## PYRIDONES AS HIGHLY SELECTIVE, NONCOVALENT INHIBITORS OF T790M DOUBLE-MUTANTS OF EGFR

Marian C. Bryan,<sup>1\*</sup> Daniel J. Burdick,<sup>1</sup> Bryan K. Chan,<sup>1</sup>Yuan Chen,<sup>1</sup> Saundra Clausen,<sup>1</sup> Jennafer Dotson,<sup>1</sup> Charles Eigenbrot,<sup>1</sup> Richard Elliott, <sup>2</sup> Emily J. Hanan,<sup>1</sup> Robert Heald,<sup>2</sup> Philip Jackson,<sup>2</sup> Hank La,<sup>1</sup> Michael Lainchbury,<sup>2</sup> Shiva Malek,<sup>1</sup> Sam E. Mann,<sup>2</sup> Hans E. Purkey,<sup>1</sup> Gabriele Schaefer,<sup>1</sup> Stephen Schmidt,<sup>1</sup> Eileen Seward,<sup>2</sup> Steve Sideris,<sup>1</sup> Shumei Wang,<sup>1</sup> Ivana Yen,<sup>1</sup> Christine Yu,<sup>1</sup> Timothy P. Heffron<sup>1</sup>

# <sup>1</sup>Genentech, South San Francisco, CA 94080, United States, <sup>2</sup>Argenta, Early Discovery Charles River, 7/9 Spire Green Centre, Flex Meadow, Harlow, Essex CM19 5TR, United Kingdom

\* Marian C Bryan: <u>bryan.marian@gene.com</u>, One DNA Way, South San Francisco CA 94080.

### Page Information

S2 Figure S1. Compound 13 crystalized with either wtEGFR or TMLR

S2 Figure S2. Compound 19 crystalized with TMLR

S2 Figure S3. Compound 13 crystalized with TMLR with an aligned crystal structure of JAK2

S3 Table S1. Percent Inhibition for compound 1 for full 220 kinase panel at 1 µM

S8 Table S2. Percent Inhibition for compounds 13 and 37 for selected kinases at 1  $\mu$ M

S9 Table S3. PDB data used in the generation of Figures

### S10 Experimental procedures

S10 Scheme S1. Synthesis of compounds 1, 13 and 17.

**S12 Scheme S2**. Synthesis of compound **37**.

**S12** References

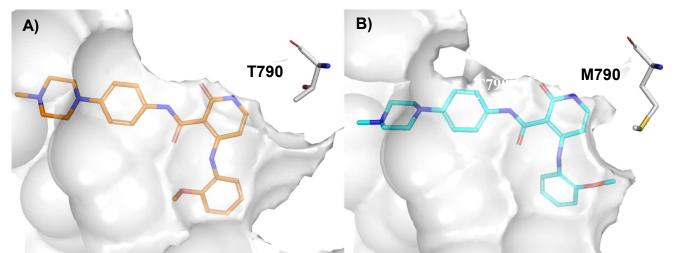
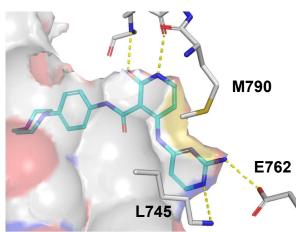
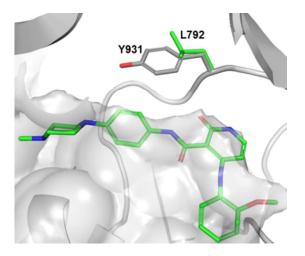





Figure S1. Compound 13 crystalized with either wtEGFR (Figure S1A in orange) or TMLR (Figure S1B in cyan) with the protein's surface in grey.



**Figure S2.** Compound **19** crystalized with TMLR. The protein's surface is shown and colored by electrostatic potential. Hydrogen bonds between the pyrimidine N and the catalytic Lysine, L745, as well as the pyrimidine NH2 and glutamic acid E762 are shown in yellow.



**Figure S3**. Overlay of compound **13** crystalized with TMLR (green) highlighting L792 with an aligned crystal structure of JAK2 (grey) showing Y931 and the protein's surface in grey.

| Kinase <sup>a</sup> | Percent Inhibition at 1 µM |  |  |  |
|---------------------|----------------------------|--|--|--|
| ACVR1B              | 13.4                       |  |  |  |
| ACVR2B              | 42                         |  |  |  |
| AKT1                | 0.3                        |  |  |  |
| AKT2                | 3.8                        |  |  |  |
| ALK2                | 93.8                       |  |  |  |
| ARK5                | 88.5                       |  |  |  |
| ASK1                | 3.6                        |  |  |  |
| Abl                 | 96.2                       |  |  |  |
| Aurora A            | 53.8                       |  |  |  |
| Aurora B            | 75.4                       |  |  |  |
| Axl                 | 81.8                       |  |  |  |
| B-Raf               | -1                         |  |  |  |
| BMPR1A              | 31.1                       |  |  |  |
| ВТК                 | 87.3                       |  |  |  |
| Blk                 | 91.3                       |  |  |  |
| Bmx                 | 85.2                       |  |  |  |
| BrSK1               | 19.1                       |  |  |  |
| Brk                 | 47.6                       |  |  |  |
| CAMKK1              | 79.3                       |  |  |  |
| CAMKK2              | 68.6                       |  |  |  |
| CDK1/cyclin B       | 4.7                        |  |  |  |
| CDK2/cyclin A       | -0.7                       |  |  |  |
| CDK5/p25            | -0.4                       |  |  |  |
| CDK7/cyclin H       | 40.2                       |  |  |  |
| CDK8/cyclin C       | 6.9                        |  |  |  |
| CDK9/cyclinT1       | 16.1                       |  |  |  |
| CHK1                | 46.1                       |  |  |  |
| CHK2                | 59.6                       |  |  |  |
| CK1_alpha1          | 13.4                       |  |  |  |
| CK1_delta           | 10.2                       |  |  |  |
| CK1 epsilon1        | 31.3                       |  |  |  |
| CK1 gamma1          | 16.9                       |  |  |  |
| CK1 gamma2          | 32                         |  |  |  |
| CK2 alphaı          | 6.2                        |  |  |  |
| CLK1                | 75.8                       |  |  |  |
| CLK2                | 75.8                       |  |  |  |
| CLK3                | 5.3                        |  |  |  |
| CLK4                | 56                         |  |  |  |
| CSF1R               | 91                         |  |  |  |
| СЅК                 | 54.5                       |  |  |  |
| CaMKI               | 39.5                       |  |  |  |
| CaMKII beta         | 37.4                       |  |  |  |
| CaMKI delta         | 48                         |  |  |  |
|                     |                            |  |  |  |

 Table S1. Percent inhibition for compound 1 for full panel of 220 kinases.

 Kinase<sup>a</sup>
 Percent Inhibition at 1 µM

| CamKII alpha      | 14.4  |
|-------------------|-------|
| CamKIV            | 17.3  |
| Cot               | 34.1  |
| DAPK1             | 64.4  |
| DCAMKL2           | 27.7  |
| DDR1              | 47.5  |
| DMPK              | 68.3  |
| DNA-PK            | 9.4   |
| DRAK1             | 79.2  |
| DYRK1A            | 7.8   |
| DYRK3             | 3.3   |
| DYRK4             | 0     |
| EGFR              | 91    |
| EGFR(T790M,L858R) | 91.8  |
| ERK2              | 10.8  |
| EphAı             | 69.8  |
| EphA3             | 20.5  |
| EphA <sub>7</sub> | 64.3  |
| EphA8             | 78.3  |
| EphBı             | 73.1  |
| EphB3             | 9.5   |
| ErbB2             | 37.8  |
| ErbB4             | 87.3  |
| FAK               | 96.7  |
| FGFR1             | 89.2  |
| FGFR <sub>3</sub> | 83.8  |
| FGFR <sub>4</sub> | 68.5  |
| Fes               | 79.6  |
| Fgr               | 101.7 |
| Fltı              | 60.4  |
| Flt3              | 93.3  |
| Flt4              | 91.6  |
| Frk               | 93.9  |
| GRK2              | 23.8  |
| GRK3              | 12.7  |
| GRK5              | 2.9   |
| GRK6              | 30.7  |
| GSK3 alpha        | 14.3  |
| GSK3 beta         | 23.6  |
| HIPK1             | 21.9  |
| HIPK2             | 49.6  |
| HIPK4             | 56.9  |
| Hyl               | 17.9  |
| IGF1R             | 60.2  |
| IKK alpha         | 0.9   |

| IKK beta         | -2.3  |
|------------------|-------|
| IKK epsilon      | 31.8  |
| IRAK1            | 69.5  |
| IRAK4            | 2.6   |
| IRR              | 90.1  |
| ITK              | 70.8  |
| InsR             | 81    |
| JAK1             | 80.2  |
| JAK2             | 93    |
| JAK3             | 88.3  |
| JNK1 alpha1      | 39.9  |
| JNK2             | 23.2  |
| JNK3             | 29.3  |
| KDR              | 89.2  |
| KHS1             | 99.1  |
| Kit              | 10.8  |
| LIMK1            | 13.3  |
| LRRK2            | 92.5  |
| LTK              | 83.5  |
| Lck              | 95.8  |
| Lyn              | 95.6  |
| MAP4K4           | 105.2 |
| MAPKAPK2         | 0     |
| МАРКАРК3         | -4.3  |
| MARK1            | 70.8  |
| MARK3            | 89.8  |
| MEK1             | 43.5  |
| MEK3             | 31.3  |
| MEKK2            | 78.5  |
| MELK             | 98.4  |
| МКК6             | 18.6  |
| MKNK1            | 3.8   |
| MKNK2            | 18.9  |
| MLK1             | 67.5  |
| MLK2             | 27.3  |
| MRCK alpha       | 16.4  |
| MSK1             | 25.3  |
| MSSK1            | 24.6  |
| MST1             | 94.1  |
| MST2             | 63.9  |
| MST <sub>3</sub> | 38    |
| MST <sub>4</sub> | 57    |
| MYLK(smMLCK)     | 58.1  |
| MYLK3(caMLCK)    | 22.1  |
| Mer              | 73.8  |

| Met                 | 14.4  |
|---------------------|-------|
| Minkı               | 109.1 |
| MuSK                | 98.7  |
| NEK1                | 15.9  |
| NEK4                | 20.1  |
| NEK6                | 4.4   |
| NEK9                | -1.1  |
| NLK                 | 2.4   |
| PAK1                | 20    |
| PAK3                | 13.8  |
| PAK4                | 79.4  |
| PAK6                | 7.7   |
| PASK                | 6.7   |
| PDGFR alpha         | 61.5  |
| PDK1(direct)        | 53.5  |
| PI <sub>3</sub> K-A | 0.3   |
| PI3K-G              | -5.1  |
| PIM1                | -3.1  |
| РКА                 | 27.6  |
| PKC alpha           | 27.4  |
| PKC_beta1           | -0.1  |
| PKC delta           | 8.1   |
| PKC epsilon         | 24.9  |
| PKC eta             | -8.1  |
| PKC theta           | 13.4  |
| PKC zeta            | 15.6  |
| PKD1                | 75.3  |
| PKG1_alpha          | 59    |
| PLK1                | 23.3  |
| PLK2                | 34    |
| PLK3                | 8     |
| PRAK                | 9.4   |
| PRK1                | 6     |
| PRKAA1              | 65.5  |
| PhK_gammaı          | 64.8  |
| PhK_gamma2          | 44.8  |
| PrKX                | 50.5  |
| RAF1(Y340D,Y341D)   | 3.3   |
| RIPK2               | 62.3  |
| ROCK1               | 13.2  |
| ROCK2               | 4.5   |
| RSK1                | 34.3  |
| RSK2                | 35.7  |
| RSK3                | 30.1  |
|                     | J-1-  |

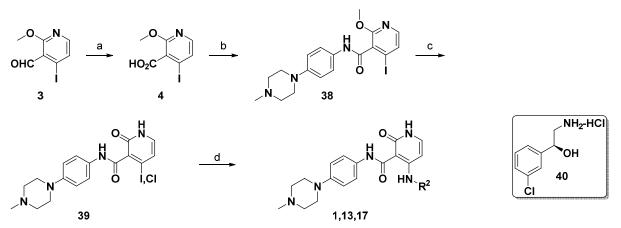
| Ros         93.8           Rse         68.5           SGK1         0.3           SGK2         -2.4           SGK3         1.9           SIK2         65.5           SLK         60.3           SPHK1         15.1           SRPK1         21.9           STK16         92.3           STK33         79.3           Src         89.2           Srm         77.5           Syk         86.3           TAK1-TAB1         83           TAO1         13.3           TBK1         70.1           TNK2         91.8           TSSK1         88.4           TTK         81.5           TXK         70.6           TYK2         99.5           Tie2         45.3           TrkA         91.9           TrkB         96.4           WEE1         50.9           WNK2         42.3           YSK1         39           Yes         99.3           ZAK         9.9           ZAF-70         12.8           ZIPK         44.4           eEF-2K                              | Ron               | 21.6 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------|
| SGK1         0.3           SGK2         -2.4           SGK3         1.9           SIK2         65.5           SLK         60.3           SPHK1         15.1           SRPK1         21.9           STK6         92.3           STK33         79.3           Src         89.2           Srm         77.5           Syk         86.3           TAK1-TAB1         83           TAO1         13.3           TBK1         70.1           TK2         91.8           TSK1         88.4           TTK         81.5           TXK         70.6           TYK2         99.5           Tie2         45.3           TrkA         91.9           TrkB         96.4           WEE1         50.9           WK12         42.3           YSK1         39           Yes         99.3           ZAK         9.9           ZIPK         44.4           eEF-aK         9.8           mTOR         1.9           p38 alpha(direct)         25.5           p3                        | Ros               | 93.8 |
| SGK2         -2.4           SGK3         1.9           SIK2         65.5           SLK         60.3           SPHK1         15.1           SRPK1         21.9           STK33         79.3           Src         89.2           Srm         77.5           Syk         86.3           TAK1-TAB1         83           TAO1         13.3           TBK1         70.6           TEC         11.4           TGFBR1         70.1           TNK2         91.8           TSK1         88.4           TTK         81.5           TXK         70.6           TYK2         99.5           Tie2         45.3           TrkA         91.9           TrkA         91.9           TrkB         96.4           WEE1         50.9           WK12         42.3           YSK1         39           Yes         99.3           ZAK         9.9           ZIPK         44.4           eEF-2K         9.8           mTOR         1.9           py8 beta <th>Rse</th> <th>68.5</th> | Rse               | 68.5 |
| SGK3         1.9           SIK2         65.5           SLK         60.3           SPHK1         15.1           SRPK1         21.9           STK6         92.3           STK33         79.3           Src         89.2           Srm         77.5           Syk         86.3           TAK1-TAB1         83           TAO1         13.3           TBK1         70.1           TK         91.8           TSSK1         88.4           TTK         91.8           TSK1         70.6           TYK2         99.5           Tie2         45.3           TrKA         91.9           TrkA         91.9           TrkB         96.4           WEE1         50.9           WNK2         42.3           YSK1         39           Yes         99.3           ZAR         9.9           ZAP-70         12.8           ZIPK         44.4           eEF-2K         9.8           mTOR         1.9           p38 beta         12.6           p38 del                        | SGK1              | 0.3  |
| SIK2         65.5           SLK         60.3           SPHK1         15.1           SRPK1         21.9           STK3         79.3           STK3         79.3           Src         89.2           Srm         77.5           Syk         86.3           TAK1-TAB1         83           TAO1         13.3           TBK1         73.6           TEC         11.4           TGFBR1         70.1           TNK2         91.8           TSK1         88.4           TTK         81.5           TXK         70.6           TYK2         99.5           Tie2         45.3           TrkA         91.9           TrkA         91.9           TrkB         96.4           WEE1         50.9           WNK2         42.3           YSK1         39           Yes         99.3           ZAP-70         12.8           ZIPK         44.4           eEF-2K         9.8           mTOR         1.9           p38 beta         12.6           p38                         | SGK2              | -2.4 |
| SLK         60.3           SPHK1         15.1           SRPK1         21.9           STK16         92.3           STK33         79.3           Src         89.2           Srm         77.5           Syk         86.3           TAK1-TAB1         83           TAO1         13.3           TBK1         73.6           TEC         11.4           TGFBR1         70.1           TNK2         91.8           TSSK1         88.4           TTK         81.5           TXK         70.6           TYK2         99.5           Tie2         45.3           TrkA         91.9           TrkA         91.9           TrkB         96.4           WEE1         50.9           WNK2         42.3           YSK1         39           Yes         99.3           ZAK         9.9           ZAP-70         12.8           ZIPK         44.4           eEF-2K         9.8           mTOR         1.9           p38 alpha(direct)         25.5                             | SGK3              | 1.9  |
| SPHKı         15.1           SRPKı         21.9           STKı6         92.3           STK33         79.3           Src         89.2           Srm         77.5           Syk         86.3           TAKı-TABı         83           TAOı         13.3           TBKı         73.6           TEC         1.4           TGFBRı         70.1           TNK2         91.8           TSSKı         88.4           TTK         81.5           TXK         70.6           TYK2         99.5           Tiez         45.3           TrkA         91.9           TrkA         91.9           TrkB         96.4           WEE1         50.9           WNK2         42.3           YSKı         39           Yes         99.3           ZAK         9.9           ZAP-70         12.8           ZIPK         44.4           eEF-2K         9.8           mTOR         1.9           p38 alpha(direct)         25.5           p38 beta         12.6                         | SIK2              | 65.5 |
| SRPK1         21.9           STK16         92.3           STK33         79.3           Src         89.2           Srm         77.5           Syk         86.3           TAK1-TAB1         83           TAO1         13.3           TBK1         73.6           TEC         11.4           TGFBR1         70.1           TNK2         91.8           TSSK1         88.4           TTK         81.5           TXK         70.6           TYK2         99.5           Tie2         45.3           TrkA         91.9           TrkB         96.4           WEE1         50.9           WNK2         42.3           YSK1         39           Yes         99.3           ZAK         9.9           ZAK         9.9           ZAK         9.9           TIPK         44.4           eEF-2K         9.8           mTOR         1.9           p38 alpha(direct)         25.5           p38 beta         12.6           p38 delta         16.2                          | SLK               | 60.3 |
| STK16         92.3           STK33         79.3           Src         89.2           Srm         77.5           Syk         86.3           TAK1-TAB1         83           TAO1         13.3           TBK1         73.6           TEC         11.4           TGFBR1         70.1           TNK2         91.8           TSSK1         88.4           TTK         81.5           TXK         70.6           TYK2         99.5           Tie2         45.3           TrkA         91.9           TrkB         96.4           WEE1         50.9           WNK2         42.3           YSK1         39           Yes         99.3           ZAK         9.9           ZAF-70         12.8           ZIPK         44.4           eEF-2K         9.8           mTOR         1.9           p38 beta         12.6           p38 beta         12.6                                                                                                                       | SPHK1             | 15.1 |
| STK33         79-3           Src         89.2           Srm         77-5           Syk         86.3           TAK1-TAB1         83           TAO1         13.3           TBK1         70.1           TSK1         91.8           TSK1         88.4           TTK         81.5           TXK         70.6           TYK2         91.8           TSK1         88.4           TTK         81.5           TXK         70.6           TYK2         99.5           Tie2         45.3           TrkA         91.9           TrkB         96.4           WEE1         50.9           WNK2         42.3           YSK1         39           Yes         99.3           ZAK         9.9           ZAK         9.9           ZIPK         44.4           eEF-2K         9.8           mTOR         1.9           p38 alpha(direct)         25.5           p38 delta         16.2                                                                                          | SRPK1             | 21.9 |
| STK33         79.3           Src         89.2           Srm         77.5           Syk         86.3           TAKı-TABı         83           TAO1         13.3           TBKı         70.1           TGFBRı         70.1           TNK2         91.8           TSKı         88.4           TTK         81.5           TXK         70.6           TYK2         99.5           Tie2         45.3           TrkA         91.9           TrkB         96.4           WEE1         50.9           WK2         42.3           YSK1         39           Yes         99.3           ZAK         9.9           ZIPK         44.4           eEF-2K         9.8           mTOR         1.9           p38 alpha(direct)         25.5           p38 beta         16.2                                                                                                                                                                                                      | STK16             | 92.3 |
| Src         89.2           Srm         77.5           Syk         86.3           TAKı-TABı         83           TAOı         13.3           TBKı         73.6           TEC         11.4           TGFBRı         70.1           TNK2         91.8           TSSKı         88.4           TTK         81.5           TXK         70.6           TYK2         99.5           Tiez         45.3           TrkA         91.9           TrkB         96.4           WEE1         50.9           WNK2         42.3           YSKı         39           Yes         99.3           ZAK         9.9           ZAK         9.9           ZIPK         44.4           eEF-2K         9.8           mTOR         1.9           p38 alpha(direct)         25.5           p38 beta         12.6           p38 delta         16.2                                                                                                                                           | STK33             |      |
| Syk         86.3           TAK1-TAB1         83           TAO1         13.3           TBK1         73.6           TEC         11.4           TGFBR1         70.1           TNK2         91.8           TSSK1         88.4           TTK         81.5           TXK         70.6           TYK2         99.5           Tie2         45.3           TrkA         91.9           TrkB         96.4           WEE1         50.9           WNK2         42.3           YSK1         39           Yes         99.3           ZAK         9.9           ZAK         9.9           ZIPK         44.4           eEF-2K         9.8           mTOR         1.9           p38 alpha(direct)         25.5           p38 beta         12.6           p38 delta         16.2                                                                                                                                                                                                 | Src               |      |
| TAKi-TABi       83         TAOi       13.3         TBKi       73.6         TEC       11.4         TGFBRi       70.1         TNK2       91.8         TSSKi       88.4         TTK       81.5         TXK       70.6         TYK2       99.5         Tie2       45.3         TrkA       91.9         TrkB       96.4         WEE1       50.9         WNK2       42.3         YSKi       39         Yes       99.3         ZAK       9.9         ZAF-70       12.8         ZIPK       44.4         eEF-2K       9.8         mTOR       1.9         p38 alpha(direct)       25.5         p38 beta       12.6         p38 delta       16.2                                                                                                                                                                                                                                                                                                                          | Srm               | 77.5 |
| TAO1         13.3           TBK1         73.6           TEC         11.4           TGFBR1         70.1           TNK2         91.8           TSSK1         88.4           TTK         81.5           TXK         70.6           TYK2         99.5           Tie2         45.3           TrkA         91.9           TrkB         96.4           WEE1         50.9           WNK2         42.3           YSK1         39           Yes         99.3           ZAK         9.9           ZIPK         44.4           eEF-2K         9.8           mTOR         1.9           p38 beta         12.6           p38 delta         16.2                                                                                                                                                                                                                                                                                                                              | Syk               | 86.3 |
| TBK1         73.6           TEC         11.4           TGFBR1         70.1           TNK2         91.8           TSSK1         88.4           TTK         81.5           TXK         70.6           TYK2         99.5           Tie2         45.3           TrkA         91.9           TrkB         96.4           WEE1         50.9           WNK2         42.3           YSK1         39           Yes         99.3           ZAK         9.9           ZIPK         44.4           eEF-2K         9.8           mTOR         1.9           p38 beta         12.6           p38 beta         12.6                                                                                                                                                                                                                                                                                                                                                           | TAK1-TAB1         | 83   |
| TEC         n.4           TGFBR1         70.1           TNK2         91.8           TSSK1         88.4           TTK         81.5           TXK         70.6           TYK2         99.5           Tie2         45.3           TrkA         91.9           TrkB         96.4           WEE1         50.9           WNK2         42.3           YSK1         39           Yes         99.3           ZAK         9.9           ZIPK         44.4           eEF-2K         9.8           mTOR         1.9           p38 beta         12.6           p38 delta         16.2                                                                                                                                                                                                                                                                                                                                                                                       | TAO1              | 13.3 |
| TGFBR1       70.1         TNK2       91.8         TSSK1       88.4         TTK       81.5         TXK       70.6         TYK2       99.5         Tie2       45.3         TrkA       91.9         TrkB       96.4         WEE1       50.9         WNK2       42.3         YSK1       39         Yes       99.3         ZAF-70       12.8         ZIPK       44.4         eEF-2K       9.8         mTOR       1.9         p38 beta       12.6         p38 delta       16.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TBK1              | 73.6 |
| TNK2       91.8         TSSK1       88.4         TTK       81.5         TXK       70.6         TYK2       99.5         Tie2       45.3         TrkA       91.9         TrkB       96.4         WEE1       50.9         WNK2       42.3         YSK1       39         Yes       99.3         ZAK       9.9         ZIPK       44.4         eEF-2K       9.8         mTOR       1.9         p38 delta       16.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TEC               | 11.4 |
| TSSK1       88.4         TTK       81.5         TXK       70.6         TYK2       99.5         Tie2       45.3         TrkA       91.9         TrkB       96.4         WEE1       50.9         WNK2       42.3         YSK1       39         Yes       99.3         ZAK       9.9         ZIPK       44.4         eEF-2K       9.8         mTOR       1.9         p38 alpha(direct)       25.5         p38 delta       16.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TGFBR1            | 70.1 |
| TTK       81.5         TXK       70.6         TYK2       99.5         Tie2       45.3         TrkA       91.9         TrkB       96.4         WEE1       50.9         WNK2       42.3         YSK1       39         Yes       99.3         ZAK       9.9         ZIPK       44.4         eEF-2K       9.8         mTOR       1.9         p38 alpha(direct)       25.5         p38 delta       12.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TNK2              | 91.8 |
| TXK       70.6         TYK2       99.5         Tie2       45.3         TrkA       91.9         TrkB       96.4         WEE1       50.9         WNK2       42.3         YSK1       39         Yes       99.3         ZAK       9.9         ZAP-70       12.8         ZIPK       44.4         eEF-2K       9.8         mTOR       1.9         p38 alpha(direct)       25.5         p38 delta       16.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TSSK1             | 88.4 |
| TYK2       99.5         Tie2       45.3         TrkA       91.9         TrkB       96.4         WEE1       50.9         WNK2       42.3         YSK1       39         Yes       99.3         ZAK       9.9         ZIPK       44.4         eEF-2K       9.8         mTOR       1.9         p38 alpha(direct)       25.5         p38 delta       16.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ТТК               | 81.5 |
| Tiez       45.3         TrkA       91.9         TrkB       96.4         WEE1       50.9         WNK2       42.3         YSK1       39         Yes       99.3         ZAK       9.9         ZAP-70       12.8         TIPK       44.4         eEF-2K       9.8         mTOR       1.9         p38 alpha(direct)       25.5         p38 delta       16.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ТХК               | 70.6 |
| TrkA       91.9         TrkB       96.4         WEE1       50.9         WNK2       42.3         YSK1       39         Yes       99.3         ZAK       9.9         ZAP-70       12.8         ZIPK       44.4         eEF-2K       9.8         mTOR       1.9         p38 alpha(direct)       25.5         p38 delta       16.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TYK2              | 99.5 |
| TrkB       96.4         WEE1       50.9         WNK2       42.3         YSK1       39         Yes       99.3         ZAK       9.9         ZAP-70       12.8         ZIPK       44.4         eEF-2K       9.8         mTOR       1.9         p38 alpha(direct)       25.5         p38 beta       12.6         p38 delta       16.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Tie2              | 45.3 |
| WEE1       50.9         WNK2       42.3         YSK1       39         Yes       99.3         ZAK       9.9         ZAP-70       12.8         ZIPK       44.4         eEF-2K       9.8         mTOR       1.9         p38 alpha(direct)       25.5         p38 beta       12.6         p38 delta       16.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TrkA              | 91.9 |
| WNK2       42.3         YSK1       39         Yes       99.3         ZAK       9.9         ZAP-70       12.8         ZIPK       44.4         eEF-2K       9.8         mTOR       1.9         p38 alpha(direct)       25.5         p38 beta       12.6         p38 delta       16.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TrkB              | 96.4 |
| YSK1       39         Yes       99.3         ZAK       9.9         ZAP-70       12.8         ZIPK       44.4         eEF-2K       9.8         mTOR       1.9         p38 alpha(direct)       25.5         p38 beta       12.6         p38 delta       16.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | WEE1              | 50.9 |
| Yes       99.3         ZAK       9.9         ZAP-70       12.8         ZIPK       44.4         eEF-2K       9.8         mTOR       1.9         p38 alpha(direct)       25.5         p38 beta       12.6         p38 delta       16.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | WNK2              | 42.3 |
| ZAK       9.9         ZAP-70       12.8         ZIPK       44.4         eEF-2K       9.8         mTOR       1.9         p38 alpha(direct)       25.5         p38 beta       12.6         p38 delta       16.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | YSKı              | 39   |
| ZAP-70       12.8         ZIPK       44.4         eEF-2K       9.8         mTOR       1.9         p38 alpha(direct)       25.5         p38 beta       12.6         p38 delta       16.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Yes               | 99.3 |
| ZIPK       44.4         eEF-2K       9.8         mTOR       1.9         p38 alpha(direct)       25.5         p38 beta       12.6         p38 delta       16.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   | 9.9  |
| eEF-2K     9.8       mTOR     1.9       p38 alpha(direct)     25.5       p38 beta     12.6       p38 delta     16.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ZAP-70            | 12.8 |
| mTOR     1.9       p38 alpha(direct)     25.5       p38 beta     12.6       p38 delta     16.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ZIPK              | 44.4 |
| p38 alpha(direct)         25.5           p38 beta         12.6           p38 delta         16.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | eEF-2K            | 9.8  |
| p38 beta         12.6           p38 delta         16.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mTOR              | 1.9  |
| <b>p38 delta</b> 16.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | p38 alpha(direct) | 25.5 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | p38 beta          | 12.6 |
| n28 gamma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | p38 delta         | 16.2 |
| P3º 500000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | p38 gamma         | 15.8 |
| <b>p70S6K</b> 7.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | =                 |      |

<sup>a</sup>ATP concentration at Kmapp. Data show inhibition of single replicates.

Table S2. Percent Inhibition for compounds 13 and 37 for selected kinases at 1  $\mu$ M.

| Kinase <sup>ª</sup> | 1     | 13    | 19    | 36    | 37    |
|---------------------|-------|-------|-------|-------|-------|
| TMLR Ki (µM)        | 0.065 | 0.019 | 0.004 | 0.031 | 0.088 |
| Aurora B            | 75%   | 52%   | 67%   | 21%   | 15%   |
| B-Raf               | ND    | 17%   | 43%   | ND    | -6%   |
| CDK2/cyclin A       | -1%   | 2%    | 96%   | ND    | 4%    |
| CHK1                | 46%   | 19%   | 90%   | ND    | -3%   |
| EGFR(T790M,L858R)   | 92%   | 97%   | 96%   | ND    | 81%   |
| ERK2                | 11%   | 6%    | 12%   | ND    | 10%   |
| Flt3                | 93%   | 87%   | 100%  | ND    | 34%   |
| IKK_epsilon         | 32%   | 8%    | 86%   | ND    | 2%    |
| JAK2                | 93%   | 92%   | 83%   | 76%   | 71%   |
| KDR                 | 89%   | 88%   | 95%   | 81%   | 15%   |
| Lck                 | 96%   | 70%   | 72%   | 67%   | 14%   |
| MEK1                | ND    | 20%   | 46%   | ND    | 6%    |
| p70S6K              | 8%    | 7%    | 36%   | ND    | 6%    |
| Src                 | 89%   | 48%   | 27%   | ND    | 25%   |
| TrkA                | 92%   | 92%   | 92%   | ND    | 56%   |

<sup>a</sup>ATP concentration at Kmapp. Data show inhibition of single replicates.


|                            | Compound 13/<br>EGFR | Compound 13/<br>EGFR_TMLR_SER1 | Compound 19/<br>EGFR_TMLR_SER1 | Compound 2/<br>EGFR_TMLR_SER1 |
|----------------------------|----------------------|--------------------------------|--------------------------------|-------------------------------|
| PDB accession              | 5EM8                 | 5EM7                           | 5EM6                           | 5EM5                          |
| Data                       |                      |                                |                                |                               |
| X-ray source               | ALS 5.0.2            | SSRL 12-2                      | ALS 5.0.1                      | ALS 5.0.2                     |
| Wavelength (Å)             | 1.0000               | 0.9795                         | 0.9774                         | 0.999993                      |
| Resolution range<br>(Å)    | 46.7-2.8(2.9-2.8)    | 39.0-2.8(2.9-2.8)              | 59.7-2.8(2.9-2.8)              | 47.1-2.6(2.7-2.6)             |
| Space group                | I23                  | I23                            | I23                            | I23                           |
| Unit cell <i>a=b=c</i> (Å) | 147.661              | 146.105                        | 146.249                        | 148.968                       |
| Unit cell α=β=γ (°)        | 90                   | 90                             | 90                             | 90                            |
| Total reflections          | 172460               | 42507                          | 145352                         | 220625                        |
| Unique reflections         | 13327 (1339)         | 12247 (1210)                   | 13262 (1319)                   | 16103 (1602)                  |
| Multiplicity               | 12.9 (13.1)          | 3.5 (3.4)                      | 11.8 (12.0)                    | 13.7 (13.9)                   |
| Completeness (%)           | 100 (100)            | 96.7 (97.3)                    | 100 (100)                      | 100 (100)                     |
| Mean I/sigma(I)            | 43.2 (5.0)           | 15.7 (1.7)                     | 28.6 (5.6)                     | 30.3 (5.0)                    |
| Wilson B-factor            | 78.16                | 68.39                          | 46.91                          | 56.95                         |
| R-symm                     | 0.055 (0.588)        | 0.072 (0.736)                  | 0.106 (0.487)                  | 0.095 (0.686)                 |
| Refinement                 |                      |                                |                                |                               |
| Refs for R-free            | 569                  | 526                            | 568                            | 673                           |
| R-work                     | 0.189                | 0.189                          | 0.195                          | 0.212                         |
| R-free                     | 0.229                | 0.216                          | 0.229                          | 0.223                         |
| no. non-H atoms            | 2449                 | 2474                           | 2464                           | 2438                          |
| macromolecules             | 2417                 | 2405                           | 2422                           | 2397                          |
| ligands                    | 32                   | 69                             | 36                             | 33                            |
| water                      | 0                    | 0                              | 6                              | 8                             |
| Protein residues           | 303                  | 300                            | 301                            | 298                           |
| RMS(bonds) (Å)             | 0.010                | 0.009                          | 0.009                          | 0.008                         |
| RMS(angles) (°)            | 1.10                 | 1.04                           | 1.04                           | 1.00                          |
| ♦/) favored (%)            | 95                   | 96                             | 95                             | 96                            |
| Ave. B-factor (Å2)         | 88.3                 | 74                             | 50.8                           | 67.3                          |
| macromolecules             | 88.0                 | 74.0                           | 50.7                           | 67.5                          |
| ligands                    | 107.7                | 75.4                           | 56.9                           | 60.9                          |
| solvent                    | -                    | -                              | 32.4                           | 50.2                          |

### **Experimental Section**

**Experimental procedures for kinetic solubility experiments.** Compounds were dissolved in DMSO to a concentration of 10 mM. These solutions were diluted into PBS buffer (pH 7.2, composed with NaCl, KCl, Na2HPO4, and KH2PO4) to a final compound concentration of 100  $\mu$ M, DMSO concentration of 2%, at pH 7.4. The samples were shaken for 24 h at room temperature followed by filtration. LC/CLND was used to determine compound concentration in the filtrate, with the concentration calculated by a caffeine calibration curve and the sample's nitrogen content. An internal standard compound was spiked into each sample for accurate quantification.

**General.** Unless otherwise indicated, all reagents and solvents were purchased from commercial sources and used without further purification. Moisture or oxygen sensitive reactions were conducted under an atmosphere nitrogen gas. Unless otherwise stated, <sup>1</sup>H NMR spectra were recorded at room temperature using Varian Unity Inova Bruker AVANCE III UltraShield-Plus Digital NMR spectrometer at indicated frequencies. Chemical shifts are expressed in ppm relative to an internal standard, tetramethylsilane (=0.00 ppm). The following abbreviations are used: br = broad signal, s = singlet, d = doublet, dd = doublet of doublets, t = triplet, q = quartet, m = multiplet. Purification by silica gel chromatography was carried out using a CombiFlash by Teledyne ISCO system with prepacked cartridges. Purification by reverse-phase high-performance liquid chromatography (HPLC) and supercritical fluid chromatography (SFC) was also used. All final compounds were purified to ≥95% chemical purity as determined by HPLC with UV detection at 254 nm.

Scheme S1. Synthesis of compounds 1, 13 and 17.<sup>a</sup>



<sup>a</sup>Reagents and conditions: (a) 2-methyl-2-butene, NaClO2, NaPO<sub>4</sub>H<sub>2</sub>-H<sub>2</sub>O; (b) Thionyl chloride, NH<sub>2</sub>R<sup>1</sup>; (c) HCl; (d) NH<sub>2</sub>R<sup>2</sup>, TEA,  $\Delta$ .

**4-Iodo-2-methoxy-pyridine-3-carboxylic acid** (**4**). To a 250mL round bottom flask equipped with a stir bar was added 4-iodo-2-methoxy-pyridine-3-carbaldehyde (42.60 g, 162.0 mmol) and *tert*-butanol (55 equiv., 8908 mmol). To this cooled solution at o°C was added a solution of 2-methyl-2-butene (485.9 mmol), sodium dihydrogen phosphate hydrate (404.9 mmol) and sodium chlorite (323.9 mmol) in water (408.5 mL) and the mixture was stirred for 10 minutes. The reaction mixture was poured into 500mL of 1N formic acid and partitioned with ethyl acetate. The aqueous phase was extracted with ethyl acetate. The combined organic phases were washed with brine, dried over magnesium sulfate, filtered and concentrated. The residue was brought up in 1N NaOH, cooled to o°C and acidified with concentrated HCl to pH ~2. This mixture was washed with ethyl acetate (2x), reacidified with concentrated HCl and extracted with ethyl acetate an additional time. The combined organic phases were washed with brine, filtered and concentrated to give 4-iodo-2-methoxy-pyridine-3-carboxylic acid (45.2g, quant.) as a white powder.

**4-Iodo-2-methoxy-N-(4-(4-methylpiperazin-1-yl)phenyl)nicotinamide (38)**. Thionyl chloride (30 mL) and a catalytic amount of DMF was added to a stirred suspension of 4-iodo-2-methoxy-nicotinic acid (14 g, 50.2 mmol) in DCM (300 mL) and the reaction was heated 2 hours at 45°C. The reaction was cooled to room temperature and concentrated *in vacuo* to give the crude title compound 14 g (crude) as a yellow solid, which was used in the next step without further purification.

To a stirred solution of 4-(4-methylpiperazin-1-yl)aniline (11 g, 57.51 mmol) in DCM was added TEA (14.3 g, 142 mmol). A solution of 4-iodo-2-methoxynicotinoyl chloride (14 g, 47.1 mmol) in DCM was then added via cannula over 10 minutes. The reaction mixture was stirred overnight at room temperature and then washed with brine. The organic layer was dried over MgSO4 and concentrated *in vacuo* to give a residue which was purified by flash chromatography on silica gel (gradient: 5-100% EtOAc/hexanes) to provide the title compound (18 g, 85%) as a yellow solid. LCMS (ESI): [M+H]+ 453.

**4-Iodo-N-(4-(4-methylpiperazin-1-yl) phenyl)-2-oxo-1, 2-dihydropyridine-3-carboxamide dihydrochloride** and **4-Chloro-N-(4-(4-methylpiperazin-1-yl) phenyl)-2-oxo-1, 2-dihydropyridine-3-carboxamide dihydrochloride (39)**. A solution of 4-iodo-2-methoxy-N-(4-(4-methylpiperazin-1-yl)phenyl)nicotinamide (10 g, 22.1mmol) in 1,4-dioxane (300 mL, saturated with HCl

gas) was stirred at 110 °C for 3 h. The resulting mixture was cooled to rt and concentrated in vacuo. The residue was washed with ether and the solids were collected by filtration to provide the title compounds (12 g, crude) as a yellow solid, which was used in the next step without further purification. LCMS (ESI): [M+H]+ 439 and 347.

(S)-2-Amino-1-(3-chlorophenyl) ethanol hydrochloride (40). To a stirred solution of (S)-1-methyl-3,3-diphenyl-hexahydropyrrolo[1,2-c][1,3,2]oxazaborole (0.3 mL, 1M in toluene) and BH3 (2.7 mL, 1 M in THF ) in THF (50 mL) was added 2-chloro-1-(3-chlorophenyl)ethan-1-one (5.0 g, 26.5mmol) and BH3 (13.2 mL, 1 M in THF ). The resulting solution was stirred at 20 °C for 10 minutes. The reaction was then quenched at 0 °C by addition of MeOH (8.0 mL) and anhydrous ether saturated with hydrogen chloride (2 mL). The solvent was removed in vacuo. The residue was dissolved in ether (15 mL), washed with brine and saturated sodium bicarbonate solution and dried over MgSO4. Removal of the solvent *in vacuo* provided crude (S)-2-Chloro-1-(3-chlorophenyl) ethanol (4.45 g, 88%) as a brown oil, which was used in the next step without further purification. GCMS (ESI): [M]+ 190.

A solution of (S)-2-chloro-1-(3-chlorophenyl) ethanol (4 g, 20.9 mmol) in methanol (80 mL, saturated with NH3) was stirred for 5d at room temperature. The resulting mixture was concentrated in vacuo. The residue was washed with ether and collected by filtration. The crude product was purified by re-crystallization from ethanol / ethyl acetate to provide (S)-2-amino-1-(3-chlorophenyl) ethanol hydrochloride (1.14 g, 32% yield, 100% ee) as a white solid. LCMS (ESI): [M+H]+ 172. 1HNMR (300MHz, CD3OD):  $\delta$  7.45 (s, 1 H), 7.35-7.27 (m, 3H), 5.03-4.89 (m, 1H), 3.19-3.12 (m, 1H), 2.99-2.91 (m, 1 H).

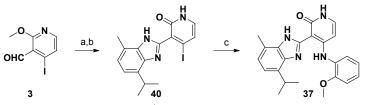
(S)-4-(2-(3-Chlorophenyl)-2-hydroxyethylamino)-N-(4-(4-methylpiperazin-1-yl)phenyl)-2-oxo-1,2-dihydropyridine-3-carboxamide (1). To a solution of 4-iodo-N-[4-(4-methylpiperazin-1-yl)phenyl]-2-oxo-1,2-dihydropyridine-3-carboxamide dihy-

drochloride and 4-chloro-N-(4-(4-methylpiperazin-1-yl)phenyl)-2-0x0-1,2-dihydropyridine-3-carboxamide dihydrochloride (300 mg, 0.59 mmol, calculated with iodine isomer) in CH<sub>3</sub>CN (10 mL) at rt was added TEA (1 mL). The resulting solution was stirred at rt for 20 min and then (1S)-2-amino-1-(3-chlorophenyl) ethan-1-0 hydrochloric (184 mg, 0.88 mmol) was added. The resulting solution was stirred at 70 °C for 23 h and then concentrated *in vacuo*. The crude product was purified by Prep-HPLC to provide the title compound (160 mg, 57%) as an off-white solid. LCMS (ESI): [M+H]+ 482. 1H NMR (300 MHz, DMSO-d6):  $\delta$  12.78 (s, 1H), 11.06 (s, 1H), 10.83 (s, 1H), 7.47-7.24 (m, 7H), 6.86-6.83 (d, J = 9.0 Hz, 2H), 6.04-6.01 (d, J = 7.5 Hz, 1H), 5.85-5.83 (d, J = 4.8 Hz, 1H), 4.79-4.76 (m, 1H), 3.52-3.44 (m, 1H), 3.04-3.01 (m, 4H), 2.45-2.38 (m, 4H), 2.17 (s, 3H).

 $\begin{array}{ll} \textbf{N-(4-(4-Methylpiperazin-1-yl)phenyl)-2-oxo-4-(phenylamino)-1,2-dihydropyridine-3-carboxamide} & (7). \\ \ ^1H & \text{NMR} & (300 & \text{MHz, DMSO-d6}) \\ \delta 12.90 & (s, 1H), 12.47 & (s, 1H), 11.44 & (m, 1H), 7.49-7.43 & (m, 4H), 7.37-7.34 & (m, 4H), 7.31-7.26 & (m, 2H), 6.08-6.05 & (m, 1H), 3.10 - 3.07 & (m, 4H), 2.54 - 2.45 & (m, 4H), 2.27 & (s, 3H). \\ \end{array}$ 

**4-(2-Methoxyphenylamino)-N-(4-(4-methylpiperazin-1-yl)phenyl)-2-0x0-1,2-dihydropyridine-3-carboxamide (13).** To a solution of 4-iodo-N-(4-(4-methylpiperazin-1-yl)phenyl)-2-0x0-1,2-dihydropyridine-3-carboxamide dihydrochloride and 4-chloro-N-(4-(4-methylpiperazin-1-yl)phenyl)-2-0x0-1,2-dihydropyridine-3-carboxamide dihydrochloride (250 mg, 0.49 mmol, calculate with iodine isomer) in DMF (2 mL) was added 2-methoxybenzenamine (120 mg, 0.97 mmol) and TEA (1 mL). The resulting solution was reacted at 150 °C for 1 h with microwave radiation, diluted with water and the solid were collected by filtration and washed with water. The crude product was purified by Prep-HPLC to provide the title compound 158 mg (75%) as a light yellow solid. LCMS (ESI): [M+H]+ 434. 1H NMR (300 MHz, DMSO-d6):  $\delta$  12.87(s, 1H), 12.16 (s, 1H), 11.37-11.35 (d, J = 5.4 Hz, 1H), 7.47-7.44 (d, J = 8.7 Hz, 2H), 7.33-7.24 (m, 3H), 7.14-7.16 (d, J = 7.5 Hz, 1H), 7.03-6.89 (m, 3H), 5.95-5.92 (d, J = 7.2 Hz, 1H), 3.81 (s, 3H), 3.10-3.07 (m, 4H), 2.46-2.43 (m, 4H), 2.21 (s, 3H).

N-(4-(4-methylpiperazin-1-yl)phenyl)-2-oxo-4-(pyrimidin-4-ylamino)-1,2-dihydropyridine-3-carboxamide (17). To a solution of a mixture of 4-iodo-N-(4-(4-methylpiperazin-1-yl)phenyl)-2-oxo-1,2-dihydropyridine-3-carboxamide dihydrochloride and 4-chloro-N-(4-(4-methylpiperazin-1-yl)phenyl)-2-oxo-1,2-dihydropyridine-3-carboxamide dihydrochloride (400 mg, 0.78 mmol, calculate with iodine isomer) in 1,4-dioxane (4 mL) was added pyrimidin-4-amine (142 mg, 1.49 mmol), Pd(dba)3CHCl3 (106 mg, 0.1 mmol), Xantphos (100 mg, 0.17 mmol) and Cs2CO3 (1.88 g, 5.77 mmol). The resulting solution was reacted at 160 oC for 3 h with microwave radiation. The reaction was diluted with water, extracted dichloromethane. The combined organic layers were washed with brine, dried over anhydrous sodium sulfate and concentrated in vacuo. The crude product was purified by Prep-HPLC to provide the title compound 8.9 mg (3%) as a yellow solid. LCMS (ESI): [M+H]+ 406. 1H NMR (300 MHz, DMSO-d6):  $\delta$  13.79 (s, 1H), 13.04 (s, 1H), 12.08 (s, 1H), 8.53-8.51 (d, J = 5.7 Hz, 1H), 8.07-8.05 (d, J = 7.5 Hz, 1H), 7.64-7.62 (d, J = 5.7 Hz, 1H), 7.47-7.44 (d, J = 9.0 Hz, 2H), 7.11-7.09 (m, 1H), 6.91-6.88 (d, J = 9.0 Hz, 2H), 3.08-3.05 (m, 4H), 2.46-2.43 (m, 4H), 2.22 (s, 3H).


 $\begin{array}{l} \textbf{4-((2-Aminopyrimidin-4-yl)amino)-N-(4-(4-methylpiperazin-1-yl)phenyl)-2-0x0-1,2-dihydropyridine-3-carboxamide} \\ \textbf{(19)}. \ ^{1}H \ \text{NMR} \ \textbf{(300 \ MHz, \ DMSO-d6)} \ \delta \ 13.46 \ \textbf{(s, 1H)}, \ 13.1 \ \textbf{(s, 1H)}, \ 11.92 \ \textbf{(br s, 1H)}, \ 8.17-8.04 \ \textbf{(m, 2H)}, \ 7.53-7.47 \ \textbf{(m, 3H)}, \ 6.95-6.92 \ \textbf{(m, 2H)}, \ 6.45 \ \textbf{(s, 2H)}, \ 6.19-6.18 \ \textbf{(m, 1H)}, \ 3.12 \ - \ 3.09 \ \textbf{(m, 4H)}, \ 2.50 \ - \ 2.44 \ \textbf{(m, 4H)}, \ 2.22 \ \textbf{(s, 3H)}. \ \text{MS} \ \textbf{(ESI)}: \ \textbf{m/z} = 420.9 \ \textbf{[M+1]+}. \end{array}$ 

**4-(2-Methoxyanilino)-N-[4-(1-methyl-4-piperidyl)phenyl]-2-0x0-1H-pyridine-3-carboxamide (29).** To a 100 mL round bottom flask equipped with a stir bar was added 4-iodo-2-methoxy-pyridine-3-carboxylic acid (1.314 mmol, 366.6 mg) and dichloromethane (5 mL). After dissolution, the mixture was cooled to 0°C and 2M oxalyl chloride in dichloromethane (1.2 equiv., 1.58 mmol) was added followed by DMF (0.01 mL, 0.1 mmol). The reaction was allowed to warm to room temperature and stirred for 1h. The reaction was concentrated to dryness to give 4-iodo-2-methoxy-pyridine-3-carbonyl chloride which was taken on directly. 4-Iodo-2-methoxy-pyridine-3-carbonyl chloride was dissolved in dichloromethane (5 mL) and N-ethyldiisopropylethylamine

(1.5 equiv., 1.97 mmol) was added. 4-(1-Methyl-4-piperidyl)aniline (1.2 equiv., 1.57 mmol) was added and the reaction stirred at room temperature overnight. The reaction was then concentrated and brought up in ethyl acetate and water. The organic phase was washed with brine, dried over magnesium sulfate, filtered and concentrated to give the crude material. Silica gel chromatography (100g, o to 10% methanol in dichloromethane) then gave 4-iodo-2-methoxy-N-[4-(1-methyl-4-piperidyl)phenyl]pyridine-3-carboxamide (0.34g, 57%) as a clear glass. MS (ESI): m/z = 452.6 [M+1]+.

To a 250mL round bottom flask equipped with a stir bar was added 4-iodo-2-methoxy-N-[4-(1-methyl-4-piperidyl)phenyl]pyridine-3-carboxamide (0.34 g, 0.75 mmol) and HCl (37 mass%) in H2O (50 mL). The solution was heated to 50°C and stirred at this temperature for 18h. The reaction was concentrated under reduced pressure to give 4-iodo-N-[4-(1-methyl-4-piperidyl)phenyl]-2-oxo-1H-pyridine-3-carboxamide as a pale yellow solid, which was taken on without further purification. A reaction vessel charged with 4-iodo-N-[4-(1-methyl-4-piperidyl)phenyl]-2-oxo-1H-pyridine-3-carboxamide (330 mg, 0.75 mmol) in acetonitrile (3 mL) and 2-methoxyaniline (1.13 mmol) was capped and heated under microwave conditions for 20 minutes at 150°C. The reaction was cooled to room temperature, concentrated to dryness and purified by preparative HPLC to give 4-(2-methoxyanilino)-N-[4-(1-methyl-4-piperidyl)phenyl]-2-oxo-1H-pyridine-3-carboxamide (96.3 mg, 30% yield) as an off-white solid. <sup>1</sup>H NMR (400 MHz, DMSO-d6)  $\delta$  13.05 (s, 1H), 12.10 (s, 1H), 11.38 (d, J = 5.0 Hz, 1H), 7.55 (d, J = 8.3 Hz, 2H), 7.31 (td, J = 14.6, 12.9, 6.6 Hz, 7H), 7.21 (d, J = 8.3 Hz, 2H), 7.16 (d, J = 8.2 Hz, 1H), 7.02 (t, J = 7.6 Hz, 1H), 5.95 (d, J = 7.4 Hz, 1H), 3.82 (s, 3H), 3.16 - 3.08 (m, 2H), 2.61 - 2.52 (m, 2H), 2.47 - 2.37 (m, 5H), 1.89 - 1.64 (m, 5H).MS (ESI): m/z = 433.2 [M+1]+.

**Scheme S2**. Synthesis of compound **37**.<sup>a</sup>



<sup>a</sup>Reagents and conditions: <sup>(</sup>a)  $R^{1}(NH_{2})_{2}$ , MeOH,  $\Delta$ ; (b) HCl; (c) NH<sub>2</sub>-2-OMe-Ph, DIEA,  $\Delta$ .

**4-Iodo-3-(4-isopropyl-7-methyl-1H-benzo**[d]imidazol-2-yl)pyridin-2(1H)-one (40). 3-Isopropyl-6-methyl-benzene-1,2diamine (60 mg, 0.37 mmol), 4-iodo-2-methoxy-pyridine-3-carbaldehyde (0.73 mmol) and methanol (5 mL) were heated to 75 °C for 22h. The reaction was concentrated and purified by silica gel chromatography (0% to 50% ethyl acetate in heptanes) to give 2-(4-iodo-2-methoxy-3-pyridyl)-4-isopropyl-7-methyl-1H-benzimidazole (126 mg, 85% yield). This material was brought up in concentrated HCl (15 mL) and heated to 50 °C for 3d. The reaction was concentrated to afford 4-iodo-3-(4-isopropyl-7-methyl-1H-benzo[d]imidazol-2-yl)pyridin-2(1H)-one and was taken on as is.

3-(4-Isopropyl-7-methyl-1H-benzimidazol-2-yl)-4-(2-methoxyanilino)-1H-pyridin-2-one (37). 4-Iodo-3-(4-isopropyl-7-methyl-1H-benzimidazol-2-yl)-1H-pyridin-2-one (101 mg, 0.26 mmol), 2-methoxyaniline (0.39 mmol), N,N-diisopropylethylamine (0.77 mmol) and n-butanol (5 ml) was combined and heated under microwave conditions at 150 °C for 60 min. The reaction was then cooled to room temperature and purified by silica gel chromatography (0% to 3% methanol in dichloromethane) to give the desired product in 79% yield (100 mg). <sup>1</sup>H NMR (400 MHz, DMSO-d6)  $\delta$  12.96 (d, J = 86.8 Hz, 1H), 12.75 (d, J = 16.9 Hz, 1H), 11.47 (s, 1H), 7.46 - 7.32 (m, 2H), 7.29 - 7.16 (m, 2H), 7.03 (tt, J = 7.5, 1.7 Hz, 1H), 6.96 (d, J = 10.0 Hz, 2H), 6.29 (dd, J = 8.4, 7.5 Hz, 1H), 3.87 (d, J = 10.2 Hz, 3H), 3.50 (p, J = 6.9 Hz, 0.5H), 3.25 (p, J = 7.0 Hz, 0.5H), 2.52 (d, J = 11.1 Hz, 3H), 1.36 (dd, J = 6.9, 1.4 Hz, 6H). MS (ESI): m/z = 408.1 [M+1]+.

Enzymatic assays. Experiments were carried out as previously described.<sup>1-2</sup>

In Vitro Microsome Metabolic Stability. Experiments were carried out as previously described.<sup>3</sup>

Cellular assays. Experiments were carried out as previously described.<sup>4</sup>

**Expression, purification and crystallization EGFR kinase domain TMLR.** Crystallographic methods and the production and use of wtEGFR and TMLR proteins were as previously described.<sup>4,5</sup>

References

<sup>&</sup>lt;sup>1</sup> Lee, H. J.; Schaefer, G.; Heffron, T. P.; Shao, L.; Ye, X.; Sideris, S.; Malek, S.; Chan, E.; Merchant, M.; La, H.; Ubhayakar, S.; Yauch, R. L.; Pirazzoli, V.; Politi, K.; Settleman, J. "Noncovalent wild-type-sparing inhibitors of EGFR T790M." *Cancer Discovery* **2013**, *3*, 168–181.

<sup>&</sup>lt;sup>2</sup> Hurley, C.; Kulagowski, J.; Zak, M. "Tricyclic heterocyclic compounds, compositions and methods of use thereof as JAK inhibitors." WO/2013/007768.

<sup>&</sup>lt;sup>3</sup> Halladay, J. S.; Wong, S.; Jaffer, S. M.; Sinhababu, A. K.; Khojasteh-Bakht, S. C. "Metabolic stability screen for drug discovery using cassette analysis and column switching." *Drug Metab. Lett.* **2007**, *1*, 67–72.

<sup>4</sup> Heald, R.; Bowman, K. K.; Bryan, M. C.; Burdick, D.; Chan, B.; Chan, E.; Chen, Y.; Clausen, S.; Eigenbrot, C.; Elliott, R.; Hanan, E. J.; Jackson, P.; Knight, J.; La, H.; Lainchbury, M.; Malek, S.; Mann, S.; Merchant, M.; Mortara, K.; Purkey, H.; Schaefer, G. Schmidt, S.; Seward, E.; Sideris, S.; Shao, L.; Wang, S.; Yeap, K.; Yen, I.; Yu, C.; Heffron, T. P. "Noncovalent Mutant Selective Epidermal Growth Factor Receptor Inhibitors: A Lead Optimization Case History". *J. Med. Chem.*, **2015**, *58*, 8877-8895.

<sup>5</sup> Hanan, E. J.; Eigenbrot, C.; Bryan, M. C.; Burdick, D. J.; Chan, B. K.; Chen, Y.; Dotson, J.; Heald, R. A.; Jackson, P. S.; La, H.; Lainchbury, M. D.; Malek, S.; Purkey, H. E.; Schaefer, G.; Schmidt, S.; Seward, E. M.; Sideris, S.; Tam, C.; Wang, S.; Yeap, S. K.; Yen, I.; Yin, J.; Yu, C.; Zilberleyb, I.; Heffron, T. P. J. Med. Chem. 2014, 57, 10176.