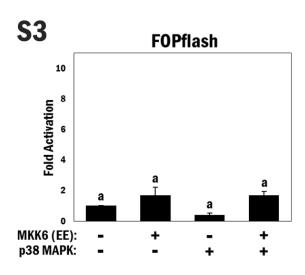
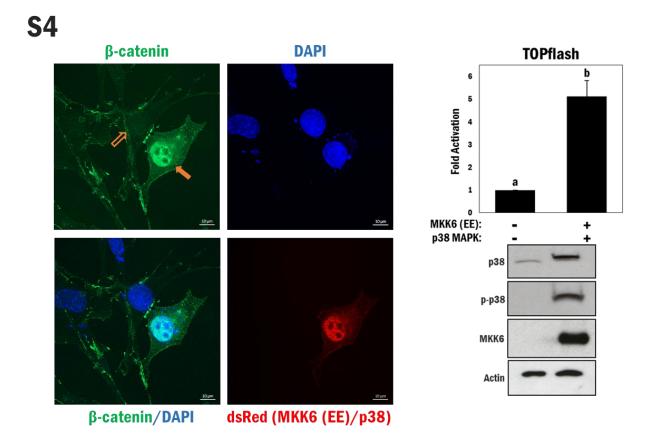
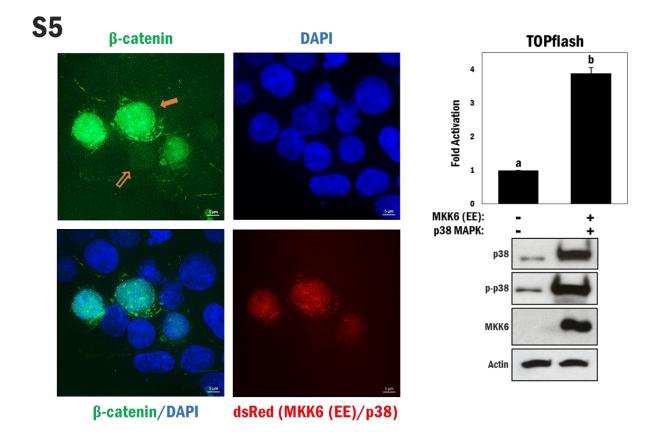

Supplementary Figures

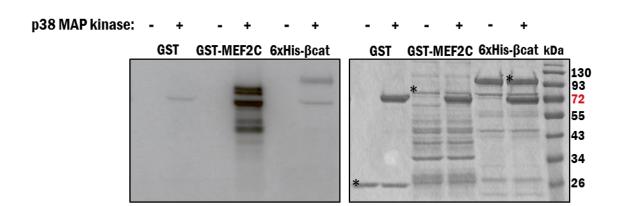


- 1 S1. Modulation of β-catenin localization with Wnt3a stimulation and p38 MAPK inhibition.
- 2 A10 cells were serum starved for 12 hr and pre-treated with SB203580 or SB202474 (10 μM, 45
- 3 min) then stimulated with Wnt3a (200 ng/mL) or solvent (PBS, control) for 4 hr. Cells were
- 4 fixed and stained with DAPI (blue, nucleus) and TRITC (red, β-catenin). Filled arrows indicate
- 5 presence of nuclear β -catenin, empty arrows indicate lack thereof. (Bottom left panel) A rainbow
- 6 (blue to red) lookup table (LUT) was used to indicate relative β-catenin intensity. (Bottom right
- 7 panel) Relative nuclear to cytosolic fluorescence levels were measured and quantified (n=28, 25,
- 8 21, 27 from left to right); $b=p \le 0.0001$.

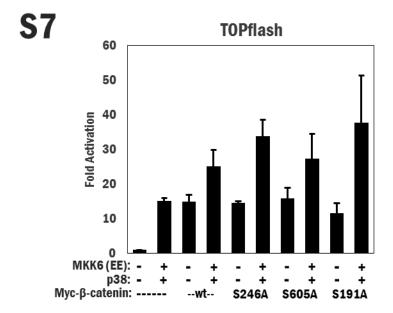


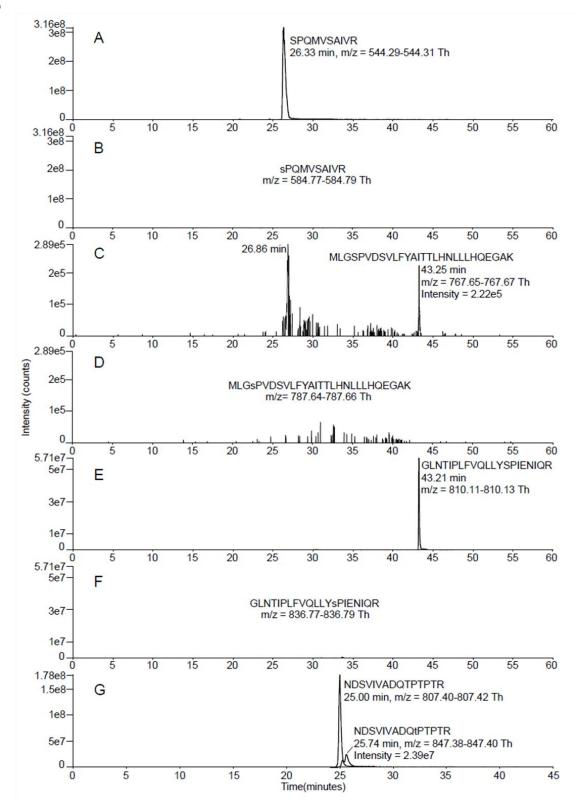
- 9 S2. Modulation of β-catenin localization with Wnt3a stimulation and p38 MAPK inhibition.
- 10 Primary VSMCs were serum starved for 12 hr and pre-treated with SB202190 or SB202474 (10


- 11 μM, 45 min) then stimulated with Wnt3a (200 ng/mL) or solvent (PBS, control) for 4 hr. Cells
- were fixed and stained with DAPI (blue, nucleus) and TRITC (red, β-catenin). Filled arrows
- 13 indicate presence of nuclear β-catenin, empty arrows indicate lack thereof.

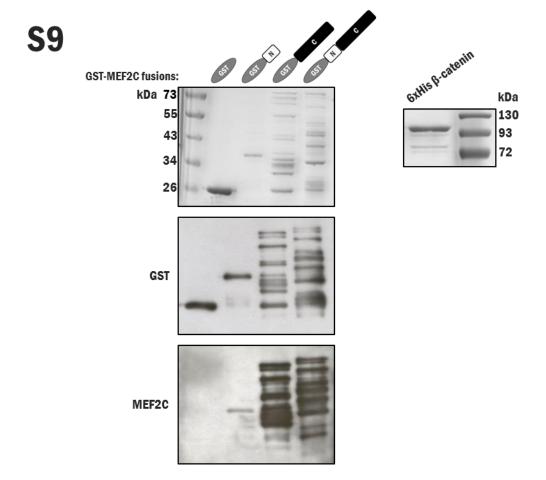

- 14 S3. FOPflash reporter gene activity in response to active p38 MAPK signalling. FOPflash
- reporter gene activity was measured in A10 cells that were transfected with different
- 16 combinations of p38 MAPK and active MKK6 (EE) as indicated.

S4. β-catenin localization and *trans*activation in response to active p38 MAPK. (Left panel) 10T1/2 cells were co-transfected with MKK6 (EE) and p38 MAPK and marked for ectopic expression (dsRed, red), DAPI was used for nuclear staining and FITC was used for β-catenin staining (green); (Top right panel) TOPflash reporter gene activity was measured in 10T1/2 cells that were transfected with different combinations of p38 MAPK and active MKK6 (EE) as indicated; b=p≤0.05. (Bottom right panel) Western blot analysis to show activation of p38 MAPK.

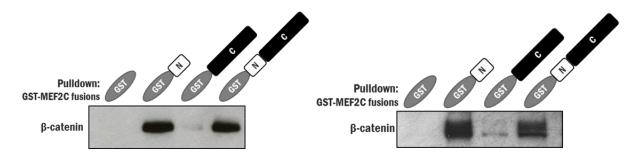

S5. β-catenin localization and *trans*activation in response to active p38 MAPK. (Left panel) HEK 293T cells were co-transfected with MKK6 (EE) and p38 MAPK and marked for ectopic expression (dsRed, red), DAPI was used for nuclear staining and FITC was used for β-catenin staining (green); (Top right panel) TOPflash reporter gene activity was measured in HEK 293T cells that were transfected with different combinations of p38 MAPK and active MKK6 (EE) as indicated; b=p≤0.01. (Bottom right panel) Western blot analysis to show activation of p38 MAPK.


S6. Determination of β-catenin as a potential substrate of p38 MAPK by *in vitro* kinase assay.

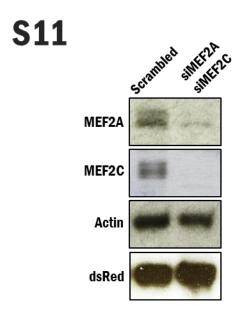
Purified p38 MAPK was incubated with [γ-32P]ATP, and either GST (negative control), GST
MEF2C (positive control), or 6xHis-β-catenin, as indicated, for 30 min at 30°C. The subsequent


SDS-PAGE was exposed to X-ray film to determine ³²P incorporation. Stars indicate location of substrate proteins.

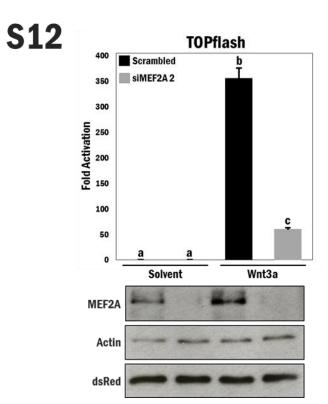
S7. Mutational analysis of β -catenin transactivation properties following Ser to Ala mutations of putative MAPK phospho-sites in response to p38 MAPK signalling. Wild-type or mutated Myc-tagged β -catenin was over-expressed with MKK6 (EE) and p38 MAPK in a TOPflash reporter assay, as indicated.



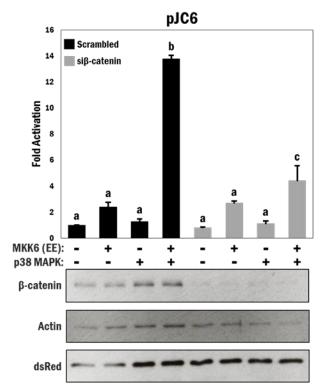
38	S8. Ion chromatograms of tryptic β -catenin peptides containing candidate p38 MAPK
39	phosphosites and a tryptic ATF2 peptide and phosphopeptide containing known p38
40	MAPK phosphosites. Phosphorylated residues are shown as lower case letters. Doubly
41	protonated SPQMVSAIVR (A) from β -catenin gave a prominent chromatographic peak while
42	the corresponding phosphopeptide (B) did not. The quadruply protonated peptide
43	MLGSPVDSVLFYAITTLHNLLLHQEGAK (C) was confirmed by MS/MS at 43.25 minutes
44	while the ion at 26.86 minutes was an isobaric species. No chromatographic peak from
45	phosphorylated MLGSPVDSVLFYAITTLHNLLLHQEGAK was present (D). Doubly
46	protonated GLNTIPLFVQLLYSPIENIQR (E) was observed at 43.21 minutes while the
47	extracted ion chromatogram of the phosphorylated counterpart (F) had no signal. The ATF2
48	peptide NDSVIVADQTPTPTR is shown in both its unmodified and phosphorylated state in
49	panel G.



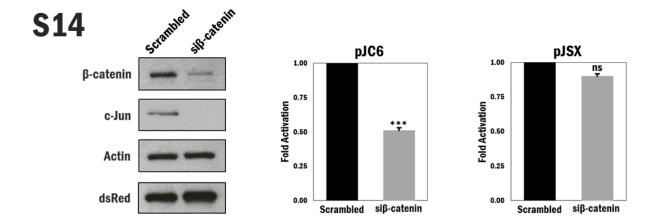
S9. Purification of GST-MEF2C and 6xHis-β-catenin. GST-MEF2C or 6xHis-β-catenin
 fusion proteins were purified from *E. coli* using GST-agarose or Nickel-agarose columns,
 respectively. Representative Coomassie blue SDS-PAGE and Western blots are shown to
 confirm purification.


S10

- 54 **S10.** In vitro binding assay. An in vitro GST pull down assay was performed using purified 6x-
- His-β-catenin and either GST (control), the N-terminal (aa 1-86), C-terminal (aa 87-465), or full
- length (aa 1-465) GST-MEF2C fusion proteins.



- 57 **S11. Confirmation of siRNA mediated silencing of MEF2A/C**. A10 cells were transfected
- with either scrambled RNA control or siRNA for MEF2A and MEF2C, and confirmed by
- Western analysis.



S12. TOPflash assay during Wnt stimulation using siRNA to MEF2A. (Top panel) A10 cells were transfected with TOPflash reporter, scrambled or siMEF2A RNA for 3 hr, cultured in serum conditions for 24 hr followed by treatment with either Wnt3a (200 ng/mL) or solvent (PBS) for 16 hr in serum free media; b,c=p≤0.0001. (Bottom panel) Corresponding Western blot analysis of cell lysates to confirm siRNA-mediated MEF2A depletion.

S13

S13. c-Jun reporter assay with active p38 MAPK and β-catenin gene silencing. c-Jun reporter gene (pJC6) activity was measured in A10 cells under various combinations of ectopically expressed MKK6 (EE) and p38 MAPK, and either scrambled RNA (control) or siRNA β-catenin, as indicated in the figure; b,c=p≤0.0001.

69 **S14.** Western blot analysis of A10 cells that have been transfected with scrambled shRNA

70 (control) or shRNA β-catenin with comparative pJC6 and pJSX reporter activities; ***=p≤0.001.