DLNM with 4 df for average temperature dimension and 5 df for

lag dimension.

For the purpose of visualization of model selection results, please consult the power point slides

below:



Model selection visualization results
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Step 1. goodness of fit for seasonal and long-term trend
control

* glm(deathcount ~ ncs(time,df=5%*i) + as.factor(dow), negative binomial);

e jvaries from 1lto 24

row.names Vi
1 AIC.season.df 1 7733.568
2 AIC.season.df 2 765908.554
3 AIC.season.df 3 7661.347
4 AIC.season.df 4 7654.918
5 AIC.season.df 5 7645 . 805
6 AIC.season.df 6 7649.142
7 AIC.season.df 7 7651.828
8 AIC.season.df 8 7648 .949
9 AIC.season.df 9 7655.187
10 AIC.season.df 18  7659.387
23 AIC.season.df 23  7694.934
24 AIC.season.df 24  7783.948

Daily mortality

12

Daily mortality over time

| | | |
2009 2010 2011 2012 2013 2014

Date

- time is continuous variable ranging from 1 at start day of observation to 1811 at
final day of observation within five years data 2009-2013

-dow=day of the week: control the effect of weekday on daily mortality



Step 2. best combination of df between temp and lag

argvar=list(fun="ncs", df=i)
arglag=list(fun="ncs",df=j, logknots(21,j-2)))

temp.df.4 7591.627 | 7597.448 7599.822 7601.878 7685.791 7612.282 7612.375

[} M | —14 row.names lag.df.4 lag.df.5 lag.df.6 lag.df.7 lag.df.8 lag.df.9 lag.df.10
aX ag_ 1 g g 9 g g 9 g

temp.df.5 7598.768  7686.545 76@9.887 7614.437 7620.141 7625.640 7626.044
temp.df.6 7681.759 7689.944  7614.822 7621.426 7624.339 7629.620 7630.040
temp.df.7 7687.285 7618.341 7624.184 7631.742 7637.884 7644.161 7644.536
8
9

temp.df. 7683.759 7614.991  7623.154 7632.724 7638.988 7647.816  7648.229
temp.df. 7687.412  7621.578 7638.879 7639.612 7645.67@8 7656.768  7657.162

temp.df.18 7611.765 7618.681 7631.928 7636.549 7643.421 7656.561 7656.882

~N o v A W N

« Maxlag=21
row.names lag.df.4 lag.df.5 lag.df.6 lag.df.7 lag.df.8 lag.df.9 lag.df.10
1 temp.df.4 7560.7@6 | 7563.896  7566.435 7570.629 7576.241 7579.932  7586.867

2 temp.df.5 7568.169  7573.262 7577.778 7583.89@ 7591.347 7596.771 7682.533
3  temp.df.b 7571.372  7577.364  7582.875 7590.791 7599.820 76B83.206  76089.108
4 temp.df.7 7578.198 7583.961 7590.801 7601.157 7e11.355 7617.134 7624.871
5 temp.df.8 7573.254 7578.8e4  7587.219 7598.681 7610.557 7617.484 7626.70@
6 temp.df.9 7576.882  7584.993  7595.292 7608.295 7613.736 7626.821 7637.569
7 temp.df.18 7579.367 7587.452 7593.948 76085.59@ 7617.90@ 7624.486 7637.525
* Maxlag=28

row.names lag.df.4 lag.df.5 lag.df.6 lag.df.7 lag.df.8 lag.df.9 lag.df.10
1 temp.df.4 7533.414 7539.656  7543.56@  7547.731 7552.727  7557.785
2 temp.df.5 7540.264  7542.376  7550@.746  7556.553  7562.666  7569.761 7574.218
3 temp.df.t 7543.599  7547.152  7555.586 7562.885 7570.912 7578.137 7580.468
4  temp.df.7 7550.663  7552.583 7564.282 7573.202 7582.203 7591.219 7596.121
5 temp.df.8 7546.298  7548.736  7561.655 7572.593 7583.665 7594.185 7599.727
6  temp.df.9 7548.344  7552.822 7568.417 7580.359 7590.815 7599.719 7606.642
7 temp.df.1@ 7551.352 7556.329 7566.366 7581.985 7584.836 7595.767 76@4.385



Step 3. necessity for controlling relative humidity
and dewpoint temperature

— Model 1=gIlm(deathcount ~ f(ti| ) + ncs(time,df=5*5) + as.factor(dow),
negative binomial)

— f(ti| B) : ncs(temp, df=4) ; ncs(lag, df=5, maxlag=28) — from step 2

model2<-update(modell,.~. + ns(dewp,df=3))
model3<-update(modell,.~. + ns(rhum,df=3))
AIC of model 2=7538.147
AIC of model 3=7538.729

AIC of modell = 7533.287



Step 4. checking temperature indicator

Model 1= gim(deathcount ~ f(ti| B) + ncs(time,df=5*5) + as.factor(dow),
negative binomial)

— f(ti|B) : ncs(indicator, df=4) ; ncs(lag, df=5, maxlag=28); varied indicator=

average temperature, max temperature, min temperature respectively

row.names V1
1 AIC.indicator temp 7533.287
2 AIC.indicator maxtemp  7533.865
3 AIC.indicator mintemp  7536.858




So far the best NCS-NCS model is...

—  Model ultimate = glm(deathcount ~ f(ti| B) +

ncs(time,df=5*5) + as.factor(dow), negative binomial)

— f(ti| B) : ncs(temp, df=4) ; ncs(lag, df=5, maxlag=28)

Overall cumulative effect maxlag=28
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Additional file 3: Model checking

Figure S2. Residual deviances of the final DLNM model

The final DLNM model is NCS with 4df for the dimension of temperature and NCS with 5df for
the dimension of lag. Max lag value is 28 days.

Top is Scatter plot of deviance residuals vs time. Below is partial autocorrelation (ACF) plot of
the deviance residuals

Deviance residual over time
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Figure S3. Sensitivity analysis of the final DLNM model when extending maximum lags up
to 45 days.

We extended the maximum lag value up to 45 days (the uper limit value allowed in “dlnm”
package), and compared the patterns of RR of low temperature effect at single lag between
maximum lag = 28 days vs. maximum lag = 45 days. The patterns of RR at single lag between the
two maximum lag values were quite similar. In addition, the cumulative RRs at lag 0-28 were 1.78,
and 1.81 in maximum lag = 28 days, and maximum lag = 45 days, respectively. This indicated that
when lag time increased further, the cumulative RR at lag 0-28 was only slightly increased. It is,
however, important to notice that the maximum lag value should not exceed 28 days, because the
effects of low temperature have been reported to only last up to three/four weeks (2), and the
maximum lag values at 14, 21, and 28 were the most frequently used in literature (8-10). Although
we cannot rule out additional effects when extending the lags, our model seems able to capture

most of the association
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