Supporting Information

Monohydroxylated Polybrominated Diphenyl Ethers (OH-PBDEs) and Dihydroxylated Polybrominated Biphenyls (di-OH-PBBs): Novel Photoproducts of 2,6-Dibromophenol

Hongxia Zhao, *¹ Jingqiu Jiang, ¹ Yanli Wang, ¹ Hans-Joachim Lehmler, ²

Garry R. Buettner, ³ Xie Quan, ¹ Jingwen Chen ¹

¹ Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology Linggong Road 2; Dalian 116024, China

² Department of Occupational and Environmental Health, College of Public Health, The University of Iowa, IA 52242, USA

³ Free Radical and Radiation Biology Program & ESR Facility, Carver College of Medicine, The University of Iowa, IA 52242, USA

Summary

Number of pages: 10

Text S1

9 Figures

1 Table

Text S1. Instrument Conditions

- 2 S1.1. HPLC-LTQ Orbitrap condition
- The LTQ Orbitrap, a hybrid instrument with a linear ion trap (LIT) mass spectrometer
- 4 linked to a high-resolution Fourier transform (FT) mass spectrometer, was exploited to
- 5 perform high-resolution full-scan MS analysis.
- 6 Chromatographic separations were performed using an Accela HPLC system. The
- 7 HPLC conditions were as follows: Column: Thermo C18, 150 × 2.1 mm, 5 μm particle size
- 8 (Thermo Fisher Scientific, Bellefonte, PA). Mobile phase: (A) water, (B) acetonitrile. Flow
- 9 rate: 0.2 mL/min. Injection volume: 5 μL. Gradient: Linear gradient of 35%-85% A over 20
- minutes, 85%-85% A over 10 min, post time: 5 min.
- The MS conditions were as follows: ion source: ESI; negative electrospray ion source
- voltage: 2.98 kV; full scan MS in the Orbitrap with a mass resolution of 30000, scan range:
- m/z 150-700, capillary voltage: 10 V, tube lens: 100 V, sheath gas flow: 30 arb, aux gas flow:
- 14 10 arb.
- 15 *S1.2. GC-MS*
- The derivatized extracts were analyzed by an Agilent HP 6890 gas chromatograph
- 17 coupled with a quadrupole mass selective detector HP 5975N operated in negative chemical
- ionization (NCI) mode. A DB-5MS column (15 m \times 0.25 mm, 0.25 μ m film thickness; J & W
- 19 Scientific, Folsom, CA, USA) was used. The injector temperature was 280 °C. Auto injection
- of 1 μ L of the samples was conducted in splitless mode and the split mode was turned on
- after 2 min. Methane was used as chemical ionization moderating gas and helium as carrier
- 22 gas at a flow rate of 1.0 mL/min. The ion source and interface temperatures were set at

150 °C and 300 °C, respectively. The temperature of the GC oven was programmed as follows: the initial oven temperature was 90 °C held for 3 min, ramped to 210 °C at 30 °C /min with no hold time, then ramped to 236 °C at 2 °C/min with no hold time, then ramped to 300 °C at 20 °C/min. MS Quad: 150 °C, MS source: 150 °C, solvent delay: 4.00 min, scan

27 scope: 70-540.

Figures S1-S9

140

220 260

29

30

Abundance $\times 10^5$ 8.1 10.85 Scan: 9.39 min Abundance $\times 10^3$ Abundance $\times 10^6$ 12.83 1.3 13 12 Time (min) [M-Br] $_{m/z}^{0}$ 100 140 180 220 260 300 340 380 420 460 Time (min) Scan: 9.97 min (d) Scan: 12.83 min Abundance $\times 10^3$ Abundance $\times 10^3$ [M-Br]-370 [M] 332 252 0.6 [M-Br₂] 452 [M-Br] 290

3132

33

34

35

3637

Figure S1. (a) The GC total ion chromatograph of 2,6-bromophenol(water solution, 80 μmol/L) and MS spectrum **(b-d)** of three tribrominated photoproducts with retention time of 9.39 min, 9.97 min, 12.83 min, respectively.

m/z

140 180

260

353

340

38

39

40 41

Figure S2. The total ion chromatograph of 2,6-bromophenol (aqueous solution, 80 μmol/L) and MS spectrum of monobromo-dihydroxybenzene with retention time of 4.43 min.

4344

Figure S3. The LTQ-Orbitrap spectra of two tetrabrominated products P_1 , P_2 and three tribrominated products P_3 - P_5 , which extract m/z = 495.71-505.71 and m/z = 415.79-425.79, respectively, with irradiation time of 10 min, 30 min and 1 h from 2,6-DBP.

Figure S4. (Microwave power/mW)^{1/2} dependence of the peak-to-peak intensity of radicals generated from irradiation of 2, 6-dibromophenol (phosphate buffer pH 7.4). (This plot is fitted using a Gaussian model.)

Figure S5. Effects of pH on the formation of radical and 2,6-DBP UV absorption, the inserted figure shows that the positive relationship of absorption and radical concentration. Error bars are standard deviations of triplicate measurements.

Figure S6. Absorption spectrum of 2,6-DBP in water (80 μ mol/L); transmittance (%) of 290 nm cut-off filters.

Figure S7. The transcient absorption spectra of 2,6-DBP in aqueous solution (1 mmol/L) bubbled with N_2 . (a) The generated transient absorption spectrum of 2,6- dibromophenoxyl radical at laser pulse $\lambda = 266$ nm; (b) The decay curve of 2,6-dibromophenoxyl radical at 385nm (half-life time_{2,6-dibromophenoxyl radical} was determined to be 122 μ s).

Figure S8. Quantification of the formed 2,6-dibromophenoxyl radical using 3-carboxy-PROXYL as a standard. 95 96

- (a) Example double integration of a spectrum of the 3-carboxy-PROXYL standard solution;
- **(b)** Example integration of a spectrum of 2,6-dibromophenoxyl radical.

101

105

106

Figure S9. Free radical formation increases with time of light exposure and concentration of 2,6-DBP.

103 2,0-DB1 104 **(A)** Rac

(A) Radical formation (A.U., derived from signal heights, peak-to-peak) correlated to irradiation time with: (a) 2,6-DBP (10 mM) + DMPO (50 mM) in water (pH = 7.4); (b) 2,6-DBP (1 mM) + DMPO (50 mM) in water (pH = 7.4); (c) 2,6-DBP (10 mM) in water (pH = 7.4).

107 7.4)

(B) Concentration of 2,6-DBP in: (a) water (pH = 7.4) added DMPO (50 mM); (b) water (pH = 7.4) with 5.6 min irradiation time.

110

Table S1. The apparent yield (%) of six products from irradiation of 2,6-DBP with different times of UV-exposure.

Reaction Time (min)	tribrominated product 1	tribrominated product 2	tribrominated product 3	4'-OH- BDE73	4'4-di-OH- PBB80	1,2-di- OH-6- bromo- benzene
0	0	0	0	0	0	0
10	0.048	0.17	0.23	2.59	0.91	1.79
20	0.11	0.15	0.27	2.65	0.92	5.43
30	0.14	0.19	0.27	1.85	0.60	15
60	0.17	0.19	0.27	1.32	0.50	22
120	0.092	0.161	0.26	0.49	0.19	29