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Additional file 1 
 
Figure S1. The temperature-mortality relationship and Kȍppen climate classification of some tropical/subtropical cities. 

 
This figure was modified from the paper: Gasparrini A, Guo Y, Hashizume M, Lavigne E, Zanobetti A, Schwartz J, et al. Mortality risk 

attributable to high and low ambient temperature: a multicountry observational study. Lancet. 2015;386(9991):369-75 

 
The L-shaped temperature-mortality in these tropical/subtropical cities were reproduced from Figure S1 in above mentioned paper. 

 
 
 

 
Name of the city 

 
Country 

 
Climate Kȍppen system (1) 

 
Location (lat-long) 

Temperature-mortality 

relationship (2) 
 
 
 
 
 

Cuiaba 

 
 
 
 
 

Brazil 

 
 
 
 
Tropical wet and dry climate- 

Aw 

 
 
 
 
 

15.5958° S, 56.0969° W 

 

 
 
 
 
 
 

Salvador 

 
 
 
 
 

Brazil 

 
 
 
 
 

Tropical rain forest - Af 

 
 
 
 
 

12.9747° S, 38.4767° W 

 

 



 

 
 
 
 
 
 

Fukui 

 
 
 
 
 

Japan 

 
 
 
 
Humid subtropical climate - 

Cfa 

 
 
 
 
 

36.0667° N, 136.2167° E 

 

 
 
 
 
 
 

Fukuoka 

 
 
 
 
 

Japan 

 
 
 
 
Humid subtropical climate - 

Cfa 

 
 
 
 
 

33.5833° N, 130.4000° E 

 

 
 
 
 
 
 

Hyogo 

 
 
 
 
 

Japan 

 
 
 
 
Humid subtropical climate - 

Cfa 

 
 
 
 
 

34.6908° N, 135.1831° E 

 

 
 

 
 
 
 
 

Kochi 

 
 
 
 
 

Japan 

 
 
 
 
Tropical monsoon climate - 

Aw 

 
 
 
 
 

33.5667° N, 133.5333° E 

 
 



 

 
 
 
 
 
 

Kumamoto 

 
 
 
 
 

Japan 

 
 
 
 
Humid subtropical climate - 

Cfa 

 
 
 
 
 

32.7833° N, 130.7333° E 

 

 
 
 
 
 
 

Okayama 

 
 
 
 
 

Japan 

 
 
 
 
Humid subtropical climate - 

Cfa 

 
 
 
 
 

34.6500° N, 133.9167° E 

 

 
 
 
 
 
 

Okinawa 

 
 
 
 
 

Japan 

 
 
 
 
 

Tropical rain forest - Af 

 
 
 
 
 

26.5000° N, 128.0000° E 

 

 

 
 
 
 
 

Saga 

 
 
 
 
 

Japan 

 
 
 
 
Humid subtropical climate - 

Cfa 

 
 
 
 
 

33.2667° N, 130.3000° E 

 

 



 

 
 
 
 
 
 

Shiga 

 
 
 
 
 

Japan 

 
 
 
 
Humid subtropical climate - 

Cfa 

 
 
 
 
 

35.1167° N, 136.0667° E 

 

 
 

 
 
 
 
 

Shimane 

 
 
 
 
 

Japan 

 
 
 
 
Humid subtropical climate - 

Cfa 

 
 
 
 
 

35.2167° N, 132.6667° E 

 

 
 

 
 
 
 
 

Wakayama 

 
 
 
 
 

Japan 

 
 
 
 
Humid subtropical climate - 

Cfa 

 
 
 
 
 

34.0500° N, 135.3500° E 

 

 
 
 
 
 
 

Busan 

 
 
 
 
 

Korea 

 
 
 
 
Humid subtropical climate - 

Cwa 

 
 
 
 
 

35.1794° N, 129.0756° E 

 

 



 

 
 
 
 
 
 

Taichung 

 
 
 
 
 

Taiwan 

 
 
 
 
Humid subtropical climate - 

Cwa 

 
 
 
 
 

24.1500° N, 120.6667° E 

 

 

 
 
 
 
 

Atlanta, GA 

 
 
 
 
 

USA 

 
 
 
 
Humid subtropical climate - 

Cfa 

 
 
 
 
 

33.7550° N, 84.3900° W 

 

 
 
 
 
 
 

Brownsville, TX 

 
 
 
 
 

USA 

 
 
 
 
Humid subtropical climate - 

Cfa 

 
 
 
 
 

25.9303° N, 97.4844° W 

 

 
 

 
 
 
 
 

Charlotte, NC 

 
 
 
 
 

USA 

 
 
 
 
Humid subtropical climate - 

Cfa 

 
 
 
 
 

35.2269° N, 80.8433° W 

 

 



 

 
 
 
 
 
Daytona Beach, 

FL 

 
 
 
 
 

USA 

 
 
 
 
Humid subtropical climate - 

Cfa 

 
 
 
 
 

29.1900° N, 81.0894° W 

 

 
 

 
 
 
 
 

Naples, FL 

 
 
 
 
 

USA 

 
 
 
 
Tropical wet and dry climate- 

Aw 

 
 
 
 
 

26.1500° N, 81.8000° W 

 

 
 
 
 
 
 

Tulsa, OK 

 
 
 
 
 

USA 

 
 
 
 
Humid subtropical climate - 

Cfa 

 
 
 
 
 

36.1314° N, 95.9372° W 
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Model selection procedure 
 

 

We used a negative binomial coupled with a distributed lag nonlinear model (DLNM) to examine 

the temperature effect on all-cause mortality. Negative binomial distribution was employed to 

adjust for the Poisson over-dispersion of daily death count Yt (3). In addition, DLNM was applied 

to describe the nonlinear effect of temperature (in the temperature-mortality dimension) and lag 

(in the lag-mortality dimension) simultaneously (4). The general model is specified as follows: 

 

Yt ~ Negative binomial (µt) 

 
Log (Yt) = α + β1*Tt,l + β2* DOWt+ β3*NCS (time, df=i/year) + β4*NCS(relative humidity, df=3) 

 

+ β5*NCS(dewpoint temperature, df=3) 

 
where α is the intercept; t is the day of the observation; Yt is daily all-cause death count on day t; 

Tt,l is a matrix obtained by applying the “cross-basis” DLNM functions to temperature, β1 is the 

vector of coefficients for Tt,l, and l is the lag days. According to previous studies, the natural cubic 

spline (NCS) with three degrees of freedom (df) was selected to control for potential confounding 

factors (i.e. daily average relative humidity and daily average dewpoint temperature) (5, 6). Time 

is a continuous variable ranging from 1 on the starting day of observation to 1811 on the final day 

of observation within five years of data (2009-2013). To adjust for the long-term trend and 

seasonality, we used NCS smoothing for the time variable with i degrees of freedom per year. The 

day of the week on day t (DOWt) was used to control for the effect of weekday on daily mortality 

(e.g. on the weekends, mortality tended to be higher than that on week days). 

 

There are  varieties of possible models can be chosen in Equation 1 due to the flexible choice of 

DLNM functions as well as the choice of df for controlling seasonality and long term trend (i.e. i 

value). In this study, we attempted to propose an objective-oriented procedure for the ultimate 

model selection through four steps. This selection procedure strictly follows the AIC rule (i.e. a 

smaller AIC value is the better model) which has been used in environmental epidemiology time 

series regression analyses (6, 7). The four steps of ultimate model selection are described as below: 

 

Step 1: Goodness of fit for seasonal and long-term trend control. 

 
First, we fitted a simpler model from Equation 1 with the weekday and time variables: 



Log (Yt) = α + DOWt+ NCS (time, df =i/year)                                                                      (2) 

 
We then changed the df per year (i.e. i value) from 1 to 24 and chose the best fit i value based on 

the smallest AIC value. 

 

Step 2: Determine the best combination of df between the temperature-mortality and lag-mortality 

dimensions using NCS-NCS cross-basis functions. 

 

First, we held the maximum lag values at 14, 21, and 28 respectively. These values were most 

frequently used in previous studies (2, 8-10). 

 

Secondly, we applied the cross-basis functions to the temperature variable (Tt,l), and varied the df 

of NCS from 4 to 10 in the temperature dimension as well as in the lag dimension. The R code for 

this purpose is specified below; for more details please refer to the "dlnmTS" vignette in R 

software: 

 

>   Tt,l    <-   crossbasis   (temp,   lag=14,   argvar=list   (fun="ns",   df=k,   cen=median(temp), 

arglag=list(fun="ns", df=j,logknots(14, j-2) 

 

This R code implies that k is the df of NCS in the temperature dimension; j is the df of NCS in the 

lag dimension. After that, we updated the Equation 2 with the temperature variable after applying 

cross-basis functions (i.e., Tt,l) and the best value of df per year controlling for seasonality and 

long-term trend, which is shown below: 

 

Log (Yt) = α + DOWt+ NCS (time, df=i/year) + Tt,l (3) 

 
Step 3: Checking the necessity for controlling relative humidity and dew point temperature. 

 
We updated Equation 3 with relative humidity and dew point temperature and observed how the 

AIC value changed. If the AIC value is significantly smaller than the smallest AIC of model in 

Equation 3, then relative humidity and dew point temperature should be controlled. Otherwise, 

these two variables are excluded. 

 

Step 4: Checking the best temperature indicator. 

 
So far, in Equation 3 we used the average temperature as the temperature indicator. However, we 

also checked the performance of minimum and maximum temperatures by updating Tt,l using these 

two temperature indicators. 



Model selection results: 
 

 

As described in the model selection procedure above, we performed model selection based on the 

AIC rule (i.e. a smaller AIC is the better model) and followed the four steps. In Step 1, our analysis 

showed that the df value per year of time variable equal to 5 (i value) was the best value as the 

control for seasonality and long-term trend. In Step 2, we observed that the maximum lag value 

equal to 28 with 4 df for the temperature (k value) and 5 df for the lag (j value) were the best values 

resulting in the smallest AIC at 7533.287. According to the default function of "dlnm" package 

(4), “k=4” means three internal knots at equally-spaced percentiles in the temperature dimension 

and “j=5” means three internal knots equally spaced on the log values of lag. In Step 3, the AIC 

value was 7538.729 when controlling for relative humidity and was 7538.147 when controlling 

for dew point temperature. These values were higher than the smallest AIC value in Step 2, which 

indicated that it was not necessary to include relative humidity and dew point temperature in the 

model. In Step 4, the AIC showed that the average temperature was slightly better compared to 

minimum and maximum temperatures in the Hue data set. Therefore, we chose to report the 

average temperature. In summary, the ultimate model in quantifying temperature-mortality 

relationship was "NCS - NCS" DLNM with 4 df for average temperature dimension and 5 df for 

lag dimension. 

 

For the purpose of visualization of model selection results, please consult the power point slides 

below: 
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Step 1. goodness of fit for seasonal and long-term trend 

control 
 

 

• glm(deathcount ~ ncs(time,df=5*i) + as.factor(dow), negative binomial); 

• i varies from 1 to 24 

… 

 

 
 
 
 
 

- time is continuous variable ranging from 1 at start day of observation to 1811 at 
final day of observation within five years data 2009-2013 

 
 

-dow=day of the week: control the effect of weekday on daily mortality 



Step 2. best combination of df between temp and lag 
 

 

argvar=list(fun="ncs", df=i) 
arglag=list(fun="ncs",df=j, logknots(21,j-2))) 

 

• Maxlag=14 
 
 
 
 
 
 
 
 
 

• Maxlag=21 
 
 
 
 
 
 
 
 
 
 

 

• Maxlag=28 



Step 3. necessity for controlling relative humidity 

and dewpoint temperature 
 
 
 

– Model 1=glm(deathcount ~ f(ti|β) + ncs(time,df=5*5) + as.factor(dow), 

negative binomial) 

– f(ti|β) : ncs(temp, df=4) ; ncs(lag, df=5, maxlag=28) – from step 2 
 
 
 
 
 

model2<-update(model1, .~. + ns(dewp,df=3)) 
 

 

model3<-update(model1, .~. + ns(rhum,df=3)) 

AIC of model 2= 7538.147 

AIC of model 3= 7538.729 
 

 

AIC of model1 = 7533.287 



Step 4. checking temperature indicator 
 

 
 
 
 
 

Model 1= glm(deathcount ~ f(ti|β) + ncs(time,df=5*5) + as.factor(dow), 
 

negative binomial) 
 

– f(ti|β) : ncs(indicator, df=4) ; ncs(lag, df=5, maxlag=28); varied indicator= 
 

average temperature, max temperature, min temperature respectively 



So far the best NCS-NCS model is… 
 
 
 

– Model ultimate = glm(deathcount ~ f(ti|β) + 
 

ncs(time,df=5*5) + as.factor(dow), negative binomial) 
 

– f(ti|β) : ncs(temp, df=4) ; ncs(lag, df=5, maxlag=28) 
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Figure S2. Residual deviances of the final DLNM model 
 
The final DLNM model is NCS with 4df for the dimension of temperature and NCS with 5df for 

the dimension of lag. Max lag value is 28 days. 
 

Top is Scatter plot of deviance residuals vs time. Below is partial autocorrelation (ACF) plot of 

the deviance residuals 
 

 



Figure S3. Sensitivity analysis of the final DLNM model when extending maximum lags up 

to 45 days. 

 

We extended the maximum lag value up to 45 days (the uper limit value allowed in “dlnm” 

package), and compared the patterns of RR of low temperature effect at single lag between 

maximum lag = 28 days vs. maximum lag = 45 days. The patterns of RR at single lag between the 

two maximum lag values were quite similar. In addition, the cumulative RRs at lag 0-28 were 1.78, 

and 1.81 in maximum lag = 28 days, and maximum lag = 45 days, respectively. This indicated that 

when lag time increased further, the cumulative RR at lag 0-28 was only slightly increased. It is, 

however, important to notice that the maximum lag value should not exceed 28 days, because the 

effects of low temperature have been reported to only last up to three/four weeks (2), and the 

maximum lag values at 14, 21, and 28 were the most frequently used in literature (8-10). Although 

we cannot rule out additional effects when extending the lags, our model seems able to capture 

most of the association 
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