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Appendix Figure S1 

Appendix Figure S1. Functional analyses of top genes identified in siRNA screen. A, High-content imaging analysis of chromatin-bound PCNA. 
Reporter RFP-PCNA U-2-OS cells were treated with siRNAs targeting 20 candidate genes, pre-extracted and imaged. Error bars, SD; n = 6 technical 
replicas. B, High-content imaging analysis of γH2AX. Reporter RFP-PCNA U-2-OS cells were treated with siRNAs targeting 20 candidate genes, stained 
for γH2AX and imaged. S-phase cells positive for RFP-RCNA were included in the analysis. Median with interquartile range of relative intensity per cell 
is shown, n > 4000. One representative experiment out of two biological replicas is shown.   
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Appendix Figure S2

Appendix Figure S2. Validation of siRNA targeting efficiency for selected hits from the siRNA screen. A-O, Quantification of mRNA levels by 
RT-qPCR 48 hrs after siRNA transfection. mRNA levels were normalized to GAPDH. Error bars, SD; n = 3 technical replicas. One representative experi-
ment out of two biological replicas is shown.
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Appendix Figure S3. BRPF3 is required for DNA replication and interacts with HBO1. A, Analysis of chromatin-bound GFP-RPA in cells depleted 
for BRPF1, 2 or 3. Data are from the siRNA screen as described in Fig. 1A, each of genes was targeted by three independent siRNAs (a, b and c). siRNA 
against ASF1 was used as positive control. The averages and standard error of GFP-RPA positive cells from two biological replica-screens are shown. B, 
Western blot analysis of total extracts from siRNA treated U-2-OS cells. Cells treated 2 h with HU were included as a positive control for checkpoint 
signaling. C-D, DNA synthesis rates measured by high content image analysis of EdU incorporation. (C) Dot plots illustrating the distribution of EdU 
intensities in total cells (left) or PCNA-positive cells (right). siRNA treated U-2-OS cells pulsed 15 min with EdU. n > 1000. Mann-Whitney: **** P < 
10-4. (D) Dot plot of EdU and DAPI intensities. Cells were treated as in C. n > 1000. Replicating cells were gated according to their EdU intensities and 
shown as percentage of the total population. Red (High EdU intensity); Green (Low EdU intensity). E, BRPF3 levels in stable cell lines used for the 
complementary analysis described in Fig. 2B. F, Immunoprecipatation of FLAG- BRPF3 from stable U-2-OS cell lines expressing lacZ-V5 (ctrl) and 
FLAG-BRPF3. One representative experiment out of two is shown. G, Immunoprecipatation of FLAG-HBO1 from transiently transfected U-2-OS cells. 
H, Illustration of BRPF3 protein domains and deletion constructs used in Fig. 2D. 
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Appendix Figure S4. BRPF3 regulates replication fork progression and origin activation. A, Western analysis of total extracts from siRNA treated 
U-2-OS cells. One representative experiment out of two biological replicas is shown. B, Molecular DNA combing. (top) Experimental design and 
representative images of combed DNA. IdU, green; CIdU, red; DNA, blue. (bottom) Size distribution of CIdU track length. n > 300. One representative 
experiment out of two biological replicas is shown. C-D, Fiber assay analysis of DNA replication in BRPF3 depleted cells. Fork elongation rate and 
density were analysed in the absence or presence of UCN-01. (C) (top) Experimental setup. (bottom) Frequency distribution of CIdU track length. n > 
110. siRNA against FLASH shown to decrease fork speed (Mejlvang et al., 2014) was included as a control. (D) (top) Experimental setup. (bottom) 
Frequency distribution of inter-CIdU-track distances. n > 110. E, Analysis of chromatin-bound GFP-RPA. siRNA treated cells were incubated 2 h with 
UCN-01 (300 nM) as indicated, pre-extracted and imaged. Roscovitine (25 nM) was added immediately before UCN-01 as a positive control. siRNA 
against FLASH and SLBP shown to decrease fork speed without reducing origin density (Mejlvang et al., 2014) was included as a negative control. (left) 
Percentage of GFP-RPA positive cells scored after pre-extraction. Error bars, SD, n = 12. (right) GFP-RPA intensity per cell. Median with interquartile 
range is shown, n > 6000. a.u., arbitrary unit.       
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Appendix Figure S5. Enrichment of BRPF3, HBO1 and H3K14ac around replication origins. BRPF3 enrichment signal obtained by ChIP-seq with 
asynchronous (AS), synchronized (S) and released into HU (S+HU) RKO cells, on PIP5K1A, MEN1, TOP1, AXIN1, LUC7L and SNHG12 replication 
origins.  Signals were compared to the published enrichment signals for ORC1 obtained in HeLa cells (Dellino et al., 2013, GSE37583), HBO1 signal in 
RKO cells (Avvakumov et al., 2012, GSE33221), and to the H3K14ac enrichment signal obtained in IMR90 (GSM521881).  The negative control IgG 
signal shown is from the S+HU chromatin. B, Venn diagrams illustrating the overlap of genome binding sites between (left) BRPF3, HBO1 and replica-
tion origins, and (right) BRPF3, BRPF1/2 and replication origins in human cells. Data from replication origins defined previously by short nascent strand 
(SNS) technique were obtained from http://pbil.univ-lyon1.fr/members/fpicard/research.html (Hela table) (Picard et al., 2014). C, Average profiles of 
BRPF3 and H3K14ac ChIP-seq signal on ± 2.5 kb around the center of replication origins defined in B. D, Gene Ontology (GO) analyses of up and 
down-regulated genes with altered expression levels after 48 h of BRPF3 siRNA treatment. GO analyses has been done using DAVID (Huang et al., 
2009). GO terms with p-value < 0.05 and gene count ≥ 5 were considered significant. 10 first significant categories sorted by p-value are shown.
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Appendix Figure S6. Recovery of BRPF3 depleted cells from replication stress. A-B, Time course analysis of EdU incorporation and cell cycle 
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Appendix Table S1 

Appendix Table S1. Sequences of primers 

Sequences of primers used in RT-qPCR

Genes Forward primer Reverse primer

BRPF3 5' GGCCTCCTGCACAATGGCGT 5' TGCGGATGCTGGTCTTGCGG

HEMK2 5' ACTGGCAGGAGTGGAAATATGCCT 5' GGTACAAGCTGCTGCCTCAGGGT

PRDM12 5' AAGCATGAGGACTTCCACCCGGC 5' GACTGGCTGAAGCGGCGGTT

SMYD4 5' TGTGCTGCCTTAGGAGACTGGCAA 5' TGCTCAGGGCTTCGGGTACTGC

JMJD6 5' GTACCAGGAGGCTGGTGGCATGTTG 5' CAACCGAGTCTGCGAGGACTGC

KAT5 5' TTCAGCGTCATTTGACCAAGTGTGA 5' GCCAAAAGACACAGGTTCTGGGAAT

PCGF5 5' TGGGCAATCAGGGGACAATGTAGT 5' ACCATTGCACAGCACATCCAACTCA

TDRD5 5' TCCTCCCTGAGGTTCCTCAAGTGC 5' CCCCACTAATGGCTTCAAACCGCA

AGFG2 5' CCCTTTCACAGCTCCCGCCG 5' GGAAGCCAGGCCCAGCACTG

L3MBTL4 5' GACGGACGCTTGGAGCAAGCTG 5' CAGCTCAACAGGTGCTGCGACA

BAZ2B 5' TCCCAATGGTCAGCCACCCAGT 5' CGCCACCATTCTGCACCTGGAA

CHD1 5' GCAAAACAGTTGCAGACCCGTGC 5' TCCTCTTTGAACTTCCCGCACCA

HR 5' CGGGGAGGGGCTCTGGTCTC 5' CACCATCTGGAGAAAGCGGCG

KAT8 5' GCCGGCGACCGGATAGCAC 5' AGCCGCCGGTTAAAGCCCAC

Sequences	
  of	
  primers	
  used	
  in	
  ChIP-­‐qPCR

Genes Forward primer Reverse primer
LAMINB2 5' CTCCACCCCCAAGGAAAAAG 5' GGCAGGGTCCCATGCA
SNHG12 5' GCATAGCTGCTGTGGTCAAA 5' CGTTCTGCTGTTCTGTGGAA
LUC7L 5' CAGCGCTTGACAGTCGTTAG 5' ATCTGCACAGCCCTGAGAAT
MCM4 5' TCTGCACTCCGTTCAGCTCCTCTG 5' GAGTGAGGATGCCAGGTCATCTCC 
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Appendix Table S2. Plasmid constructs and cloning

NO. Construct Cloning

1 pRev-CMV :3xFlag-BRPF3 Full cDNA of human BRPF3 (NM_015695.2) with N-terminal 3xFlag epitope

2
pRev-CMV: 3xFlag-BRPF3          

siBRPF3-aR 
Introduction of silent mutations within the complementary to the siRNAs 
seed regions in plasmid #1 by site-directed mutagenesis

3
pENTR: CMV: 1xFlag-BRPF3          

siBRPF3-aR 
TOPO-reaction between pENTR-D-TOPO vector (Invitrogen) and PCR 
amplicon Flag-BRPF3 from plasmid #2

4
pENTR: BRPF3 no stop-codon          

siBRPF3-aR 
TOPO-reaction between pENTR-D-TOPO vector (Invitrogen) and PCR
amplicon BRPF3 (no tag) from plasmid #2

5
pLenti6-UbC:1xFlag-BRPF3                  

(N-terminal Flag tag) siBRPF3-aR 
LR recombination reaction between plasmid #3 and pLenti6/UbC-DEST
(Invitrogen) 

6
pLenti6-UbC:BRPF3-V5                       

(C-terminal V5 tag) siBRPF3-aR 
LR recombination reaction between plasmid #4 and pLenti6/UbC-DEST
(Invitrogen) 

7 pRev-CMV-3xFlag-ΔNt(1-65)BRPF3

8 V6898:3xFlag-BRPF3Δintern

9 pAX8 Lentivirus packaging

10 pCMV-VSVG Lentivirus envelope 

11 pLenti6-UbC:lacZ-V5 Provided together with the LR recombinase kit (Invitrogen) 
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Appendix Table S3. Sequences of siRNAs

Genes Sequence (sense strand 5’- 3’) Source and catalog number

siCtrl GCGCGAUAGCGCGAAUAUA-dTdT Universal negative control #1 SIC001 (Sigma)

siCtrl Not available Ambion Silencer Select negative control #2, 
4390846

siBRPF3/a GCGGGUCUGACUCUGAAUG-dTdT Sigma (Ambion Silencer sequence)

siBRPF3/b CCGGCUUGAGAAAGAGUCA-dTdT Sigma (Ambion Silencer sequence)

siBRPF3/d CCAACUGCAUGAAGUAUAA-dTdT Ambion Silencer Select, s25918

siBRPF3/e GCAUCGUAUCAGCAUCUAU-dTdT Ambion Silencer Select, s25920

siBRPF2/a GAAACUAUAGACAAGUUAA-dTdT Ambion Silencer Select, s24388

siBRPF2/b GGUUAGAAGCUCAAGGGUA-dTdT Ambion Silencer Select, s24389

siBRPF1/a GGAGAUCUUUGAGUACCUA-dTdT Ambion Silencer Select, s15422

siBRPF1/b GUUUCUUGGUAUACCGUAA-dTdT Ambion Silencer Select, s15423

Control pool Not available Dharmacon, ON-TARGETplus Non-targeting 
Pool D-001810-10-20

BRPF3 pool Not available Dharmacon, ON-TARGETplus SMARTpool L-
025088-01-0005

siHBO1 CAGCUUCGAUAUAAGGAAA-dTdT Ambion Silencer Select, s255

siING5 GAAAAGAGGAAGAAGAAGU-dTdT Sigma (seed region from Doyon et al. 2006)

siCDT1 GCGCAAUGUUGGCCAGAUC-UU Sigma (sequence from {Lovejoy:2006fr}

siCDC45 CGGAUCUCCUUUGAGUAUG-dTdT Sigma (Ambion Silencer sequence)
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Appendix Table S4. Antibody list

Antibody target Company Product number Species
BRPF2 (BRD1) Bethyl A302-366A rabbit
BRPF1 Atlas/Sigma HPA003359 rabbit
BRPF3 Bethyl A304-082A rabbit
BrdU AbD Serotec OBT0030G rat
beta-Actin Sigma A5316 mouse
CHK1-ph (Ser317) Cell Signaling 2344s rabbit
CHK2-ph (Thr68) Cell Signaling 2661s rabbit
CDC45 Santa Cruz sc-55569 mouse
CDC45 Santa Cruz sc-20685 rabbit
CDT1 Bethyl A300-786A rabbit
CIdU AbCys SA ABC117-7513 rat
Flag epitope Sigma F3165 mouse
HBO1 Bethyl A302-224A rabbit
H3 Abcam ab1791 rabbit
H3 Abcam ab10799 mouse
H4 Millipore 05-858 rabbit
H3K14ac Cell Signaling 4318s rabbit
H4K12ac Abcam ab1761 rabbit
H4K5ac Abcam ab51997 rabbit
H3K23ac Active Motif 39131 rabbit
IdU Becton Dickinson 347580 mouse
ING4 Protein Tech 16188-1-AP rabbit
ING5 Atlas/Sigma HPA042685 rabbit
MCM2 Bethyl A300-122A mouse
MCM4 BD Biosciences 559544 rabbit
MOF Bethyl A300-992A rabbit
MOZ Active Motif 39867, 39868 rabbit
ORC1 Bethyl A301-892A rabbit
PCNA Santa Cruz sc-7907 rabbit
RPA1 Abcam ab79398 rabbit
RPA2 Thermo Scien. MS-691 mouse
RPA3 Abcam ab588 mouse
γH2AX Millipore 05-636 cl. JBW301 mouse
ssDNA Chemicon MAB3868 mouse
V5 epitope Invitrogen R960-25 mouse



APPENDIX SUPPLEMENTARY METHODS  

ChIP-seq analysis. Library preparation for sequencing were done as previously 

described (Avvakumov et al, 2012)  Samples were sequenced by 50 bp single-reads 

on either a Genome Analyzer platform (HBO1, BRPF1/2 and input) or a HiSeq 2000 

platform (BRPF3, IgG) (Illumina). Raw sequences were mapped using Bowtie 

version 0.12.8 on build hg18 or hg19 of the human genome and deposited in the GEO 

database under accession number GSE63722. HBO1, BPRF1/2 and input data were 

previously deposited under accession numbers GSE47190 and GSE33221 

(Avvakumov et al, 2012). Read alignments in sam format were converted to bam files 

using samtools (Langmead et al, 2009). Samtools was then successively applied to 

remove duplicated reads, sort, and index bam files. Peak calling was performed using 

MACS version 1.4.0 by comparing AS-BRPF3, HU-BRPF3 and M-BRPF3 to M-HU 

IgG and HBO1 and BRPF1/2 to the signal from the input (Zhang et al, 2008). We 

identified intersection between two sets of significant peaks in hg19 coordinates using 

bedtools “intersect” function (Quinlan & Hall, 2010). In case where we needed to 

compare hg18 and hg19 peaks, we used the liftover tool from the UCSC genome 

browser to convert hg18 into hg19 coordinates (Kent et al, 2002). The ORC1 ChIP-

seq data used for comparison was obtained from Dellino et al. (GSE37583) (Dellino 

et al, 2013) and the SNS origins used were obtained from Picard et al. 

(http://pbil.univ-lyon1.fr/members/fpicard/research.html) (Picard et al, 2014). We 

used the Bioconductor package VennDiagram (Chen & Boutros, 2011) to display the 

overlaps between the different experiments and IGV for ChIP-seq signal visualization 

in genomic context (Thorvaldsdottir et al, 2013). The ChIP-seq data presented in the 

form of heatmaps were generated using deepTools (Ramirez et al, 2014).  
 

Mass spectrometry analysis of purified native BRPF1/3 complexes. Purified 

proteins to be analyzed were resolved on 12% SDS-PAGE gel, digested in-gel with 

the protease trypsin as previously described (Lambert et al, 2010) and stored at -80°C 

until analysis.  Five microliters of the digested peptides (corresponding to half of the 

total sample) were used per analysis.  Each sample was directly loaded at 400 nL/min 

onto a 75 µm x 12 cm emitter packed with 3 µm ReproSil-Pur C18-AQ (Dr. Maisch 

HPLC GmbH, Germany). The peptides were eluted from the column over a 90 min 

gradient generated by a NanoLC-Ultra 1D plus (Eksigent, Dublin CA) nano-pump 



and analyzed on a TripleTOF 5600 instrument (AB SCIEX, Concord, Ontario, 

Canada). The gradient was delivered at 200 nL/min, starting from 2% acetonitrile 

with 0.1% formic acid to 35% acetonitrile with 0.1% formic acid over 90 minutes, 

followed by a 15 min clean-up at 80% acetonitrile with 0.1% formic acid, and a 15 

min equilibration period back to 2% acetonitrile with 0.1% formic acid for a total of 

120 min. To minimize carryover between each sample, the analytical column was 

washed for 3 h by running an alternating sawtooth gradient from 35% acetonitrile 

with 0.1% formic acid to 80% acetonitrile with 0.1% formic acid, holding each 

gradient concentration for 5 min. Analytical column and instrument performance were 

verified after each sample by loading 30 fmol BSA tryptic peptide standard (Michrom 

Bioresources Inc. Fremont, CA) with 60 fmol α-Casein tryptic digest and running a 

short 30 min gradient. TOF MS calibration was performed on BSA reference ions 

before running the next sample in order to adjust for mass drift and verify peak 

intensity. The instrument method was set to a discovery mode which consisted of one 

250 ms MS1 TOF survey scan from 400–1300 Da followed by twenty 100 ms MS2 

candidate ion scans from 100–2000 Da in high sensitivity mode. Only ions with a 

charge of 2+ to 4+ which exceeded a threshold of 200 cps were selected for MS2, and 

former precursors were excluded for 10 seconds after the first occurrence.  The mass 

spectrometry data were stored, searched and analysed using the ProHits laboratory 

information management system (LIMS) platform (Liu et al, 2010). Within ProHits, 

the resulting WIFF files were first converted to an MGF format using AB SCIEX MS 

Data Converter (V1.3 beta) and ProteoWizard (v3.0.4468) and then searched using 

Mascot (v2.3.02). The spectra were searched with the RefSeq database (version 57, 

April 18th, 2014) acquired from NCBI against a total of 36113 human and adenovirus 

sequences supplemented with “common contaminants” from the Max Planck Institute 

(http://maxquant.org/downloads.htm) and the Global Proteome Machine (GPM; 

http://www.thegpm.org/crap/index.html). The database parameters were set to search 

for tryptic cleavages, allowing up to 4 missed cleavage sites per peptide with a mass 

tolerance of 50 ppm for precursors with charges of 2+ to 4+ and a tolerance of +/- 

0.15 amu for fragment ions. Carbamidomethylation of cysteine was selected as a 

fixed modification while variable modifications searched were acetylation (lysine and 

protein N-terminus), asparagine deamidation and methionine oxidation. An ions score 

cut-off of 27 was chosen to produce a false-positive rate of less than 1% in the MS 



data. Furthermore, to be considered significant a protein required at least two bold red 

peptides and a Mascot score greater or equal to 70.  

All MS files used in this study and the Mascot search results were deposited at 

MassIVE (http://massive.ucsd.edu). The MassIVE ID is MSV000078943, the 

password until publication is FengBRPF3 and the MassIVE link for download is  

http://massive.ucsd.edu/ProteoSAFe/status.jsp?task=69a9252ac0634e7fa66a3b98b28

44948 
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