
 

Supplementary Figure 1 

 An example of the gene-term-disease network automatically generated by Phenolyzer web server for 'autism'.  

The largest word represents the user’s input term, ‘Autism’. The pink round rectangles represent disease names corresponding to each 

term. The balls represent genes. The darker the color, the more the node contributes. The longer the round rectangles, the more a 

disease name contributes. The larger the ball, the more significantly a gene is related with the term. A reported gene is blue and a 

predicted gene is yellow. Four types of edges correspond to four different types of gene-gene relationships as illustrated in the legend. 

The figure can be zoomed in by mouse operations in the web server to facilitate closer examination of the edge types. 

Nature Methods: doi:10.1038/nmeth.3484



 

Supplementary Figure 2 

The wordcloud for all the interpreted names related to ‘Cancer’. 

This is the wordcloud generated by Phenolyzer corresponding to the input term ‘cancer’. Some of the most frequently 

occurring words include ‘cancer’, ‘neoplasm’, ‘cell’, ‘carcinoma’, ‘tumor’ and ‘malignant’.  
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Supplementary Figure 3 

A snapshot of the output from the Phenolyzer web server. 

(a) ‘Summary’ includes the link to wordcloud, as well as the input settings and the links to output files for download. (b) ‘Barplot’ is a bar 
plot on at most 500 highest-ranked genes with normalized scores. (c) ‘Network’ is the interactive gene-disease-term network, with 
controlling buttons below it. (d) ‘Details’ shows how the score for each gene is calculated, including the links to each publication or 
database website. 
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Supplementary Figure 4 
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Comparison between Phenolyzer and other tools to find disease genes for cancer, rheumatoid arthritis, autism and anemia. 

The AUC and ROC curve plot showing the performance comparison between Phenolyzer and other tools, on four gene sets of different 
complex diseases. (a, c, e and g) For each software, the AUC is calculated as the area under the ROC curve. (b, d, f and h) The ROC 
curve is plotted as True Positive Rate versus False Positive Rate. ‘Phenolyzer Phenotype’ is the Phenolyzer results with phenotype 
terms as input (the same input as Phenomizer). ‘Phenolyzer Logistic’ is Phenolyzer with weights trained with Logistic Regression 
model, compared with ‘Phenolyzer no training’. ‘Phenolyzer Seed’ is Phenolyzer’s seed gene result without the seed gene growth step, 
thus only representing the genes found in Phenolyzer’s disease-gene mapping knowledgebase. 
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Supplementary Figure 5 

Evaluation of Phenolyzer by phenotype terms as input. 

Phenolyzer with phenotype terms (rather than disease names) as input is able to prioritize most genes as ‘Top 1’ for the 14 

monogenic diseases, which is similar as Phenomizer.   
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Supplementary Figure 6 

Phenolyzer’s results on four case studies. 

(a and b) The candidate gene lists generated from two studies on ‘Craniopharyngiomas’ and ‘SHORT syndrome’ were used as input 

into Phenolyer. The network plot shows that BRAF and PIK3R1 are the genes with the highest scores corresponding to each disease 

separately. (c) For the CNV study of ‘Osteoporosis’, the generated significant CNV regions were used as input, and the Phenolyzer 

network successfully identified the correct gene, UGT2B17. (d) Combined with wANNOVAR, we first filtered the variants into a 

small list, then included all the genes in the variant list as the input into Phenolyzer. The correct gene PKLR was identified as the top 

gene for ‘hemolytic anemia’.  
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Supplementary Figure 7 

Illustration of the disease or phenotype term interpretation process. 

The term is first processed through a word match to several different data source, DO (Disease Ontology), CTD Medic disease 

ontology vocabulary, HPO (Human Phenotype Ontology), OMIM synonym, OMIM descriptors, and Phenolyzer’s compiled disease 

vocabulary. After the first match, the disease names are directly returned for Phenolyzer’s compiled disease names and OMIM 

synonyms. For DO and CTD, an ontology search will retrieve all the descendent disease names and synonyms. For OMIM descriptors, 

they are mapped into OMIM diseases with a conditional probability as reliability. For HPO, an ontology search first finds all the 

descendent phenotypes, then the phenotypes are mapped into diseases with reliabilities. 
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Supplementary Figure 8 

Learning curve through the training with Gradient Descent Algorithm. 

The gradient descent algorithm iteratively reduces the cost and changes weight vector w into the direction opposite to the gradient of 

the cost function. After 10,000 iterations, with learning rate at 1, the slope of the curve is close to 0 and demonstrates that the number 

of learning steps is sufficient. 
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Supplementary Note 

The impact of input tokenization on Phenolyzer 
Based on the implementation of Phenolyzer, if a long disease name is tokenized into 

multiple short terms, the possibility of a match for each short term is larger than the 

original long term; as a result, the number of genes in the result should be increased 

and the recall rate may be improved. However, the cost associated with the improved 

recall rate is that the precision may be affected. To demonstrate this, we thoroughly 

tokenized 13 disease names from the 14 Mendelian disease names used in the 

manuscript; for example, ‘Spermatogenic failure, nonobstructive, Y-linked’ is 

tokenized into ‘Spermatogenic;failure;nonobstructive;Y;linked’, with each single 

word being treated as a single term. Our result shows that thorough tokenization 

increased the number of returned genes from 2,809 to 22,222 (median) and from 

3,287 to 21,286 (mean), at a cost of incorrectly prioritizing 3 genes out of 15 genes 

(Supplementary Dataset 1).  

 

Case study on exome sequencing and copy number variation data 

To better illustrate the power of Phenolyzer, below we present three case studies on 

how to use Phenolyzer to analyze exome-sequencing data and copy number variation 

(CNV) data and identify disease causal genes. 

 

One group identified that a BRAF gene mutation drives growth of papillary 

craniopharyngiomas and targeted genotyping identified this mutation in all papillary 

craniopharyngiomas1. They first analyzed the whole-exome sequencing data from a 

cohort of adamantinomatous (n=12) and papillary craniopharyngiomas (n=3) and 

identified a small number of non-synonymous somatic mutations in both subtypes, 

including 490 variants within 444 genes. This gene list was supplied into Phenolyzer, 
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together with the disease term ‘craniopharyngiomas’ (Supplementary Fig. 6). BRAF 

shows up as the top gene. We also evaluated other competing tools, with the same 

term as input, and restricted results by the same input gene list. PosMed ranked BRAF 

as 6th. Genecards and SNPs3d returned a result list without the BRAF gene. As 

Phevor does not include the record for disease term ‘craniopharyngiomas’, we used 

‘craniopharyngioma’ and the BRAF gene is ranked as 321st (see details in 

Supplementary Table 6).  

 

Another group identified a PI3KR1 mutation underlying SHORT syndrome and 

verified its functional impact in fibroblasts2. Whole exome-sequencing was conducted 

in 6 individuals from two families affected by SHORT syndrome. After variant 

calling and filtering, 22 variants within 22 genes were left in the candidate list. This 

gene list was then provided as input into Phenolyzer, together with the term ‘SHORT 

syndrome’. In Phenolyzer’s network, it is easily seen that PI3KR1 is the most 

significant gene (Supplementary Fig. 6). After gene selection, PosMed can also rank 

PIK3R1 as top 1. Genecards ranked PIK3R1 as 2nd. SNPs3d does not have PIK3R1 in 

the output. Phevor had no record for term ‘SHORT syndrome’ at all. In addition, we 

also tried ‘partial lipodystrophy’, ‘low body mass index’, ‘short stature’, ‘progeroid 

face’, and ‘Rieger anomaly’ (the phenotype descriptions in the original paper for 

SHORT syndrome) as input, and PIK3R1 is still ranked as the ‘top1’ gene by 

Phenolyzer. We used ‘Lipodystrophy ‘,’ Weight loss ‘, ‘Progeroid facial appearance 

‘,‘Rieger anomaly’,’ Short stature’ as HPO terms for Phevor and PIK3R1 is also 

ranked as top 1 (See details in Supplementary Dataset 7). 

 

In the third example, a CNV study identified a CNV affecting the gene UGT2B17 as a 

contributing factor for osteoporosis3. Case-control genome-wide CNV studies were 

conducted using Affymetrix Human Mapping 500K Arrays, with the cohort of 350 

Han Chinese individuals with a history of hip osteoporosis and 350 healthy matched 
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controls. 727 significant CNVs were called from this study. These regions were used 

as input into Phenolyzer, together with the disease term ‘osteoporosis’. From the 

Phenolyzer’s network plot, UGT2B17 shows up as the top gene (Supplementary Fig. 

6). We also evaluated other competing tools, by first compiling a gene list from these 

CNVs (1,510 genes in total). For PosMed, UGT2B17 ranked at 4th. For Genecards, 

UGT2B17 ranked at 3rd. For SNPs3d and Phevor, the final gene list did not include 

UGT2B17 (See details in Supplementary Dataset 8). 

Pipeline between wANNOVAR and Phenolyzer 

To facilitate users with whole genome or exome sequencing data rather than just a list 

of genes, we also implemented a wANNOVAR-Phenolyzer pipeline for analysis on 

VCF files at http://wannovar.usc.edu4. Disease or phenotype terms are accepted as 

optional input fields here, then Phenolyzer is called to prioritize candidate genes 

directly from wANNOVAR output. In the wANNOVAR result page, the gene list 

prioritized by Phenolyzer can be directly retrieved. Additionally, the link to the 

Phenolyzer result page is also available as the ‘Network Visualization’ link. 

 

For example, we previously reported an exome sequencing study identifying a 

mutation in PKLR as "unrelated finding" in a patient with hemolytic anemia, through 

a study originally designed to uncover the genetic basis of attention deficit and 

hyperactivity disorder (ADHD)5. The VCF file is used as the input into wANNOVAR, 

with ‘rare recessive Mendelian disease' selected as disease model. In total, 87 variants 

were left after the filtration, whose corresponding genes are then submitted 

automatically as input into Phenolyzer together with the term ‘anemia’ or ‘hemolytic 

anemia’, by wANNOVAR. From the result network, the PKLR gene is ranked top 

with the term ‘hemolytic anemia’ (Supplementary Fig. 6). However, with the term 

‘anemia’, PKLR ranked third. Thus, integrating wANNOVAR and Phenolyzer in the 

same pipeline can facilitate and expedite identifying disease causing variants, yet 
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more refined disease terms can further improve the accuracy of disease gene finding, 

when the disease can be caused by multiple genes.  

 

Additional Discussions 
Phenolyzer follows a strictly defined procedure including four steps - term 

interpretation, seed gene generation, seed gene growth and data integration. For term 

interpretation, at least a word match is needed to process the term, and the possibility 

to match the terms depends on the vocabularies of several different disease ontology 

systems, the synonyms provided by OMIM, and phenotype descriptors provided by 

the Human Phenotype Ontology. Some improvements can be made in the future to 

better explore all possible terms, including integrating several medical dictionaries 

and standardized vocabularies, such as Webster’s medical dictionary, ICD9 and 

ICD10 vocabulary.  

 

For the seed gene generation step, other databases will be incorporated in the future, 

such as DECIPHER6. We note that several heuristics are used in this step (Gene Score 

System), to translate association information and publication count into scores. The 

underlying logic is that the translated score is normalized proportionally to the rank 

percentage. For the seed gene growth step, similar heuristics are also used (Gene 

Prediction Score System). Despite the use of heuristics, our results demonstrated the 

effectiveness of the approach. To facilitate integration of gene-disease and gene-gene 

relationship databases, we now made an add-on system for the Phenolyzer 

command-line tool. As long as the user compile their own databases into a 

pre-defined format, it is straightforward to add databases into the Phenolyzer system. 

To demonstrate this, we integrated Mentha protein interaction database7, the Genetic 

Association Database8, DisGeNet9 and the Genecards database into our web server as 

an option, with an ad hoc weight.  
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The Logistic Regression with Gradient Descent method is designed to optimize 

weights for integrating the scores of seed genes and different relationship types. We 

examined how the performance will change if we instead assign ad hoc weights to 

each feature (Supplementary Fig. 4). Although the logistic regression model is 

trained from four diseases (type 1 and 2 diabetes, coronary artery disease and Crohn’s 

disease) that are totally different from the test set, the improvement over "no training" 

is still significant. Therefore, we used the optimal weights rather than arbitrarily 

selected weights in our software. In addition, we also provide the ‘Weight Adjust’ 

option for users to apply their own arbitrary weights, or even turn off a database by 

setting the weight to zero. 

 

For the tool comparison, we noticed that inconsistent results appeared between 

monogenic diseases and complex diseases. We think the reason is that the monogenic 

disease and complex disease comparisons are two different types of comparisons. In 

monogenic disease comparisons, as long as the tool has the knowledge of the 

gene-disease mapping in a database, and can retrieve the record and prioritize it as top 

one, then it has a perfect performance. However, in complex disease comparison, we 

chose four disease gene sets – two from public databases and two from scientific 

literature. Each disease has a large number of genes to be positive genes. Thus the 

computational tool needs both high precision and recall rates to achieve good 

performance: precision means that the disease genes can be ranked higher than others, 

and recall means that a large candidate gene list can be found that includes the true 

disease genes. Therefore, it is not surprising that SNPs3d performs differently 

between these two types of tasks, as SNPs3d has high precision but has very limited 

recall. 

 

Although Phenolyzer works well to find candidate genes for many diseases, its ability 

to identify the correct genes is to a large extent limited by the available biological 
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knowledge. For example, if a phenotype or disease has never been reported to be 

associated with any gene before, Phenolyzer is much less likely to find the candidate 

genes, unless a similar or related phenotype is available. Nevertheless, as Phenolyzer 

gives a continuous normalized score from 0 to 1 for each candidate gene, the 

integration between Phenolyzer score and other kinds of variant prediction scores (for 

example, SIFT scores, PolyPhen scores) may further increase power for finding 

candidate gene and variants, even if the genes are previously uncharacterized. Finally, 

we believe that an improved algorithm that integrates both previous gene-disease and 

gene-gene relationship knowledge and an improved score for variant deleteriousness 

may offer the greatest power to prioritize variants from whole genome and exome 

sequencing data. 
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Supplementary Table 1. Descriptive comparison of functionality between Phenolyzer and other similar tools. 

 
Tool  Gene disease 

phenotype 

mapping 

Phenotype and 

disease 

interpretation 

Input format for 

disease and phenotype 

Algorithm Platform Data visualization Gene 

prioritization 

(without 

variant) 

Variant 

prioritization(

disease or 

phenotype 

specific) 

CNV  

prioritization 

Phenolyzer OMIM, 

ClinVar,Orpha

net, GWAS, 

GeneReviews 

DO, HPO, CTD 

Medic, OMIM 

descriptors and 

synonyms 

Any disease or 

phenotype related terms, 

OMIM ID 

Ontology search;  

gene-disease and 

gene-gene score system; 

logistic regression 

Web, 

command line 

Interactive network; 

interactive bar plot, 

wordcloud 

Yes Yes Yes 

PosMed Literature None Keywords Neural network;  

literature mining 

Web None Yes No No 

Genecards About 10 

databases 

None Keywords Database mining Web None Yes No No 

SNPs3d OMIM, 

literature 

None Keywords Literature and database 

mining  

Web Network by java 

plugin 

Yes No No 

Phevor Ontology 

annotation(DO

, HPO, etc) 

DO, HPO, or 

depends on 

Phenomizer 

Specific names, 

Phenomizer output 

Ontology propagation Web Variant plot No Yes No 

Phenomizer HPO, OMIM, 

Orphanet, 

Decipher 

HPO HPO terms Ontology similarity 

search with p values 

Web Ontology 

visualization 

Yes No No 
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Supplementary Table 2. Phenolyzer’s performance on discovering the 590 known disease genes from a newborn sequencing study and on predicting the 55 newly 

published disease genes from four human genetics journals. 

 
 

590 Known disease genes Top1 Top5 Top10 Top50 In the list 

Phenolyzer 81.2% 89.3% 90.7% 92.9% 93.4% 

55 Newly published disease genes Top 5% ratio Top 10% ratio Top 20% ratio Top 50% ratio In the list 

Phenolyzer 43.6% 47.3% 56.4% 70.9% 96.4% 

PosMed 36.4% 47.3% 50.9% 60.0% 70.9% 

Phvor 20.0% 29.1% 41.8% 50.9% 85.5% 

Phenomizer 30.9% 38.2% 41.8% 50.9% 60.0% 

Genecards 5.5% 14.5% 21.8% 41.8% 58.2% 

 

Nature Methods: doi:10.1038/nmeth.3484


	add.pdf
	Supplementary Note
	The impact of input tokenization on Phenolyzer
	Case study on exome sequencing and copy number variation data
	Pipeline between wANNOVAR and Phenolyzer
	Additional Discussions

	Reference


