Supplemental Materials

Supplementary Method

Nominally statistically significant meta-analysis results were graded on the basis of the Human Genome and Epidemiology Network Venice criteria. The amount of evidence, consistency of replication, and protection from bias were considered. We rated the overall epidemiological credibility of nominally statistically significant meta-analysis results as strong (A) if associations received A grades in all three categories, moderate (B) if they received at least one B grade but no C grades, and weak (C) if they received a C grade in any of the three assessment criteria. For the ratings for the amount of evidence, we assigned a grade A when the total number of minor alleles of patients and control subject samples combined in the meta-analyses exceeded 1000 individuals, grade B when the total number was between 100 and 1000 individuals, and grade C when the total number was less than 100 individuals. For consistent replication grading, we assigned a grade A for I² point estimates of no more than 25%, a grade B for I² values of 25%–50%, and a grade C for I² values greater than 50%. Note that this criterion does not apply to meta-analyses with $P < 1x10^{-7}$ after exclusion of the initial dataset(s) (37). For protection from bias, the guidelines propose consideration of various potential sources of bias, including errors in phenotypes, genotypes, and confounding (population stratification).

Furthermore the following potential sources of bias at the meta-analysis level were assessed. Whenever the summary odds ratio deviated less than 1.15-fold from the null in meta-analyses on the basis of published data, we acknowledged that occult publication and other sources of uncontrollable bias alone may invalidate the association and we therefore assigned a grade C. If the association was no longer nominally statistically significant (P < .05) on exclusion of the initial study or on exclusion of studies violating Hardy-Weinberg equilibrium in control subjects, a grade C was assigned as well. Also, we assigned a grade C if the modified regression test (38) showed evidence for publication or small-study bias, and/or if the excess of statistical significance (39) suggested the possibility of statistical significancechasing bias. This criterion did not apply to meta-analyses with $P < 1 \times 10^{-7}$ (including all data for prospective analyses such as genome-wide association studies and after exclusion of the initial studies for retrospective analyses). **Supplementary Table 1.** Random-effects results of the main meta-analyses using allelic contrasts for all polymorphisms with data from at least four_independent case-control datasets, including genome-wide association studies (GWAS) and GWAS replicating studies as of July 31st 2010 †‡

Chromosome	Gene (nearest gene)	Polymorphism	Location (bp) §	Allele contrast	No. of datasets	No. of subjects	MAF	OR (95% CI)	Р	Amount of evidence	No. of minor alleles	Venice replication grade	\mathbf{I}^2	Venice bias grade	Bias reason	Venice overall grade I
1p13.3	GSTM1	GSTM1*0	215276998	wt vs *0	5	2239	0.283	1.12 (0.89	.321	NA	NA	NA	NA	NA	NA	
4q25	EGF	rs4444903	110834110	G vs A	5	2987	0.409	to 1.41) 1.14 (0.88 to 1.47)	.314	NA	NA	NA	NA	NA	NA	NA
5p15.33	CLPTM1L	rs401681	1322087	T vs C	7	47195	0.450	1.15 (1.08 to 1.22)	9.6x10 ⁻⁶	А	42771	В	27	С	Low OR	С
5p13.2	SLC45A2	rs16891982	33951693	C vs G	9	14880	0.068	0.40 (0.33 to 0.47)	4x10 ⁻²⁷	А	1644	All	29	Al	NA	А
9p23	(TYRP1)	rs1408799	12672097	T vs C	4	43166	0.258	0.86 (0.80 to 0.93)	9.1x10 ⁻⁵	А	22196	А	0	А	NA	А
9p21.3	CDKN2A	rs3088440	21968159	T vs C	4	3867	0.077	1.25 (1.03 to 1.51)	.026	В	704	А	24	С	F, hwf	С
9p21.3	CDKN2A	rs11515	21968199	G vs C	4	3867	0.127	1.15(1.01) to 1.32)	.039	А	1019	А	0	С	F	С
9p21.3	CDKN2A	rs3731249	21970916	A vs G	6	5794	0.025	1.28 (0.84 to 1.97)	.254	NA	NA	NA	NA	NA	NA	NA
11q14.3	TYR	rs1042602	88911696	A vs C	9	53589	0.316	0.95 (0.90 to 0.99)	.021	А	34179	А	0	С	Low OR F	С
11q14.3	TYR	rs1393350	89011046	A vs G	4	10092	0.269	1.27 (1.16 to 1.39)	8.7x10 ⁻⁸	А	5763	All	35	All	NA	А
11q14.3	TYR	rs1126809	89017961	A vs G	6	46939	0.295	1.22(1.14)	2.7x10 ⁻⁸	А	27940	All	29	All	NA	А
12q13.11	VDR	rs731236	48238757	C vs T	6	7070	0.390	0.95 (0.85) to 1.07)	.413	NA	NA	NA	NA	NA	NA	NA
12q13.11	VDR	rs1544410	48239835	A vs G	6	7440	0.400	0.89 (0.82 to 0.97)	.0065	А	5857	А	24	С	Low OR	С
12q13.11	VDR	rs2228570	48272895	A vs G	8	8455	0.387	1.11 (0.98 to 1.24)	.093	NA	NA	NA	NA	NA	NA	NA
12q13.11	(VDR)	rs4516035	48299826	G vs A	7	6566	0.437	1.00 (0.89 to 1.13)	.984	NA	NA	NA	NA	NA	NA	NA
14q32.33	XRCC3	rs861539	104165753	T vs C	5	3607	0.375	1.05 (0.85 to 1.29)	.661	NA	NA	NA	NA	NA	NA	NA
15q13.1	OCA2	rs7495174	28344238	G vs A	5	42367	0.036	0.93 (0.83 to 1.04)	.199	NA	NA	NA	NA	NA	NA	NA
16q24.3	MC1R	rs61996344 (F45L)	89985799	C vs T	4	1333	0.002	1.12 (0.25 to 4.95)	.886	NA	NA	NA	NA	NA	NA	NA
16q24.3	MC1R	rs1805005 (V60L)	89985844	T vs G	21	24816	0.114	1.13 (1.02 to 1.26)	.024	А	5951	С	56	С	Low OR	С
16q24.3	MC1R	rs34474212 (S83P)	89985913	C vs T	5	1264	0.003	2.34 (0.74 to 7.38)	.147	NA	NA	NA	NA	NA	NA	NA
16q24.3	MC1R	rs1805006 (D84E)	89985918	A vs C	19	23336	0.009	1.47 (1.18 to 1.83)	6.4x10 ⁻⁴	В	487	А	0	А	NA	В
16q24.3	MC1R	rs2228479 (V92M)	89985940	A vs G	20	22745	0.076	1.06 (0.97 to 1.15)	.186	NA	NA	NA	NA	NA	NA	NA
16q24.3	MC1R	rs34158934 (T95M)	89985950	T vs C	7	4094	0.001	1.31 (0.47 to 3.65)	.608	NA	NA	NA	NA	NA	NA	NA
16q24.3	MC1R	V122M	89986030	A vs G	5	2268	0.003	1.01 (0.32 to 3.21)	.987	NA	NA	NA	NA	NA	NA	NA
16q24.3	MC1R	rs11547464 (R142H)	89986091	A vs G	16	10606	0.010	1.67 (1.26 to 2.21)	3.7x10 ⁻⁴	В	250	А	7	А	NA	В
16q24.3	MC1R	rs1805007 (R151C)	89986117	T vs C	21	27747	0.078	1.83 (1.56 to 2.15)	2.1x10 ⁻¹³	А	4764	All	69	All	NA	А
16q24.3	MC1R	Y152X	89986122	A vs C	8	4193	0.001	1.56 (0.54 to 4.52)	.415	NA	NA	NA	NA	NA	NA	NA

16q24.3 MC1R rs1110400 89986130 C vs T 19 22506 0.010 1.23 (0.99 .062 NA NA 16q24.3 MC1R rs1805008 89986144 T vs C 22 27368 0.098 1.54 (1.33) 1.7x10 ⁻⁸ A 5526 (R160W) (R160W)<	NA Al NA	NA 67	NA Al	NA Regr	NA
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Al NA	67	All	Regr	
(K160W) to 1./9)	NA			-	A
16q24.3 MC1R rs885479 89986154 A vs G 20 52153 0.041 1.09 (0.97 .163 NA NA	1.1.1	NA	NA	NA	NA
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	А	0	А	NA	С
16q24.3 MC1R K278E 89986498 G vs A 5 1528 0.003 0.75 (0.17 .708 NA NA	NA	NA	NA	NA	NA
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	All	42	Al	NA	В
16q24.3 MC1R rs2228478 89986608 G vs A 10 19013 0.098 1.12 (0.94 .208 NA NA (T314T) to 1.33)	NA	NA	NA	NA	NA
17p13.1 TP53 rs1042522 7579472 C vs G 6 3392 0.231 1.06 (0.84 .624 NA NA NA to 1.34)	NA	NA	NA	NA	NA
19q13.31 XRCC1 rs25487 44055726 A vs G 4 3504 0.364 1.03 (0.93 .635 NA NA to 1.14)	NA	NA	NA	NA	NA
19q13.32 ERCC2 rs13181 45854919 C vs A 8 6427 0.382 1.00 (0.87 .936 NA NA to 1.13)	NA	NA	NA	NA	NA
19q13.32 ERCC2 rs1799793 45867259 A vs G 5 5027 0.369 1.02 (0.93 .662 NA NA NA	NA	NA	NA	NA	NA
20q11.22 ASIP rs6058017 32856998 G vs A 7 44247 0.089 0.89 (0.81 .028 A 7965 to 0.99)	А	0	С	Low OR, HWE,	С
20q11.22 <i>PIGU</i> rs910873 33171772 A vs G 4 6915 0.076 1.52 (1.36 1.9x10 ⁻¹³ A 1425	All	0	Al	Regr NA	А
20q11.22 <i>MYH7B</i> rs1885120 33576989 C vs G 4 6787 0.073 $1.59(1.41 - 7.4x10^{-15} - A - 1306)$	All	0	All	NA	А
22q11.23 GSTT1 GSTT1*0 NA *0 vs wt 5 2824 0.441 0.98 (0.88 .709 NA NA to 1.09)	NA	NA	NA	NA	NA

 \dagger CI = confidence interval, F = statistical significance lost excluding first study, HWE = statistical significance lost excluding Hardy-Weinberg equilibrium-violating studies in control subjects, Low OR = an OR less than 1.15, MAF = minor allele frequency in controls when combining all eligible datasets, NA = not applicable, No. of minor alleles= number of minor alleles in patients and control subjects combined across all included datasets, OR = odds ratio, Regr = small-study effect, wt = wild type allele. \ddagger Allelic odds ratios, 95% confidence intervals, and *P* values (two-sided) were calculated by the DerSimonian-Lairs random-effects model (32). Analysis included all ethnicities. Venice grading: A = strong epidemiologic credibility, B = modest epidemiologic credibility, C = weak epidemiologic credibility. § Location (in base pairs [bp]) is on the basis of the Human Genome build 19 (40). Note that GSTT1*0 represents a gene deletion and therefore cannot be assigned to a specific location.

| Criterion does not apply to meta-analysis results ($P < 1 \times 10^{-7}$) after exclusion of the initial study (37).

Supplementary Table 2. Genetic variants associated with cutaneous melanoma identified by random-effects supplementary metaanalyses using allelic contrasts for polymorphisms with three independent case–control datasets available from genome-wide association studies (GWAS) and/or replication studies of GWAS in related traits as supplied in the respective publications as of 31st July 2010 *†

Chromosome	Gene (nearest gene)	Polymor phism	Locati on (bp)‡	Allele contr ast	No. of datas ets	No. of subject s§	MAF	OR (95% CI)	Р	Amount of evidence	No. of minor alleles	Venice replicati on grade	\mathbf{I}^2	Venice bias grade	Bias reason	Venice overall grade
9p21.3	(MTAP)	rs4636 294	217478 03	G vs A	3	13005	0.485	0.82 (0.75 to 0.90)	1.4x10 ⁻ 5	А	12930	С	66	А	NA	С
9p21.3	(MTAP)	rs2218 220	217560 89	T vs C	3	13005	0.487	0.84 (0.80 to 0.89)	5.5x10 ⁻	А	12930	A	0	All	NA	А
9p21.3	(MTAP)	rs1335 510	217578 03	G vs T	3	10616	0.417	0.83 (0.78 to 0.89)	5.9x10 ⁻ 9	А	8550	A∥	0	A∥	NA	А
9p21.3	MTAP	rs1075 7257	218065 64	A vs G	3	10581	0.415	0.81 (0.76 to 0.86)	3.0x10 ⁻	А	8442	A# ∥	0	A∥	NA	А
9p21.3	MTAP	rs7023 329	218165 28	G vs A	3	12481	0.497	0.84 (0.80 to 0.89)	$3.1 x_{10}^{-10}$	А	12194	All	0	All	NA	А
14q32	(SLC24A4)	rs1289 6399	927736 63	G vs T	3	39730	0.452	1.02 (0.86 to 1.21)	.823	NA	NA	NA	NA	NA	NA	NA
15q13.1	OCA2	rs1800 407	282303 18	T vs C	3	1722	0.070	1.40 (1.07 to 1.82)	.013	В	280	А	0	А	NA	В
16q24.3	CDK10	rs2583 22	897559 03	A vs G	3	8992	0.095	1.66 (1.48 to 1.86)	4x10 ⁻¹⁸	А	2084	A	28	All	NA	А
16q24.3	AFG3L1	rs4785 763	900669 36	A vs C	3	9158	0.328	1.36 (1.27 to 1.45)	5x10 ⁻²⁰	А	6533	A∥	0	A∥	NA	А
20q11.21	C20orf71	rs1730 5657	318065 88	C vs T	3	3937	0.088	1.60 (1.27 to 2.01)	$6.3 x_{5} 10^{-5}$	В	850	C	59	А	NA	C
20q11.21	(C20orf11 4)	rs4911 310	318612 59	G vs A	3	3941	0.292	0.83 (0.75 to 0.92)	$2.1x_{4}10^{-1}$	А	2168	А	0	А	NA	А

20q11.21	C20orf114	rs2253 335	318910 03	T vs C	3	3916	0.392	1.01 (0.92 to 1.11)	.811	NA	NA	NA	NA	NA	NA	NA
20q11.21	(C20orf11 4)	rs7219 70	319035 33	A vs G	3	4230	0.070	1.62 (1.35 to 1.95)	$3.4x10^{-7}$	В	752	В	29	А	NA	В
20q11.21	CDK5RAP 1	rs2916 71	319508 45	C vs T	3	3960	0.100	1.46 (1.16 to 1.83)	.0012	В	934	C	63	А	NA	C
20q11.22	E2F1	rs3213 182	322632 33	G vs T	3	3806	0.111	0.93 (0.77 to 1.34)	.492	NA	NA	NA	NA	NA	NA	NA
20q11.22	E2F1	rs2071 054	322658 39	C vs T	3	3868	0.298	1.22 (1.11 to 1.34)	$5.3 x_{5} 10^{-1}$	А	2456	А	0	А	NA	А
20q11.22	(RALY)	rs6142 047	325143 86	C vs T	3	4273	0.454	1.20 (1.10 to 1.31)	$2.5 x_{5} 10^{-5}$	А	4074	А	0	А	NA	А
20q11.22	(RALY)	rs1709 1405	325159 16	C vs G	3	4082	0.118	1.00 (0.84 to 1.19)	.972	NA	NA	NA	NA	NA	NA	NA
20q11.22	(RALY)	rs4911 379	325353 05	A vs C	3	3898	0.336	1.21 (1.10 to 1.33)	$6.2x10^{-5}$	А	2776	А	0	С	Regr	С
20q11.22	(RALY)	rs6059 592	325526 43	G vs T	3	4247	0.074	0.82 (0.59 to 1.15)	.241	NA	NA	NA	NA	NA	NA	NA
20q11.22	(RALY)	rs2064 348	325640 78	T vs C	3	4031	0.100	0.98 (0.79 to 1.22)	.866	NA	NA	NA	NA	NA	NA	NA
20q11.22	RALY	rs2284 378	325880 95	T vs C	3	3994	0.332	1.21 (1.10 to 1.32)	6.4x10 ⁻ 5	А	2818	А	0	А	NA	А
20q11.22	RALY	rs6141 443	326019 29	G vs C	3	4039	0.164	0.91 (0.80 to 1.02)	.102	NA	NA	NA	NA	NA	NA	NA
20q11.22	RALY	rs1304 3392	326067 35	C vs A	3	4015	0.362	0.93 (0.85 to 1.20)	.124	NA	NA	NA	NA	NA	NA	NA
20q11.22	RALY	rs2268 089	326672 98	A vs G	3	4062	0.326	1.23 (1.12 to 1.35)	1.1x10 ⁻ 5	А	2834	А	0	А	NA	А
20q11.22	(ASIP)	rs8191 63	328423 57	G vs T	3	4079	0.124	0.83 (0.70 to 0.99)	.040	В	936	В	36	А	NA	В
20q11.22	(ASIP)	rs6059 743	328477 11	A vs G	3	3943	0.429	0.91 (0.83 to 0.99)	.036	А	3297	А	0	С	Low OR	C
20q11.22	ASIP	rs8191 62	328522 82	T vs A	3	4158	0.120	0.82 (0.71 to 0.95)	.0094	В	920	А	10	А	NA	В
20q11.22	ITCH	rs7266 300	330374 08	T vs A	3	3989	0.066	0.80 (0.58 to 1.12)	.201	NA	NA	NA	NA	NA	NA	NA
20q11.22	(MAP1LC 3A)	rs6088 519	331321 91	T vs C	3	4101	0.278	0.95 (0.86 to 1.05)	.291	NA	NA	NA	NA	NA	NA	NA

20q11.22	(MAP1LC 3A)	rs6088 520	331323 64	T vs C	3	4191	0.478	0.88 (0.80 to 0.95)	.0025	А	3866	А	0	С	Low OR	С
20q11.22	(MAP1LC 3A)	rs2424 994	331329 17	T vs C	3	4075	0.174	1.30 (1.15 to 1.47)	$2.9 x_{5} 10^{-5}$	А	1577	А	18	А	NA	А
20q11.22	PIGU	rs6142 206	332120 55	T vs C	3	3961	0.413	0.91 (0.83 to 0.99)	.044	А	3189	А	0	С	Low OR	С
20q11.22	TP53INP2	rs6060 003	332949 45	C vs T	3	4285	0.454	0.86 (0.79 to -0.94)	$5.1 x_{4} 10^{-1}$	А	3725	А	0	А	NA	А
20q11.22	NCOA6	rs9598 29	333460 47	G vs A	3	4203	0.374	0.96 (0.84 to 1.10)	.495	NA	NA	NA	NA	NA	NA	NA
20q11.22	NCOA6	rs7271 289	333973 03	A vs G	3	3983	0.182	1.34 (1.11 to 1.62)	.0024	А	1634	C	66	А	NA	С
20q11.22	NCOA6	rs6088 619	334118 71	C vs T	3	3932	0.132	0.90 (0.78 to 1.05)	.169	NA	NA	NA	NA	NA	NA	NA
20q11.23	PHF20	rs6058 339	344604 79	C vs T	3	3957	0.102	1.43 (1.25 to 1.64)	$2.9 x_{7}^{10^{-1}}$	В	945	А	0	А	NA	В
20q11.23	LOC64797 9	rs1204 552	346389 03	A vs T	3	4063	0.070	1.59 (1.36 to 1.87)	$7.1 x 10^{-9}$	В	716	All	3	All	NA	В
22q13.1	PLA2G6	rs2284 063	385442 98	G vs A	3	12690	0.366	0.85 (0.75 to 0.96)	.010	А	8936	С	81	С	F	С
22q13.1	PLA2G6	rs6001 027	385456 19	G vs A	3	12690	0.363	0.86 (0.77 to 0.96)	.0051	А	8885	C	73	С	F	С

* CI = confidence interval, F = statistical significance lost excluding the first study, Low OR = an OR less than 1.15, MAF = minor allele frequency in controls when combining all eligible datasets, NA = not applicable, No. of minor alleles = number of minor alleles in patients and control subjects combined across all included datasets, OR = odds ratio, Regr = small-study effect. † Allelic odds ratios, 95% confidence intervals, and *P* values (two-sided) were calculated by the DerSimonian-Lairs randomeffects model (32). Analysis included all ethnicities. Venice grading: A = strong epidemiologic credibility, B = modest epidemiologic credibility, C = weak epidemiologic credibility.

‡ Location (in base pairs, bp) is on the basis of the Human Genome build 19 (40).

§ For inclusion of GWAS and other large-scale study data which only provided odds ratios, confidence intervals, and/or *P* values, we estimated genotype summary counts and the number of analyzed patient and control subjects on the basis of the reported data, control allele frequencies, and overall effective number of subjects for the purpose of Venice grading. Thus the listed number of subjects and the number of minor alleles are only approximations of the real numbers

|| Criterion does not apply to meta-analysis results ($P < 1 \times 10^{-7}$) after exclusion of the initial study (37).

Supplementary Table 3. Comparison of all previously published meta-analysis results and those obtained from the main and supplementary meta-analyses in this study as of July $31^{st} 2010 \ddagger$, \ddagger

Gene (nearest gene)	Polymorphism	Allele contrast	Prior study author, year (reference)	Prior study funding source	Study design notes	Prior no. of subjects (datasets)	Prior meta OR (95% CI)	Prior P	MelGene no. of subjects	Μ
EGF	rs4444903	G vs A	NMA	NA	NA	NA	NA	NA	2987 (5)	
CLPTM1L	rs401681	T vs C	NMA	NA	NA	NA	NA	NA	47195 (7)	
SLC45A2	rs16891982	C vs G	Gerstenblith, 2010 (43)	Intramural Research Program of NIH, NCI	Included a family- based study(49) and six independent datasets from Stacey et al. 2009 (30) as one dataset	17876 (3)	0.38 (0.26 to 0.55)	3.3x10 ⁻⁷	14880 (9)	
(TYRP1)	rs1408799	T vs C	NMA	NA	NA	NA	NA	NA	43166 (4)	
(MTAP)	rs4636294	G vs A	Gerstenblith, 2010 (43)	Intramural Research Program of NIH NCI	NP	11689 (3)	0.83 (0.76 to 0.91)	5.1x10 ⁻⁵	13005 (3)‡‡	
(MTAP)	rs2218220	T vs C	Gerstenblith, 2010 (43)	Intramural Research Program of NIH NCI	NP	11689 (3)	0.83 (0.78 to 0.89)	3.6x10 ⁻⁷	13005 (3) ‡‡	
(MTAP)	rs1335510	G vs T	Gerstenblith, 2010 (43)	Intramural Research Program of NIH, NCI	NP	11689 (3)	0.84 (0.79 to 0.90)	1.8x10 ⁻⁷	10616 (3) ‡‡	
MTAP	rs10757257	A vs G	Gerstenblith, 2010 (43)	Intramural Research Program of NIH_NCI	NP	11689 (3)	0.82 (0.77 to 0.88)	6.6x10 ⁻¹⁰	10581 (3) ‡‡	
MTAP	rs7023329	G vs A	Gerstenblith, 2010 (43)	Intramural Research Program of NIH NCI	Used a fixed-effect model	11689 (3)	0.83 (0.79 to 0.88)	2.7x10 ⁻¹¹	12481(3) ‡‡	
CDKN2A	rs3088440	T vs C	NMA	NA	NA	NA	NA	NA	3867 (4)	
CDKN2A	rs11515	G vs C	NMA	NA	NA	NA	NA	NA	3867 (4)	
CDKN2A	rs3731249	A vs G	NMA	NA	NA	NA	NA	NA	5794 (6)	
TYR	rs1042602	A vs C	NMA	NA	NA	NA	NA	NA	53589 (9)	
TYR	rs1393350	A vs G	Gerstenblith, 2010 (43)	Intramural Research Program of NIH, NCI	Included replication datasets REP1 and REP2 of Bishop, 2009 (15) as one dataset	10695 (3)	1.21 (1.02 to 1.42)	.02	10092 (4)	
TYR	rs1126809 (R402Q)	A vs G	Gerstenblith, 2010 (43)	Intramural Research Program of NIH, NCI	Included a family- based study (49), included replication datasets REP1 and	52722 (3)	1.23 (1.16 to 1.29)	1.8x10 ⁻¹⁴	46939 (6)	

					REP2 of Bishop, 2009 (15) as one dataset, and included three independent datasets from Gudbjartsson, 2008 (28) as one dataset				
VDR	rs731236 (TaqI)	C vs T	Mocellin, 2008 (44)	NP	NP	2000 (2)	NP	.07	7070 (6)
VDR	rs731236 (TaqI)	C vs T	Randerson-Moor, 2009 (45)	Cancer Rearch UK, NIH, ScaRF	Performed meta- analyses by comparing the genotype	4779 (5)	0.95 (0.75 to 1.20)	.671	7070 (6)
VDR	rs1544410 (BsmI)	A vs G	Mocellin, 2008 (44)	NP	combinations§ Applied a model-free approach (50), which imposed a recessive	2896 (3)	1.30 (1.11 to 1.53)	.002	7440 (6)
VDR	rs1544410 (BsmI)	A vs G	Randerson-Moor, 2009 (45)	Cancer Rearch UK, NIH, ScaRF	Performed meta- analyses by comparing the genotype	5185 (5)	0.81 (0.72 to 0.92)	.00081	7440 (6)
VDR	rs1544410 (BsmI)	A vs G	Gandini, 2009 (46)	NP	combinations§ Performed fixed- effect or random- effects meta- orglwag#	2896 (3)	0.84 (0.75 to 0.94)	.002	7440 (6)
VDR	rs2228570 (FokI)	A vs G	Gandini, 2009 (46)	NP	effect or random- effects meta- analyses#	3318 (4)	1.13 (1.01 to 1.25)	.031	8455 (8)
VDR	rs2228570 (FokI)	A vs G	Mocellin, 2008 (44)	NP	NP	3318 (4)	1.09 (0.99 to 1.21)	.07	8455 (8)
VDR	rs2228570 (FokI)	A vs G	Randerson-Moor, 2009 (45)	Cancer Rearch UK, NIH, ScaRF	Performed meta- analyses by comparing the genotype combinations &	6114 (7)	1.19 (1.05 to 1.35)	.011	8455 (8)
VDR	rs4516035 (EcoRV)	G vs A	Mocellin, 2008 (44)	NP	NP	1463 (3)	NP	NP	6566 (7)
VDR	rs4516035 (EcoRV)	G vs A	Randerson-Moor, 2009 (45)	Cancer Rearch UK, NIH, ScaRF	Performed meta- analyses by comparing the genotype	3754 (5)	1.06 (0.86 to 1.30)	.581	6566 (7)
VDR	rs11568820 (Cdx2)	A vs G	Randerson-Moor, 2009 (45)	Cancer Rearch UK, NIH, ScaRF	Performed meta- analyses by comparing the genotype combinations8	3347 (3)	0.96 (0.82 to 1.12)	.831	NA
(SLC24A4)	rs12896399	G vs T	NMA	NA	NA	NA	NA	NA	39730 (3) ‡‡
XRCC3	rs861539	T vs C	NMA	NA	NA	NA	NA	NA	3607 (5)
OCA2	rs1800407	T vs C	NMA	NA	NA	NA	NA	NA	1722 (3) ‡‡

OCA2	rs7495174	G vs A	NMA	NA	NA	NA	NA	NA	42367 (5)
C16orf55	rs7188458	A vs G	Gerstenblith, 2010 (43)	Intramural Research Program of NIH, NCI	NP	7569 (2)	1.30 (1.21 to 1.40)	1.2x10 ⁻¹²	NA
CDK10	rs258322	A vs G	Gerstenblith, 2010 (43)	Intramural Research Program of NIH, NCI	Included replication datasets REP1 and REP2 of Bishop, 2009 (15) as one	10165 (2)	1.67 (1.52 to 1.83)	2.5x10 ⁻²⁷	8992 (3) ‡‡
MC1R	rs61996344 (F45L)	C vs T	NMA	NA	NA	NA	NA	NA	1333 (4)
MC1R	rs1805005 (V60L)	T vs G	Raimondi, 2008	NP	Included a family-	5065 (10)	1.15 (0.92 to 1.43)	.211	24816 (21)
MC1R	rs34474212 (S83P)	C vs T	NMA	NA	NA	NA	NA	NA	1264 (5)
MC1R	rs1805006 (D84H)	A vs C	Raimondi, 2008	NP	Included a family- based study (51)	3044 (8)	2.40 (1.50 to 3.84)	.00031	23336 (19)
MC1R	rs2228479 (V92M)	A vs G	Raimondi, 2008	NP	Included a family-	4266 (10)	1.22 (0.99 to 1.50)	.06	22745 (20)
MC1R	rs34158934 (T95M)	T vs C	NMA	NA	NA	NA	NA	NA	4094 (7)
MC1R	V122M	A vs G	NMA	NA	NA	NA	NA	NA	2268 (5)
MC1R	rs11547464 (R142H)	A vs G	Raimondi, 2008	NP	Included a family- based study (51)	2712 (7)	1.66 (1.01 to 2.75)	.05	10606 (16)
MC1R	rs1805007 (R151C)	T vs C	Gerstenblith, 2010 (43)	Intramural Research Program of NIH, NCI	Included a family- based study (49) and used a fixed-effect model	17209 (2)	1.49 (1.32 to 1.70)	4.3x10 ⁻¹⁰	27747 (21)
MC1R	rs1805007 (R151C)	T vs C	Raimondi, 2008	NP	Included a family-	5047 (10)	1.78 (1.45 to 2.20)	6x10 ⁻⁸ l	27747 (21)
MC1R	Y152X	A vs C	NMA	NA	NA	NA	NA	NA	4193 (8)
MC1R	rs1110400 (I155T)	C vs T	Raimondi, 2008	NP	Included a family- based study (51)	2950 (6)	2.45 (1.32 to 4.55)	.005	22506 (19)
MC1R	rs1805008 (R160W)	T vs C	Gerstenblith, 2010 (43)	Intramural Research Program of NIH_NCI	Included a family- based study (49)	18582(2)	1.42 (1.08 to 1.87)	.01	27368 (22)
MC1R	rs1805008 (R160W)	T vs C	Raimondi, 2008 (47)	NP	Included a family- based study (51)	5064 (10)	1.43 (1.20 to 1.70)	6x10 ⁻⁵	27368 (22)
MC1R	rs885479 (R163Q)	A vs G	Raimondi, 2008	NP	Included a family- based study (51)	4347 (8)	1.42 (1.09 to 1.85)	.009	52153 (20)
MC1R	R213W	T vs C	NMA	NA	NA	NA	NA	NA	2505 (5)
MC1R	K278E	G vs A	NMA	NA	NA	NA	NA	NA	1528 (5)
MC1R	rs1805009 (D294H)	C vs G	Raimondi, 2008 (47)	NP	Included a family- based study (51)	4473 (10)	1.77 (1.17 to 2.69)	.007	24753 (20)
MC1R	rs2228478 (T314T)	G vs A	NMA	NA	NA	NA	NA	NA	19013 (10)
AFG3L1	rs4785763	A vs C	Gerstenblith, 2010 (43)	Intramural Research Program of NIH, NCI	Included replication datasets REP1 and REP2 of Bishop, 2009 (15) as one dataset	10165 (2)	1.36 (1.28 to 1.45)	6x10 ⁻²²	9158 (3) ‡‡

<i>TP53</i>	rs1042522	C vs G	NMA	NA	NA	NA	NA	NA	3392 (6)
XRCC1	rs25487	A vs G	Mocellin, 2009	NP	NP	3504 (4)	1.02 (0.93 to 1.13)	.63	3504 (4)
ERCC2	rs13181	C vs A	(48) Mocellin, 2009 (48)	NP	Applied a model-free approach (50), which imposed an additive model	6006 (8)	1.12 (1.03 to 1.21)	.01	6427 (8)
ERCC2	rs1799793	A vs G	Mocellin, 2009 (48)	NP	NP	3228 (3)	1.04 (0.93 to 1.15)	.50	5027 (5)
GSTM1	GSTM1*0	wt vs *0	NMA	NA	NA	NA	NA	NA	2239 (5)
C20orf71	rs17305657	C vs T	NMA	NA	NA	NA	NA	NA	3937 (3) ‡‡
C20orf114)	rs4911310	G vs A	NMA	NA	NA	NA	NA	NA	3941 (3) ‡‡
C20orf114	rs2253335	T vs C	NMA	NA	NA	NA	NA	NA	3916 (3) ‡‡
(C20orf114)	rs721970	A vs G	NMA	NA	NA	NA	NA	NA	4230 (3) ‡‡
CDK5RAP1	rs291671	C vs T	NMA	NA	NA	NA	NA	NA	3960 (3) ‡‡
E2F1	rs3213182	G vs T	NMA	NA	NA	NA	NA	NA	3806 (3) ‡‡
E2F1	rs2071054	C vs T	NMA	NA	NA	NA	NA	NA	3868 (3) ‡‡
(RALY)	rs6142047	C vs T	NMA	NA	NA	NA	NA	NA	4273 (3) ‡‡
(RALY)	rs17091405	C vs G	NMA	NA	NA	NA	NA	NA	4082 (3) ‡‡
(RALY)	rs4911379	A vs C	NMA	NA	NA	NA	NA	NA	3898 (3) ‡‡
(RALY)	rs6059592	G vs T	NMA	NA	NA	NA	NA	NA	4247 (3) ‡‡
(RALY)	rs2064348	T vs C	NMA	NA	NA	NA	NA	NA	4031 (3) ‡‡
RALY	rs2284378	T vs C	NMA	NA	NA	NA	NA	NA	3994 (3) ‡‡
RALY	rs6141443	G vs C	NMA	NA	NA	NA	NA	NA	4039 (3) ‡‡
RALY	rs13043392	C vs A	NMA	NA	NA	NA	NA	NA	4015 (3) ‡‡
RALY	rs2268089	A vs G	NMA	NA	NA	NA	NA	NA	4062 (3) ‡‡
(ASIP)	rs819163	G vs T	NMA	NA	NA	NA	NA	NA	4079 (3) ‡‡
(ASIP)	rs6059743	A vs G	NMA	NA	NA	NA	NA	NA	3943 (3) ‡‡
ASIP	rs819162	T vs A	NMA	NA	NA	NA	NA	NA	4158 (3) ‡‡
ASIP	rs6058017	G vs A	NMA	NA	NA	NA	NA	NA	44247 (7)
ITCH	rs7266300	T vs A	NMA	NA	NA	NA	NA	NA	3989 (3) ‡‡
(MAP1LC3A)	rs6088519	T vs C	NMA	NA	NA	NA	NA	NA	4101 (3) ‡‡
(MAP1LC3A)	rs6088520	T vs C	NMA	NA	NA	NA	NA	NA	4191 (3) ‡‡
(MAP1LC3A)	rs2424994	T vs C	NMA	NA	NA	NA	NA	NA	4075 (3) ‡‡
PIGU	rs910873	A vs G	Gerstenblith, 2010 (43)	Intramural Research	Used a fixed-effect model, included	8388 (4)	1.66 (1.49 to 1.83)	2.5x10 ⁻²²	6915 (4) ††,‡‡

NGU	(14000)	T		Program of NIH, NCI	replication datasets REP1 and REP2 of Bishop, 2009 (15) as one dataset, and did not exclude overlapping study datasets between Brown et al. 2008 (16) and Bishop et al. 2009 (15)			NA	20(1 (2))
PIGU	rs6142206	I vs C	NMA	NA	NA	NA	NA	NA	3961 (3) ‡‡
TP53INP2	rs6060003	C vs T	NMA	NA	NA	NA	NA	NA	4285 (3) ‡‡
NCOA6	rs959829	G vs A	NMA	NA	NA	NA	NA	NA	4203 (3) ‡‡
NC0A6	rs4911442	G vs A	Gerstenblith, 2010 (43)	Intramural Research Program of NIH, NCI	Included a family- based study (49), included replication datasets REP1 and REP2 of Bishop, 2009 (15) as one dataset, and did not exclude overlapping study datasets between Brown et al. 2008 (16) and Bishop et al. 2009 (15)	14222 (5)	1.50 (1.32 to 1.71)	5.5x10 ⁻¹⁰	NA
NCOA6	rs7271289	A vs G	NMA	NA	NA	NA	NA	NA	3983 (3) ‡‡
NCOA6	rs6088619	C vs T	NMA	NA	NA	NA	NA	NA	3932 (3) ‡‡
МҮН7В	rs1885120	C vs G	Gerstenblith, 2010 (43)	Intramural Research Program of NIH, NCI	Used a fixed-effect model, included replication datasets REP1 and REP2 of Bishop et al. 2009 (15) as one dataset, and did not exclude overlapping study datasets between Brown et al. 2008 (16) and Bishop et al. 2009 (15)	8388 (4)	1.69 (1.52 to 1.82)	1.5x10 ⁻²²	6787 (4) ††
PHF20	rs6058339	C vs T	NMA	NA	NA	NA	NA	NA	3957 (3)
LOC647979	rs1204552	A vs T	NMA	NA	NA	NA	NA	NA	4063 (3) ‡‡
ASIP	rs4911414-rs1015362	(haplotype)	Gerstenblith, 2010 (43)	Intramural Research Program of NIH, NCI	NP	43293 (2)	NA	NA	NA
GSTT1	GSTT1*0	*0 vs wt	NMA	NA	NA	NA	NA	NA	2824 (5)
PLA2G6	rs2284063	G vs A	Gerstenblith, 2010 (43)	Intramural Research Program of	NP	11689 (3)	0.84 (0.76 to 0.94)	.003	12690 (3) ‡‡

				NIH, NCI					
PLA2G6	rs6001027	G vs A	Gerstenblith, 2010 (43)	Intramural Research Program of NIH, NCI and Genetics	NP	11689 (3)	0.85 (0.78 to 0.93)	.001	12690 (3) ‡‡

[†] CI = confidence interval, NA = not applicable, NCI = National Cancer Institute, NIH = National Institutes of Health,

NMA = data did not undergo meta-analyses, NP = not provided in original publication, OR = odds ratio, ScaRF = Skin Cancer Research Fund, UK = United Kingdom.

‡ In order to compare the MelGene results with those from previously published meta-analyses in the field, we collected all relevant articles published before July 31st 2010 and extracted the genetic contrasts and models used (allelic, dominant or recessive, random-effects or fixed-effects) from each publication when provided.

§ Meta-analysis was done by comparing the following genotype combinations: minor/minor versus major/major,

minor/major versus major/major, minor/minor + minor/major versus major/major. Only the most statistically

significant results are reported.

|| *P* values were not given in original publication and were approximated here for comparison purposes on the basis of the rounded odds ratios and/or confidence intervals provided in the original publication

In addition to allelic models, the following genotype combinations were analyzed: minor/minor versus major/major, minor/major versus major/major. Only the allelic result is reported.

†† MelGene meta-analyses included one additional new study (52).

^{‡‡} Meta-analyses of 3 datasets only including genome-wide association studies (GWAS) and other large-scale replication studies. For the inclusion of data from GWAS and other large-scale studies where only odds ratios,

confidence intervals and/or *P* values were provided, we estimated genotype summary counts and the number of analyzed subjects on the basis of the reported data, control allele frequencies, and overall effective number of subjects. Therefore the listed number of subjects is only an approximation of the real number.

Supplementary Figure 1

Supplementary Figure 1. The 50 most frequently studied genes in genetic association studies of cutaneous melanoma per aggregate number of study participants and number of publications per gene including genome-wide association studies.

Α

ASIP (rs6058017): G vs A

	OR	95% CI	12
All studies	0.89	(0.81 to 0.99)	0
All excl initial	0.89	(0.80 to 0.99)	2
All excl HWE violations	0.90	(0.82 to 1.00)	0

Study specific ORs

Nan, 2009 (C)	0.90	(0.65 to 1.25)
Brudnik, 2009 (C)	0.64	(0.38 to 1.07)
Gudbjartsson, 2008, Spain (C)	0.82	(0.61 to 1.08)
Gudbjartsson, 2008, Iceland (C)	0.99	(0.83 to 1.18)
Gudbjartsson, 2008, Sweden (C)	0.89	(0.76 to 1.05)
Meziani, 2005 (C) #	0.59	(0.31 to 1.10)
Landi , 2005 (C) †	_	_
Kanetsky, 2002 (C) •	0.95	(0.63 to 1.43)

CDKN2A (rs11515): G vs C

CDKN2A (rs3088440): T vs C

21

MC1R (R213W): T vs C

All studies

All excl initial

Caucasian studies Caucasian excl initial Study specific ORs Haskel-Galore, 2009, Non-Askhenazi (O) Haskel-Galore, 2009, Israel Askhenazi (C) ; Hoiom, 2009 (C) Fargnoli, 2006 (C) Landi, 2005 (C) Pastorino, 2004 (C) ·

OR

_

MC1R (rs11547464): A vs G

All studies All excl initial Caucasian studies Caucasian excl initial

Study specific ORs

Kanetsky, 2010 (C) 0.51 Duffy, 2009 (C) † _ Scherer, 2009, Germany (C) 1.95 (1.05 to 3.62) Scherer, 2009, Spain (C) 1.93 (0.95 to 3.92) Council, 2009 (C) 0.91 (0.22 to 3.86) Haskel-Galore, 2009, Non-Askhenazi (O) 1.91 (0.30 to 12.10) Haskel-Galore, 2009, Israel Askhenazi (C) 3.04 (1.02 to 9.01) Hoiom, 2009 (C) 3.15 (0.89 to 11.20) Brudnik, 2009 (C) 6.94 (0.35 to 139.41) Guedj, 2008 (C) 1.66 (0.88 to 3.13) Fernandez, 2007 (C) 0.60 (0.16 to 2.29) Mossner, 2007 (C) 1.73 (0.56 to 5.33) Stratigos, 2006 (C) 4.42 (0.91 to 21.49) Fargnoli, 2006 (C) 1.35 (0.46 to 3.96) Landi, 2005 (C) (0.63 to 15.71) 3.15 Matichard, 2004 (C) 5.93 (0.30 to 119.10) Kennedy, 2001 (C) · 1.57

OR

1.67

1.68

1.67

1.67

_

Ε

MC1R (rs1805005): T vs G

All studies ø Caucasian studies	OR 1.13 1.13	95% Cl (1.02 to 1.26) (1.01 to 1.26)	² 56 58										
Study specific ORs		,											
Kanetsky, 2010 (C)	0.99	(0.76 to 1.28)				_	•						
Duffy, 2009 (C) †	-	-											
Scherer, 2009, Germany (C)	0.99	(0.78 to 1.26)					•+						
Scherer, 2009, Spain (C)	1.25	(1.01 to 1.55)						\vdash					
Council, 2009 (C)	1.15	(0.72 to 1.83)							-				
Haskel-Galore, 2009, Non-Askhenazi (O)	1.71	(0.62 to 4.74)			_		+ :-					-	
Haskel-Galore, 2009, Israel Askhenazi (C)	0.84	(0.58 to 1.21)		-		-	++						
Hoiom, 2009 (C)	1.25	(0.94 to 1.64)					++=						
Brudnik, 2009 (C)	1.04	(0.56 to 1.94)		-			•		_				
Gudbjartsson, 2008, Sweden (C)	1.10	(0.91 to 1.32)						-					
Gudbjartsson, 2008, Iceland (C)	1.07	(0.90 to 1.27)				-	-						
Gudbjartsson, 2008, Spain (C)	1.33	(1.04 to 1.70)					 						
Fernandez, 2007 (C)	1.61	(1.04 to 2.50)						-					
Mossner, 2007 (C)	0.90	(0.64 to 1.26)			_	-	++						
Debniak, 2006 (C)	1.35	(1.10 to 1.65)					1 						
Han, 2006 (C)	1.05	(0.77 to 1.43)				_		_					
Stratigos, 2006 (C)	2.11	(1.32 to 3.36)							-				
Fargnoli, 2006 (C)	0.56	(0.34 to 0.92)											
Landi, 2005 (C)	1.19	(0.79 to 1.77)							-				
Dwyer, 2004 (C)	0.58	(0.35 to 0.95)					- i i i						
Matichard, 2004 (C)	2.80	(1.46 to 5.36)								•		→	
Kennedy, 2001 (C)	1.21	(0.74 to 1.99)											
Palmer, 2000 (C) • †	-	-											
						-							
				0.4 0.	.6	0.8	1.0		2.0	3.0	4.0	5.0 (OR)

MC1R (rs1805006): A vs C

All studies All excl initial	OR 1.47 1.44	95% CI (1.18 to 1.83) (1.15 to 1.81)	² 0 0								
Study specific ORs											
Kanetsky, 2010 (C)	0.97	(0.37 to 2.54)					-	1	_		
Duffy, 2009 (C) †	-	-									
Scherer, 2009, Germany (C)	0.97	(0.45 to 2.06)			-						
Scherer, 2009, Spain (C)	0.95	(0.43 to 2.14)			_			<u> </u>			
Council, 2009 (C)	1.92	(0.51 to 7.25)						-		 →	
Haskel-Galore, 2009, Non-Askhenazi (O) ;	_	-									
Haskel-Galore, 2009, Israel Askhenazi (C)	0.74	(0.07 to 8.26)				_				<i></i>	
Hoiom, 2009 (C)	1.94	(0.96 to 3.93)					-			_	
Brudnik, 2009 (C)	2.29	(0.08 to 68.69)						_	-	<i></i>	
Guedj, 2008 (C)	1.77	(0.87 to 3.63)					-			-	
Gudbjartsson, 2008, Iceland (C)	0.89	(0.53 to 1.50)									
Gudbjartsson, 2008, Sweden (C)	1.95	(1.13 to 3.38)								8	
Gudbjartsson, 2008, Spain (C)	1.27	(0.26 to 6.15)						•		<i></i>	
Fernandez, 2007 (C)	1.62	(0.10 to 26.08)						· · ·		\rightarrow	
Mossner, 2007 (C)	4.90	(1.06 to 22.78)					-				
Fargnoli, 2006 (C)	1.00	(0.20 to 5.02)					-+-	-		\rightarrow	
Landi, 2005 (C)	2.08	(0.07 to 62.27)								\rightarrow	
Dwyer, 2004 (C)	2.02	(0.58 to 7.08)						•		<i></i>	
Matichard, 2004 (C)	1.46	(0.24 to 8.86)						•		\rightarrow	
Kennedy, 2001 (C)	3.66	(1.31 to 10.21)								● →	
Palmer, 2000 (C) †	-	-									
Ichii-Jones, 1998 (C) •	1.90	(0.76 to 4.79)					_				
					-						
			0	.2	0.4	0.6	1.0	2.0	3.0	4.0 5.	0 (OR)

MC1R (rs1805007): T vs C

All studies ø All excl HWE violations	OR 1.83 1.82	95% Cl (1.56 to 2.15) (1.55 to 2.15)	² 69 71
Study specific ORs			
Kanetsky, 2010 (C)	1.96	(1.34 to 2.86)	
Duffy, 2009 (C) †	_	-	
Scherer, 2009, Spain (C)	2.70	(1.65 to 4.44)	
Scherer, 2009, Germany (C)	1.73	(1.32 to 2.27)	
Council, 2009 (C)	0.94	(0.51 to 1.74)	
Haskel-Galore, 2009, Non-Askhenazi (O) ;	-	-	
Haskel-Galore, 2009, Israel Askhenazi (C)	2.88	(1.50 to 5.56)	
Hoiom, 2009 (C)	1.76	(1.38 to 2.25)	
Brudnik, 2009 (C)	0.81	(0.42 to 1.59)	
Guedj, 2008 (C)	2.18	(1.67 to 2.86)	
Gudbjartsson, 2008, Spain (C)	2.65	(1.63 to 4.30)	
Gudbjartsson, 2008, Iceland (C)	1.11	(0.93 to 1.32)	
Gudbjartsson, 2008, Sweden (C)	2.32	(1.74 to 3.10)	
Fernandez, 2007 (C)	1.46	(0.55 to 3.83)	
Mossner, 2007 (C)	1.60	(1.09 to 2.33)	
Debniak, 2006 (C)	1.88	(1.50 to 2.36)	
Han, 2006 (C)	2.06	(1.47 to 2.88)	
Stratigos, 2006 (C) #	2.32	(0.85 to 6.38)	
Fargnoli, 2006 (C)	3.16	(1.13 to 8.87)	
Landi, 2005 (C)	3.05	(1.68 to 5.54)	
Dwyer, 2004 (C)	0.93	(0.56 to 1.55)	
Matichard, 2004 (C)	4.68	(1.56 to 14.08)	
Kennedy, 2001 (C)	1.75	(1.00 to 3.08)	
Palmer, 2000 (C) • †	-	-	

MC1R (rs1805008): T vs C

	OR	95% CI	²	
Caucasian studies	1.54	(1.33 to 1.79) (1.32 to 1.78)	67 67	—
Study specific ORs				
Kanetsky, 2010 (C)	1.44	(1.02 to 2.04)		_
Duffy, 2009 (C) †	_	/		
Scherer, 2009, Spain (C)	3.08	(1.57 to 6.01)		· · · · · · · · · · · · · · · · · · ·
Scherer, 2009, Germany (C)	1.73	(1.32 to 2.27)		_
Council, 2009 (C)	2.27	(1.26 to 4.10)		
Haskel-Galore, 2009, Non-Askhenazi (O)	11.12	(0.57 to 217.91)		
Haskel-Galore, 2009, Israel Askhenazi (C)	1.50	(0.68 to 3.31)		
Hoiom, 2009 (C)	1.69	(1.35 to 2.10)		
Brudnik, 2009 (C)	0.98	(0.58 to 1.64)		
Guedj, 2008 (C)	1.76	(1.31 to 2.36)		
Gudbjartsson, 2008, Spain (C)	1.88	(1.10 to 3.21)		
Gudbjartsson, 2008, Iceland (C)	0.87	(0.74 to 1.04)		
Gudbjartsson, 2008, Sweden (C)	1.70	(1.44 to 2.00)		
Fernandez, 2007 (C)	5.82	(1.20 to 28.25)		
Mossner, 2007 (C)	1.32	(0.91 to 1.90)		
Debniak, 2006 (C)	1.30	(1.06 to 1.58)		
Han, 2006 (C)	1.26	(0.88 to 1.81)		
Stratigos, 2006 (C)	2.08	(0.49 to 8.80)		
Fargnoli, 2006 (C)	1.52	(0.53 to 4.36)		
Landi, 2005 (C)	1.04	(0.41 to 2.65)		
Dwyer, 2004 (C)	1.83	(1.11 to 3.02)		
Matichard, 2004 (C)	3.28	(1.18 to 9.12)		
Kennedy, 2001 (C)	1.46	(0.96 to 2.22)		
Palmer, 2000 (C) • †	-	-		

1.0

0.6

2.0 4.0 6.0

10.0 (OR)

MC1R (rs1805009): C vs G

J

	OR	95% CI	2	
All studies	1.89	(1.51 to 2.38)	42	
All excl initial	1.96	(1.55 to 2.47)	42	
Study specific ORs				
Kanetsky, 2010 (C)	2.43	(1.23 to 4.79)		
Duffy, 2009 (C) †	-			
Scherer, 2009, Germany (C)	1.95	(1.05 to 3.62)		
Scherer, 2009, Spain (C)	2.70	(1.65 to 4.44)		
Council, 2009 (C)	5.47	(1.13 to 26.60)		
Haskel-Galore, 2009, Israel Askhenazi (C)	2.96	(0.10 to 88.72)		4
Haskel-Galore, 2009, Non-Askhenazi (O)	-	-		
Hoiom, 2009 (C)	1.93	(0.89 to 4.21)		
Brudnik, 2009 (C)	0.57	(0.10 to 3.12)		٠
Guedj, 2008 (C)	2.32	(1.56 to 3.43)		
Gudbjartsson, 2008, Iceland (C)	0.99	(0.65 to 1.50)		
Gudbjartsson, 2008, Sweden (C)	2.11	(1.33 to 3.33)		
Gudbjartsson, 2008, Spain (C)	2.55	(1.47 to 4.41)		
Fernandez, 2007 (C)	3.96	(1.50 to 10.46)		
Mossner, 2007 (C)	1.41	(0.62 to 3.25)		
Han, 2006 (C)	2.40	(1.28 to 4.50)		
Fargnoli, 2006 (C)	12.40	(0.69 to 223.55)		
Landi, 2005 (C)	1.93	(0.71 to 5.28)		
Dwyer, 2004 (C)	0.46	(0.17 to 1.23)		٠
Matichard, 2004 (C)	2.65	(0.69 to 10.14)		
Kennedy, 2001 (C)	1.25	(0.24 to 6.51)		
Palmer, 2000 (C) †	-	_		
Ichii-Jones, 1998 (C) •	1.15	(0.58 to 2.29)		
				-

SLC45A2 (rs16891982): C vs G

TYR (rs1126809): A vs G

 OR
 95% CI
 I²

 All studies
 1.22
 (1.14 to 1.31)
 29

 All excl initial
 1.25
 (1.12 to 1.40)
 21

Study specific ORs

Duffy, 2009 (C) †	-	-
Bishop, 2009, GenoMEL REP1 (C) ¶	1.34	(1.17 to 1.54)
Bishop, 2009, Leeds REP2 (C) ¶	1.22	(1.06 to 1.40)
Fernandez, 2008 (C)	1.01	(0.72 to 1.43)
Gudbjartsson, 2008, Spain (C) ·	1.15	(0.93 to 1.41)
Gudbjartsson, 2008, Iceland (C) ·	1.13	(1.02 to 1.26)
Gudbjartsson, 2008, Sweden (C) ·	1.32	(1.18 to 1.48)

TYR (rs1042602): A vs C

	OR	95% CI	12
All studies	0.95	(0.90 to 0.99)	0
All excl initial	0.94	(0.89 to 1.00)	0

Study specific ORs

Duffy, 2009 (C) †	-	-
Bishop, 2009, GenoMEL REP1 (C) ¶	0.89	(0.78 to 1.02
Bishop, 2009, Leeds REP2 (C) ¶	0.93	(0.82 to 1.06
Bishop, 2009, GenoMEL GWAS (C) ¶	0.93	(0.85 to 1.02
Nan, 2009 (C)	1.17	(0.94 to 1.46
Council, 2009 (C)	1.03	(0.77 to 1.37
Fernandez, 2008 (C)	0.97	(0.72 to 1.31
Gudbjartsson, 2008, Spain (C) •	0.93	(0.77 to 1.13
Gudbjartsson, 2008, Iceland (C) ·	0.90	(0.81 to 1.01
Gudbjartsson, 2008, Sweden (C) •	1.01	(0.90 to 1.13

TYR (rs1393350): A vs G

	OR	95% CI	12		- T			î		
All studies	1.27	(1.16 to 1.39)	35							
All excl initial	1.30	(1.21 to 1.39)	0				-			
Study specific ORs								Ì		
Bishop, 2009 [Replication GenoMEL (REP1)] (C) ¶	1.40	(1.21 to 1.62)						-		
Bishop, 2009 [Replication Leeds (REP2)] (C) ¶	1.22	(1.06 to 1.40)				-	-			
Bishop, 2009 [GWAS] (C) ¶	1.30	(1.18 to 1.43)								
Nan, 2009 (C) •	1.06	(0.84 to 1.33)	-		-	•		<u> </u>		
				_	-			· · · ·	_	
				0.9	1.0	1	1.2	1.4	1.6	(OR)

Ν

TYRP1 (rs1408799): T vs C

Р

VDR (rs1544410): A vs G

	OR	95% CI	P
All studies	0.89	(0.82 to 0.97)	24
All excl initial	0.88	(0.80 to 0.98)	39

Study specific ORs

Gapska, 2009 (C)	0.94	(0.83 to 1.07)
Randerson-Moor, 2009, UK (Leeds CCS2) (C)	0.83	(0.68 to 1.02)
Randerson-Moor, 2009, UK (Leeds CCS1) (C)	0.99	(0.84 to 1.16)
Li, 2008 (C)	0.86	(0.75 to 0.99)
Santonocito, 2007 (C)	0.60	(0.40 to 0.90)
Han, 2007 (C) •	0.89	(0.72 to 1.12)

CLPTM1L (rs401681): T vs C

All studies ø

OR 95% CI I² 1.15 (1.08 to 1.22) 27

Study specific ORs

Pooley, 2010 (C) ¶	0.99	(0.84 to 1.17)
Stacey, 2009, Iceland (C)	1.13	(1.00 to 1.26)
Stacey, 2009, Sweden (C)	1.22	(1.10 to 1.35)
Stacey, 2009, Spain (C)	1.13	(1.00 to 1.28)
Stacey, 2009, Holland (C)	1.17	(1.04 to 1.32)
Stacey, 2009, Austria (C)	0.99	(0.76 to 1.29)
Stacey, 2009, Italy (C)	1.33	(1.11 to 1.61)
Rafnar, 2009 (C) • ‡	-	_
Rafnar, 2009 (C) • ‡	_	-
Rafnar, 2009 (C) • ‡	-	-

R

MYH7B (rs1885120): C vs G

All studies ø	OR 1.59	95% Cl (1.41 to 1.79)	² 0				-		
Study specific ORs									
Debniak, 2010 (C)	1.47	(1.14 to 1.88)				-	-		
Bishop, 2009 [Replication GenoMEL (REP1)] (C) ¶	1.55	(1.22 to 1.97)							
Bishop, 2009 [Replication Leeds (REP2)] (C) ¶	1.61	(1.30 to 1.99)							
Bishop, 2009 [GWAS] (C) †	-								
Brown,2008 [GWAS] (C) ‡	-	-							
Brown, 2008 [Q2-Replication] (C)	1.72	(1.36 to 2.18)							
Brown, 2008 [A1-Replication] (C) • ‡	-	_							
				<u> </u>					_
			1	1.0	1.2	1.4	1.6	1.8	2.0 (OF

PIGU (rs910873): A vs G

S

Supplementary Figure 2. Forest plots of random-effects meta-analyses using allelic contrasts for polymorphisms showing statistically nominally significant (*P* < .05) summary odds ratios (ORs). Random-effects summary odds ratios and 95% confidence intervals (CIs) were calculated by the DerSimonian Laird model (29). Data from reports published before July 31, 2010 were included in the meta-analyses for A) *ASIP* (rs6058017), B) *CDKN2A* (rs11515), C) *CDKN2A* (rs3088440), D) *MC1R* (R213W), E) *MC1R* (rs11547464 [R142H]), F) *MC1R* (rs1805005 [V60L]), G) *MC1R* (rs1805006 [D84E]), H) *MC1R* rs1805007 (R151C), I) *MC1R* (rs1805008 [R160W]), J) *MC1R* (rs1805009 [D294H]), K) *SLC45A2* (rs16891982), L) *TYR* (rs1126809), M) *TYR* (rs1042602), N) *TYR* (rs1393350), O) *TYRP1* (rs1408799), P)

VDR (rs1544410), **Q**) *CLPTM1L* (rs401681), **R**) *MYH7B* (rs1885120), and **S**) *PIGU* (rs910873). All studies and All excl initial denote the summary odds ratios and 95% confidence intervals after meta-analysis of all studies displayed on the forest plots, and after exclusion of the initial study, respectively. The dotted vertical line indicates the summary odds ratio of the meta-analysis of All studies. I² was calculated by the estimate of percentage of between-study heterogeneity that is beyond chance. GWAS = genome-wide association studies, HWE = Hardy Weinberg Equilibrium. • denotes the initial study. † No data was provided or data was not eligible for inclusion in the meta-analysis. ‡ This dataset was excluded from the meta-analysis because of overlap of patients and/or control subjects in this study with subjects included in another study for the same polymorphism. # A Hardy-Weinberg violation was observed in the controls ($P \le .05$). ¶ The published odds ratio and 95% confidence interval were used for analysis. i The polymorphism was monomorphic in the respective dataset. ø Meta-analysis of this polymorphism after excluding the initial study was not applicable because of missing data for the initial study or less than three remaining datasets after exclusion of the initial dataset. C indicates the population was of European ancestry. O indicates the study population was of other or mixed ethnicity.

Supplementary Figure 3

Supplementary Figure 3. Comparison of the number of variants, as well as the number of statistically and nonstatistically significant results between previously published meta-analyses and meta-analyses performed for this study as of July 31, 2010. SNPs = number of single nucleotide polymorphisms, S = nominally statistically significant results (P < .05), NS = non-statistically significant results, $P < 1x10^{-7}$ = single nucleotide polymorphisms that reached genomewide significance.