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Appendix A: Simple birth-death process with no
fitness fluctuations, and its continuous limit

In this Appendix we derive the steady-state clone size
distribution for a system that does not experience any
environmental stimulation or noise, but is governed by a
birth death process. We will show that the small number
fluctuations arising from the discrete nature of birth and
death are not sufficient to explain the observed distribu-
tions. We also show that our choice of a continuous birth
death process is equivalent to its discrete version.

The multiplicative birth—death process corresponds to
the following discrete dynamics:

Al
P(n—n—1) =vndt, (A1)

{P(n —n+1) = pundt
where p is the division rate, v the death rate. We assume
that the population of cells of size n is maintained out
of equilibrium by a source of new cells. The steady state
solution for cell numbers above the value of the source
satisfies detailed balance

P(n)pn = P(n+ 1)v(n+1) (A2)
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FIG. S1: We compare results from a full Gillespie simulation
(blue crosses) of a system with only birth-death dynamics
with analytical prediction for a discrete system (black crosses,
Eq. A3) and a continuous system (red curve, Eq. A12). The
prediction with discrete variables is more accurate for small
clones but the behaviour of all systems is the same for large
populations. The parameters are v = 1.45 day ™!, u = 1.5
day™', Co = 2 and we introduce 2000 new clones per day.

and, assuming the death rate is larger than the birth rate,
takes the form

P(n) ~ E67”10g vin,
n

(A3)

The continuous counterpart of this discrete stochastic
process corresponds to the following linear-noise approx-
imation:

0:C; = foCs +/(n+v)Ci&,

where (&;(t)&i(t")) = d(t —t') and fo = p—v < 0 (and
we use the Ito convention ). In terms of x = log C the
Langevin equation is

(A4)

O = fo+Vut+ve "2 —e " ks V),

5 (A5)

and the corresponding Fokker-Planck equation reads

Op = 0u(—fop)+03 <M ; Vexp) +0s <empu2+y> +s(z),
(A6)

where s(x) is the distribution of sizes of newly arriving
clones. At steady state, we find

+v o,
K — scb(z —x0) = —fop + = 5 € ‘o (A7)
where K is an integration constant. Defining
Cm = (1 +v)/lfol) (A8)

for x < xy we obtain

p(r) = e_ez/CmK/ e%et /Cm = KCm(l—e_(ew_l)/cm)
0

(A9)
and for z > x

p(l‘) _ efem/CmOm [Keem/cm 7K€1/Cm (AIO)
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To ensure convergence we set K = s¢ /(] fo|Crn) and the
steady solution of the Fokker-Planck equation is

%(1 — e (€ =D/Cmy Vif g < g
p(l‘) - i(eezo/cm _ ec;l)e_ez/cm, if ¢ > o

[fol
(A11)
or in terms of the clone size
La- e*(C*U/CT") if C <Cy
c)=<°¢ R Al12
r(C) {(ecﬂ/cm —eCnly e i O > O (412)



This result is exactly equivalent to that of Eq. A3 when
v—p = |fo| < p,v. The accuracy of the approximation is
verified in Fig. S1. Even for very large exponential cutoff
values, Cp,, the apparent exponent is a« = 0, correspond-
ing to a flat cumulative distribution. This distribution is
inconsistent with experiments, regardless of sequencing
depth and we conclude that pure birth-death noise is not
sufficient to explain the observed distributions.

Appendix B: Effects of explicit global homeostasis

In the simulations of clone dynamics in a fluctuating
environment presented in the “Clone dynamics in a fluc-
tuating antigenic landscape” Results section of the main
text, we did not explicitly include a homeostatic control
term, but tuned the division and death rates to achieve
a given repertoire size. Here we add an explicit homeo-
static term to the growth and degradation terms in the
Langevin simulations described by Eq. 1 of the main text

Bty o)

where N is a carrying capacity, h is the homeostatic con-
stant multiplicator and r is the exponent of homeostatic
response that described the sharpness of the response
when approaching then carrying capacity limit. Com-
paring in Fig. S2 the resulting clone size distribution
obtained with the explicit homeostatic term to the dis-
tribution from the simulations in the main text, we see
that the explicit homeostatic term does not have an effect
on the form of the distribution. It does have an effect on
the trajectory of certain clones, and in particular on the
response of the system to a very large invasion, making
it an important feature of the dynamics of the immune
system. However, as shown by the results in Fig. S2 its
net effect on the clone size distribution can be taken into
account by tuning division and death. When consider-
ing specific trajectories in the mean field approximation
homeostatic control will add a systematic negative drift
to the clonal population and can be accounted for by an
additional contribution to fj.

Appendix C: Details of noise partition do not
influence the clone size distribution function

In the simulation of the dynamics of receptors expe-
riencing a clone-specific fitness presented in the “Clone
dynamics in a fluctuating antigenic landscape” Results
section of the main text we distributed the noise be-
tween the different random distributions: the poisson
distributed number of new antigens (s ), the variance of
the initial concentrations (a; o) and the variance of the
binding probability (the values of K;;). We made specific
choices for this reparation by picking specific parameters
of the random processes. Here we show that these specific
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FIG. S2: Adding an explicit homeostatic control term does
not affect the clone size distribution compared to tuning the
degradation and death rates to obtain a given repertoire size
as is done in the main text. Comparison of the clone size
distribution with an explicit homeostatic control term given
by Eq. Bl (black line) to the distribution presented in the
main text (red line). We simulate the Langevin equation for
a division rate v = 0.2 days™', death rate u = 0.4 days™!,
introduction size Cy = 2, environmental correlation time of
A~! = 0.5 days and an amplitude of variations of the environ-
ment A = 1.41 days™' without any homeostatic control for
the red curve and with carrying capacity N = 4-10'% (h = 1)
and a homeostatic exponent r = 3 for the black curve.

choices of repartitioning the contributions to the noise do
not influence the clone size distributions. Fig. S3 com-
pares clone size distributions obtained with different val-
ues of the poisson distributed number of newly arriving
antigen N, and the variance of the Gaussian distributed
binding probabilities K;;, reproducing the same distribu-
tions in both cases.

Appendix D: Model of temporally correlated
clone-specific fitness fluctuations

In the “Simplified models and the origin of the power
law” Results section of the main text we make a series
of approximations to effectively describe the dynamics of
immune cells: we first approximate the antigenic environ-
ment by a random process with time correlated (colored)
noise and we later neglect these temporal correlations.
In this section and Appendix F we give the details that
lead to the specific forms of the effective equations. In
this Appendix we derive the Fokker-Planck equations for
the time correlated noise model. In Appendix F we will
consider the limit of an infinitely quickly changing envi-
ronment.

The Langevin equations describing the dynamics of
cells experiencing clone specific fitness fluctuations with
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FIG. S3: Repartitioning the sources of stochasticity between
the number of new antigens per time unit or the variability of
binding probabilities does not influence the clone size distri-
butions. We compare simulations of the full system dynamics
defined by Eq. 1 of the main text with two sets of values
sa of the poisson distributed number of newly arriving anti-
gen N, and the variance of the Gaussian distributed binding
probabilities K;; that give the same total environmental noise
A? = sapad(K?)X\™'. The parameters were taken to be (as
in Fig. 1) sc = 2000 day™* , Co = 2, day™*, aj0 = ao = 1,
A=2day !, p=10"", v = 098 day~ !, p = 1.18 day .
For the red curve the variance of the entries of Kjj; is 1, so
that (K2) = 2 and sa = 1.96 - 107 while for the black curve
the variance of the entries of K;; is 3, so that (K?) = 4, and
sa =0.98-107.

a finite correlation time are

dcgi = [fo + fi(D)]Ci(t) + /(v + u)Ci(t)&i(t), (D1)
P A+ VM) 02)

where (&;(¢)&;(t')) = 6(t —t') represents birth death noise
in the linear-noise approximation (with the Ito conven-
tion) and (n;(t)n;(t")) = 6(t — t') is the noise of anti-
genic environment. The autocorrelation function of this
Ornstein-Uhlenbeck process is

’ 72 72 ,
mmmwwwA“”<m@%A>+A€Wt“
(D3)
We pick the steady-state value of the initial fitness dis-

tribution to cancel the first in Eq. D3, (f;(0)?) = +2/A
and obtain

(e = Lo, on

(conditioned on the integral of the net growth rate f+ fo
being positive so that the clone does not go extinct). Set-

15

ting z = log C, we obtain a new set of Langevin equations

O = fo + fi+ T w2 — o Y s
df;
d*J; = —\fi + V2, (D6)

where the birth-death noise is now treated in the Ito
convention. The corresponding Fokker-Planck equation
for the distribution of fitness and clone size at time %,
p(z, f,t), verifies

Op = 0u(—fop) + Or(Nfp) + 0F(v*p) +

+v _ _ + v
83<u2 ¢ w")wz(e " )

+S(x’ f)?

(D7)

where s(z, f) is the source of new clones. We solve this
equation numerically using finite element methods to ob-
tain clone size distributions for the clone-specific fitness
model.

Appendix E: The Ornstein Uhlenbeck process and
maximum entropy

In this Appendix we show that the maximum en-
tropy or maximum caliber process with autocorrelation
function (z(t)z(t + s)) = A%e~ sl corresponds to the
Ornstein-Uhlenbeck process. We consider this continu-
ous maximum entropy process as the continuous limit
of a simpler maximum entropy system in discrete time.
Burg’s maximum entropy theorem [1] states that the
maximum entropy process in discrete time that con-
strains (X, (t)?) = A? and (X, ()X, 11(t)) = A%2e >
corresponds to the following Markovian dynamics:

Xnt1 = eiATXn +Vv1- 6_2’\71477’

where 7 is Gaussian white noise. In the limit of 7 — 0
we recover the constrained autocorrelation function in
the vicinity of s = 0%: (z(t)?) = A2, (d/ds)(x(t)z(t +
8))|s—o+ = —AA2, and Eq. E1 converges to an Ornstein-
Uhlenbeck process.

(E1)

Appendix F: Model solution for white-noise
clone-specific fitness fluctuations

In the limit of infinitely quickly fluctuating environ-
ments, v — 400 and A — +oo while keeping their ra-
tio 0 = 7/ constant, the autocorrelation of the fitness
noise approaches a Dirac delta function, and the fluctu-
ating part of the growth rate f;(t) converges to Gaussian
white noise, (fi(t)f;(t')) = 2026(t — t'). Effectively the
immune cell dynamics are now described by a one dimen-
sional Langevin equation for the clone size

0:C; = foCi + \/50’01"01‘ + (V + ,U,)Cl(t) i (Fl)
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FIG. S4: Comparison between clone size distribution obtained
as solutions of the time-correlated and time-uncorrelated
noise models (without birth death noise). As the values of
the dimensionless parameter related to the effective strength
of antigen fluctuations relative to their characteristic lifetime
A3 /~? grow the time correlated noise prediction converges to
the exact power-law solution of the white-noise model. The
cut-off value of the power law decreases with A\* /4. All sim-
ulations performed at a constant value of a = |fo|A\?/7? set
to 0.5. The value of fo is kept fixed to —0.5 days™! for all
solutions.

where (n;(t)n;(¢')) = 6(t — t') follows the Stratanovich
convention and &; is as before. The equation for the log-
arithm of the clone size x = log C' is

. e+
iy = fo+\/§am+\/meﬂl/2§i—ele¥. (F2)

We explicitly checked that the numerical solution to
the clone specific fitness model in Egs. D1 and D2 con-
verged to the dynamics described by Eq. F1, as demon-
strated in Fig. S4.

We now solve this equation analytically, starting with
the case of no birth-death noise: Eq. F1 simplifies to

0,C; = foC; + \/50'01'17,' (F3)

The equation for = log C' (using the Stratanovich con-
vention) is

i = fo+ V2om;, (F4)
with the corresponding Fokker Planck equation
1
Oup(w,t) = 0n(= fop) + 505120 0up] + s(x),  (F5)

where s(z) is the source term describing the size of newly
introduced clones. Assuming a constant initial clone size,
s(z) = scd(x — zp), the steady state solution is

1
plx) =e "= [Ke‘” — K — sco?e™ + 50026"’”0] ,
a
(F6)
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FIG. S5: We compare simulations of the Langevin dynamics
with time correlated antigenic noise with birth-death noise
(black line) to the same dynamics without the birth-death
noise (red line). All other parameters are kept fixed.We find
similar values of the power law exponents but different small
clone behaviours. The parameters are v = 0.2 day ™, u = 0.4
day™*! (for red curve simply fo = —0.2day™"), Co =2, A =2
day ! and v =1 dayf?’/2

where we have defined

= |f0|/027

and K is an integration constant. Imposing that p van-
ishes at infinity sets K = sco? and the final form of the
steady state clone size distribution is

(F7)

2L (1—e ) if x < g
ple) = e (FS)
e (e 1) if > xo,
or in terms of clone size C' = e*,
c) — e 1-as) fC<Co Fo
p(C) = so 1 (1 OS> C (F9)
e (o — 1) i C > Co.

In all simulations and solutions we find that for large
clones, the model of temporally correlated fitness fluctua-
tions behaves as the its white noise limit. This behaviour
can be explained by the fact that large clones need a long
time to become large. At these long timescales, the char-
acteristic time of noise correlation is negligible and the
noise may be approximated as white. For this reason,
the exponent « of the power law computed assuming a
white noise for the fitness fluctuations is still valid even
when that noise is actually correlated in time.

Next, we re-introduce the birth-death noise and solve
the general equation. The Langevin equation for = =

log C,

Oy = fo+ V20 + i+ ve "7 — e‘g”w (F10)



results in the Fokker-Planck equation for the distribution
of clone sizes

1 +v _,
Op = 0 (—fop) + 531[2026wp] + 02 (N 5 ¢ p)

+8, <e$p’“;”> + ().
(F11)

Assuming that the initial size is constant, the steady state
solution is given by the solution of the inhomogeneous
linear equation:

VALY

K —scb(x —x0) = —fop+02p 4+ ¢ (F12)

The full solution is the sum p = pg + p1 of the particular
solution,

K
= for x < x¢
= ¢ lfol ’ F13
po(x) {KSC for > x¢ (F13)
[fol ’
and the solution p; to the homogeneous equation
_pHFV
fopr = o%pi +e MTPQ (F14)
of solution:
T (ptr) ¢
e’ + 5=
prlz) =K' | — 20| (F15)
with o = |fo|/0?. Therefore, for x > x
T (utr) ]~
e’ + 5o K-
ple) = K' | — 22 222 (F16)
1+ gT |f0|

we set K = s for convergence and obtain the steady state
clone size distribution for large x

. ptv]
= |e* F17
o) = |+ 552] (F17)
or in terms of the clone size
1
O oo e o

We see that the white noise solution with birth—death
noise has the same large clone power law behaviour as
without birth—death noise. Fig. S5 illustrates how birth
death noise in the clone-specific fitness models with time
correlated noise also does not affect the power law expo-
nent but only the cut off of the power law.

Appendix G: Data analysis

In the main text we report values of the power law
exponents and power law cut off values obtained from

the high throughput sequencing repertoire study of clone
size distributions of zebrafish B-cell heavy chain receptors
of Weinstein et al. [2]. We extracted the power law
exponent and the best fit for the starting point of the
power law, defined as its lower bound cutoff, from the
discrete clone size distributions plotted in Fig. 1 of the
main text using the methods discussed by Clauset and
Newman [3]. Specifically, for each point of the cumulative
clone size distribution we compute an estimate of the
power law exponent with that point as cutoff (i.e the
best fit of the power law including only the values of the
distribution above that point) using

Z log < Cf]iin )

=1

a(Cpin) =14+n , (G1)

where Chi, is the cut off and n is the number of points
with y-axis values above Ci,n. For each of these cut-off
values we compute the Kolmogorov-Smirnov distance be-
tween the data and the estimated power law distribution:

(G2)

d(Cmin) = maxc>c Fd(C) - Fe(o; Omin)'

min

where the maximum is taken over all values above the
cut off Cinin, Fy is the cumulative distribution function
(CDF) of the data and F.(C;Cpiy) is the CDF of the
estimated power law distribution with C,;, as a cutoff,
using Eq. G1. The the cut off is taken to be the minimum
of this distance over all possible cut off values and the
exponent is the exponent found for this value.

The obtained power law parameters are presented in
Table I. The power law exponent gives reproducible val-
ues for different individuals and agrees with values of the
same exponent obtained from human data [4]. We note
that the power law exponent of the cumulative distri-
bution function is « for a power law distribution with
exponent 1 + a. As discussed in detail in the main text,
the reliability of the cutoff estimate C* is sensitive to ex-
perimental precision of capturing the rare clones. In the
presented dataset the reads were not barcoded and the
counts had to be renormalized by a known PCR amplifi-
cation factor. Therefore, these normalized counts could
not to used as normal counts, making the definition of
a cut-off clone size problematic. To overcome this prob-
lem, we estimate the power law cut-off from the value of
the cumulative distribution function at the cut-off clone
size (instead of the cut-off clone size itself). That value
is invariant under rescaling of absolute clone size values,
unlike C*.

We notice that the steady state solution is invariant
under a full rescaling of time in the equations of the dy-
namics. This means that the system can be described by
two dimensionless parameters, a = foA?/4% and A\3/~2,
and the introduction size Cy. Fitting o to data and as-
suming value for Cy, we can compare the value of the
power law cut-off in data and in simulations to fit the
remaining dimensionless parameter, A\3/v2. Estimating
fo based on thymic output we can predict the order of
magnitude of \ and .



Fish| 1+ « C*  |log(l1 — CDF(C™))
A |2.0591] 32.6445 - 3.1389
B 12.0214| 10.7231 -1.8644
C ]2.0708| 16.7386 -2.4655
D [2.0670| 14.9313 -2.1492
E 12.0529| 8.2685 -1.8332
F (2.0006| 5.8972 -1.6161
G [1.9867| 52.2909 -2.7329
H |2.2242] 32.1719 -2.6877
I |2.0835] 18.4385 -2.2757
J 11.6907| 44.4885 -2.2877
K [1.7641| 3.6030 -0.9907
L [1.9417| 18.5298 -2.2730
M |1.9901| 18.5531 -2.2031
N |1.8877]108.4732 -2.7984

TABLE I: Fit of the power law exponent of the clone size
distribution 1+« and power law cut-off value C* for zebrafish
B-cell heavy chain D segment data from Weinstein et al [2]
presented in Fig. 1. The fit for 14 fish (named A to N) shows
a similar fit of the power law exponent.

Appendix H: Cell specific simulations

In the “A model of fluctuating phenotypic fitness” Re-
sults section of the main text, we present results of
Fokker-Planck simulations for the cells dynamics. Here
we verify that the stochastic dynamics of cells subject to
a fluctuating cell-specific fitness are well approximated at
the population level by a Fokker-Planck equation with a
source term accounting for the import of new clones by
comparing its numerical steady-state solution obtained
by a finite elements method to explicit Gillespie simu-
lations. We simulated the dynamics of clones using a
Gillespie algorithm where cell division and death are ac-
counted for explicitly and depend linearly on a fitness
fe(t) fluctuating according to Eq. 7. The death rate is
kept constant (above the average birth rate) and the fluc-
tuations of the fitness only affect the birth rate (with the
constraint that the birth rate is always positive). The
agreement between the results of this detailed simulation
and the Fokker-Planck solution, shown in Fig. S6, vali-
dates the linear-noise approximation for the birth-death
noise as well as the averaging argument leading to Eq. 8
and 9. This allows us to rely on the Fokker-Planck solu-
tion to explore parameter space.

Appendix I: Model of cell-specific fitness
fluctuations, and its limit of no heritability

The cell specific fitness model described in the “A
model of fluctuating phenotypic fitness” Results section
of the main text arises as a description of a population
where each cell experiences its own growth fluctuations

Cumulative distribution
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10 — Numerical solution to Fokker Planck
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FIG. S6: Comparison of the Fokker-Planck solution (red line)
and explicit Gillespie simulations of the dynamics (blue line)
for the cell specific fitness model discussed in the “A model
of fluctuating phenotypic fitness” Results section of the main
text, show good agreement allowing us to use the population
level Fokker-Planck solution to explore parameter space. Pa-
rameters were taken to be v = 0.5 day !, p = 0.8 day ™!,
Co=2,A=4 daysf1 and v, =4 day73/2.

but cells deriving from the same lineage remain corre-
lated. In this Appendix we derive the equations that
describe the dynamics of clones in this system.

Each cell ¢ experiences a time-correlated multiplicative
noise from environmental growth factors. For cells j in a
given cell lineage (or clone) 4, each individual cell’s fitness
follows the stochastic dynamics:

8tfc(t) = _)\cfc + \/5’70776 (Il)

where (n.(t)n.(t")) = 6(t —t'). Averaging over all cells in
the clone, we obtain

0:C; = foCs + fiCi + \/(p+v)Ci&;

/2 12
atfi = *)\cfi + 5%7%» ( )

where f; is the average fitness in clone ¢

£l = 5 L 1.0 (13)

cEl

and where we have added a birth-death noise term
V(i +v)Ci&. We use the Ito convention for the birth-
death noise, (&;(¢)¢;(t')) = d(t —t') and the Stratanovich
one for the environmental noise (n;(t)n;(t")) = 6(t — ).
The equivalent equations for x = log C' are

Orri = fo+ fi+Vntve TP —e
Ofi = —Nefi +V2e 2y (15)

e BtV
)



Cumulative distribution

10_ 1 ‘2
10 10 10 10 10
Clone size C

FIG. S7: Varying the dimensionless parameter related to the
effective strength of antigen fluctuations relative to their char-
acteristic lifetime A®/~? does not affect the exponent of the
power law if the ratio between exponential decay A and stan-
dard deviation of the variation = is kept constant. For all
three curves the exponent is & = 0.8 and v = 0.5 days™!,
pu=0.8 days™!, Cop = 2 while X and ~ vary.

and the Fokker-Planck equation is

atp(t7 €T, f) = (fO + f)aLp + /\caf(fp) + 6703%3?/)
+ B o)+ B e )

+ s(x, f),

(I6)

where s(z, f) is the joint distribution of size and fitness
or newly arriving clones (from thymic or bone marrow
output). This is the full Fokker-Planck equation that
is solved numerically in the main text using the finite
elements method.

Because of the 1/4/C; prefactor in front of the noise
term, we could expect fitness fluctuations to behave like
a birth-death noise in the limit of low heritability (A, —
00). In the remainder of this Appendix we show that this
is not the case, and we show how to take the limit of no
heritability properly.

Consider the limit of A, — oo and 7. — 00, keeping the

— Poisson noise simulation
— Gaussian noise simulation
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FIG. S8: Large deviations can influence the effect of Poisson
noise on the simulated clone size distributions and create a
discrepancy between Poisson noise (red line) and the Gaussian
approximations (black line) we assume in the main text. The
discrepancy is most apparent for small clones. We simulated
the Langevin dynamics of the Gaussian model with v = 0.5
day ', p=1day ', Co=2,A=3day *andy=1 day3/2

and the same dynamics with Poisson noise and v = 0.5 day ™!,
p=1day™', Co =2, A=3day ! and sa = 107 day~!. In

both cases we introduce sc = 2000 new clones per day.

ratio 7./ constant, so that f does not become infinites-
imally small. The equation for the environmental stimu-
lation f in 2 = log C space is given by (in Stratanovich
convention)

8tf = _)\cf + ﬁ766_$/2n~ (17)
Direct integration gives
t
f@t) = \/5%/ e AU (W20 (4 ) du (I8)
0

and we divide the integral into two sub-integrals for £ > 0

£ = V27, /

k/Ae

t
e—kaue—w(t—u)/Qn(t _ u)du
(19)

E/Ae
—l—\/i’yc/ e~ Meuem W/ 2 (4 ) du.
0



With infinite precision, for any value of ¢, we set the
integral of 1 to be bounded and obtain the first integral
is with probability 1 — € smaller in norm than

\/i')/c\/iK(G)eik

where K (€) is a constant to control the variations of the
integral of & with probability e (the time factor for the
control of the integral is in the v/%).

The second sub-integral is

(110)

K/
\/5%/ e Mete =W/ 2t ) du
0

(111)
~ e*z(tf)/Qn(t)\/i%(l —e M.

We choose k = /A, and in the limit of A\, — oo and

~Ye — 00 keeping 7./\. = const we obtain the final form
of environmental fluctuations

F(t) = [255e7 ),

(I12)
where ¢~ means the left-hand limit. f(¢) depends only
on the past, which means that in z = log C' space the
noise is similar to a birth-death noise in the Ito conven-
tion. Yet in terms of clone sizes C' additional Ito terms
make the effect of environmental fluctuations different
from classical birth-death dynamics.

Appendix J: Model solutions for cell-specific fitness
fluctuations in the limit of no heritability

In this Appendix we solve the model of cell-specific fit-
ness fluctuations in the limit where trait heritability is
low. In this limit, the dynamics is described by a model
with an instantaneous random fitness that is uncorre-
lated for cells in the same clone. The resulting Langevin
equation reads:

re} .
= foCi+ QCInZ—F +\/u+u & (J1)

where all noise is treated in the Ito convention, and
where the extra term 72/\? comes the converting back
the low-heritability limit of the fitness fluctuations, given
by Eq. 112, into C = e* space. We note that although the
fitness and birth-death noise have very similar forms, the
birth-death noise is self-generated and intrinsic, while the
fitness noise is environmental and extrinsic. This small
difference greatly affects the steady-state clone size dis-
tribution.

To see this, we first consider the case of no birth-death
noise. In the cell-specific fitness model consider the fol-
lowing equations with the Stratanovich rule:

{@Q‘ = foC;i + fC},

J2
Oufi = —Acki + [ Erem 1)

and its equivalent for z = log(C)

atl‘i:fo—’—fi? e (J3)
atfi = _)\cfi +e @i/ Ve

In Appendix I we have shown that in the limit of A, — oo
and v, — oo, the system reduces to the one dimensional
equation

duwi = fo+ e 2V2 L, (J4)

with the Ito rule for the white noise 7;. The correspond-
ing Fokker-Planck equation is

Oup = O~ fop) + a[] -Wp]+s<> (35)

Assuming a deterministic introduction size s(x) =
scd(x — xg), at steady-sate we get

K — scf(a —x0) = —fop+ e "”Z;p’f 1;,)6 " (J6)

which for z > g is solved by

p(x) = e ¢ /CmtT I KEi(e® /Cp) — KEI(CY)  (J7)

x

Sc/\ e
CEi
’70 (Cm

sc)\ 69”0 )} 7

)+ (J8)

where K is an integration constant, E' is the exponential
integral function and

A2
Cm = o2’ (J9)

The divergence of Ei at infinity sets K = scA2/(
the clone size distribution is

o {Eie ) - B,
p( ) {(EZ( IO/C )

7e) and

D) e/ Cnte for < g
Ei(CY)) e Omt® for x> xq

(J10)
or in terms of z = log C

(©) = e C/Cm (Ei(C/Cp) — Ei(C,,iLl)) for C' < Cy
p ¢=C/Cn (Ei(e™ /C,y) — Bi(C3Y)) for C > Cy
(J11)
The validity of this solution is checked in Fig. S9 and the
convergence of the full solution of Eq. I6 (with no birth-
death noise) to the analytical solution in the limit of no
heritability (A, — oo) is show in Fig. S10.

For comparison, in a pure birth-death process (no
fitness fluctuations) the clone-size distribution is, for
C large enough, p(C) ~ e ¢/%m/C where C,, =
(u+v)/(2(n —v)), as shown in Appendix A. These two
solutions both have an exponential cutoff, but have very
different power-law exponents, corresponding to o = 0
and a = —1, respectively.
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FIG. S9: The result of a simulation of the Langevin equation
of the white noise cell-specific fitness model (blue line) com-
pared to the analytical prediction of Eq. J11 (red line) show
very good agreement. The parameters are v = 0.2 day !,

p=04day ', Co =2, \e =4 day " and v, = & day /2.
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FIG. S10: Convergence of the cell-specific fitness models
(Eq. 16) without birth-death noise to Eq. J11 in the limit
of no heritability (Ac — o0). For all four curves @ = 0.2.
Parameters used: v = 0.2 day ™', . = 0.25 day !, Cp = 2 and
1000 new clones introduced each day.

We now add the birth-death noise, i.e. consider both
types of noise, still in the limit of no heritability. The
corresponding Langevin equation reads:

2
Dpry = fo+/ju +ve T2 — e uTH + 6711‘/2%7]
C
X (J12)
where all noise is in the Ito convention. Integrating the
Fokker Planck associated to this equation gives at steady

10
c
S
3107
G
S
2
5 A31P=0.08
210° 59
E _ AP=0.32
© A3P=0.8
— C 'C
_s| —Analytical solutionin 1 D
10 0 ‘ 1 ‘ 2 ‘
10 10 10 10

Clone size C

FIG. S11: Convergence of the cell-specific models (Eq. I6)
with birth-death noise to the analytical result of Eq. J15 (red
line). Keeping constant a while A\ — oo and 7. — oo we
recover the solution of Eq. J15. Parameters are the same as
in Fig. S10

state condition

ptv 2l ., e .
K—s5c0(x—x0) = —fop+ [2 + )\g} e Tp —)\—ge 0.

(J13)
In order for p to be well defined we set K = s¢. For x >
xo the equation is homogeneous and solved by separation
of variables:

dp _,[ptv A2 v s

and gives the solution:

Ke C/Cm
p(C) = T (OlHa (J15)
with
A2\
a<1+(“;”2)0> : (J16)

which is a power-law with an exponent 0 < 1+ a«a <1
and an exponential cutoff

Lt A2
Cm:(/J'_V)1< 9 +)\2)

(J17)

The convergence of the solution of the full system, Eq. 16,
to this solution is checked in Fig. S11.

Appendix K: Dynamics of naive and memory cells

In this section we present our results on the division of
the population between naive and memory cells and its
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FIG. S12: Simulation results for clone and cell specific model with two cell compartments for naive and memory. Panels A to
D are results from clone-specific fitness model with a switching rate 6 from naive to memory taken to be infinite (the whole
clone switches instantly to memory when above a fitness threshold) and fitness threshold fuem = 1 day™'. Panels E to H
are results for a model with clone-specific fitness with a finite switching rate 6 = 0.05 days~' and fitness threshold fuem = 1
day~'. For both clone-specific simulations the parameters are: s¢ = 200 day~' , Co = 2, sa = 1.96 - 107 day ™', (a;0) = 1,
Var(ajo) =1, A =2 day™!, p=10""7, v = 0.98 day !, ;. = 1.18 day~'. Panels I to L are results from simulations of a model
with cell-specific fitness with a switching rate § = 0.25 and threshold fmem = 0.5. The other parameters are: s¢ = 10* day !,
Co=2 A =2day ! 7. =4 day=%/?, v = 0.5 day !, = 0.7 day~!. Panels A, E and I show the clone size distribution of
the whole population adding memory and naive contributions to each clone and the power law prediction from the white noise
model for clone-specific fitness. Panels B, F and J show the clone size distributions of the naive pool of cells compared to the
white noise prediction for the clone-specific fitness (B, F) and the full population distribution for the cell-specific dynamics (J).
Panels C, G and K show the clone size distributions of the memory pools (same comparisons as for naive). Panels D, H and
L show the fraction of memory cells in clones as a function of their rank (biggest clones have smallest ranks) as a histogram
for an infinite switching rate (because clones are either all naive or all memory) and as scatter plots for the two other types of

dynamics.

impact on the distribution of clone sizes. In our simula- However, our estimate of fy (which is the average division
tions and analysis so far we have always considered the rate minus the death rate) cannot be performed for sepa-
system to be uniform, because most of the data available rate groups of naive and memory cells without knowledge
at this time is not sorted into naive and memory /effector of their total population and the rate of conversion from
cells and because the main difference between naive and naive to memory cells. For these reasons we keep the
memory cells (higher stimulation of memory cells by same effective f; for the whole population.

binding events) is already included in our models.
We model the immune system with two pools of cells:

In principle, memory and naive cells could have a com- naive and memory/effector for both the clone-specific and
pletely different set of parameters. None of the values cell-specific fitness models. Clones from the naive pool
of these parameters are known with high, accuracy al- with fitness over a given threshold fien, turn irreversibly

though it emerges from all studies that memory cells have into memory cells at a certain rate 6 per day. In both
a higher turnover rate (or death rate p) than naive cells. cases the two pools have the same dynamics but mem-



ory cells have a higher turnover: the death rate p and
the basal birth rate v are higher in the memory pool
but their difference fy is unchanged. This means the
birth-death noise is higher in the memory pool. We find
that in the clone-specific fitness model it does not affect
the power-law exponent of the clone-size distribution,
but it does affect strongly the distribution (and more
specifically the cutoff value C,,) in the cell-specific fit-
ness model, as birth-death noise is of the same order of
magnitude as the environmental noise (Fig. S12).

In the clone-specific fitness model, we find that the dis-
tribution still displays power-law behavior with the ex-
pected exponent (Fig. S12A and E). For very high rates
of conversion from naive to memory we see that naive
cell distributions drop exponentially above a threshold,
as all high fitness clones are completely converted into
memory (Fig. S12B). For lower rates of conversion both
memory and naive pools have heavy tails and the mem-
ory pool has a higher power law cutoff for small values
(Fig. S12F and G). For the cell-specific fitness model we
find that the memory pool can have significantly heavier
tails (as its dynamics is much faster) and a higher cutoff
Cy, (a power-law like behavior in a wider range) than the
naive pool (Fig. SI2A-B-C). In all cases we recover that
naive clones are smaller than memory clones, or in other
words large clones are mostly made up of memory cells
(Fig. S12D-H-L).

Appendix L: Effects of hypermutations

In this section we show that including the effect of
somatic hypermutations in the clone-specific fitness dy-
namics does not change the power law behavior of the
distribution. We model the somatic hypermutations by
replacing a small fraction of the offspring of the fastest
expanding clones by new clones with binding affinities
close to the ones of their parents. For each clone such
that f; > fuyp, offspring with hypermutated receptors
are being produced with rate ry,y,. A large fraction rqel
of those are assumed to have acquired deleterious muta-
tions and are removed from the pool. The rest (fraction
1—7rge1) form new clones of size 1 (in our definition, which
differs from the usual convention for B cells, a clone is
a subset of cells with the exact same receptor sequence).
The interaction matrix K ; of each new, hypermutated
clone 7’ is formed from the interaction matrix K; ; of its
progenitor ¢ by changing each non-zero entry of K ; to:

Ky, — {0 with probability 1 — pnyp . (L1)
YK, ; + (1 — 1)+ onyp¢  otherwise,

where 1 is a parameter controling the heritability of the
values of the K entries, and pny, the probability that
the specificity to a given antigen is passed on to the hy-
permutated offspring; { is a Gaussian variable of mean
0 and variance 1. To compensate the loss of specificity,
zero entries of K; ; are assigned new, non-zero values of
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FIG. S13: We show the clone size distribution that results
from simulating a model of clone-specific fitness with somatic
hypermuations as described in Appendix L and Eq. L1. The
distribution exhibits clear power law behavior. Hypermuta-
tion parameters are: fny, = 4 days™1, Thyp = 0.01 days™?,
rdel = 0.01, phyp = 0.5, ¢ = 0.7 and opyp = 0.05. Other pa-
rameters are: sc = 200 day™!, Co =2, sa = 1.5-107 day !,
{aj0) = 1, Var(ajo) = 1, A =2 day™", p = 1073, v = 0.75
day™', p = 1.15 day~'. Non zero K, ; entries from thymic
output have mean 1 and standard deviation 0.3.

binding affinities with probability (1 — phyp)p (where we
recall that p is the probability for a given clone to be
specific to a given antigen), so that the number of non-
zero values of K remains the same on average. The value
of these new binding affinities are drawn completely at
random, as before (no inheritance).

A small part of the hypermutated clones branch out
and undergo affinity maturation, meaning that they are
selected generation after generation. Their fitness in-
creases until the environment varies enough for their
branch to be obsolete and decay back to low fitnesses.
The effect of hypermutations on the distribution depends
on the ratio between the speed at which hypermutated
lineages drift in fitness space and the time scale for vari-
ations of the environment (A71).

Somatic hypermutations add a source of stochasticity
in fitness and increase the number of large clones. Ac-
cordingly, simulations of the model with hypermutations
(see Fig. S13) show that the clone size distribution still
exhibits power law behavior, but with a lower exponent
(heavier tails) due to the extra stochasticity induced by
hypermutations.

Appendix M: Time dependent source terms and
aging

In this section we investigate the effect of a decaying
thymic output on the distribution of clones for the anti-
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FIG. S14: Results of a simulation of a model of clone-specific
fitness with a decaying source term and balancing decrease
of |fo| to keep the population size constant. A. The clone
size distributions at different time points maintains a power
law behavior with an exponent « that decreases with time.
B. Decay of the thymic output with time. C. Total number
of clones is decreasing with time. D. Total number of cells
is maintained by tuning the rate fy;. Parameters used are:
source decay timescale tau = 8.3 yr, sc,0 = 200 day ' , Cop =
2, sa = 1.5-107 day™', (aj0) = 1, Var(ajo) = 1, A\e = 2
day !, p=10"", v+ pu=19day "}, fo = —0.4 day ™' at time
t=0.

gen recognition based model. In all our simulations we
assume that the source of new clones (thymic output)
produces a number of clones that is on average constant
with time. It is an approximation since in humans or in
mice thymic output is high at birth and during growth
and slowly decreases during adult life. This decrease is
very slow compared to the time scales involved in this
analysis [5] and so within the time frames considered it
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can be considered constant. In this section we look at
the effect of this decrease over long time scales.

We model the decrease of thymic output with an expo-
nentially decaying (with time) source term. In real organ-
isms, homeostatic control ensures that the total number
of cells in the body is conserved during this reduction
of thymic output. We do not model this homeostatic
control explicitly, but rather tune the difference between
birth and death rates fj to keep the total population con-
stant on average, which we showed was equivalent (see
Fig. S2). Simple averaging of the dynamics shows that

M = ng + nc<fZC’z> + Sc

o (M1)

where n¢ is the number of clones in the system and N
is the total number of cells. Since our source term is
a function of time, to have on average a constant total
population size we need to define :

We show the results of a simulation in Fig. S14 with
sc = sc,oe_t/T, 7 = 8.3 yr. We recover results known in
humans and get predictions for the behavior of the ex-
ponent of the power law at different ages. We find that,
with the decrease of thymic output, the number of clones
is decreasing (Fig. S14C), meaning that clones become on
average fitter (i.e. better at recognizing antigens), but at
the expense of repertoire diversity. Keeping the popula-
tion constant (Fig. S14D) slowly decreases the decaying
rate of clones | fo| and so is expected to decrease the expo-
nent, which behaves as o = \|fy|/A%. Accordingly, simu-
lations show a clear power-law behavior in the clone-size
distribution (Fig. S14A), with the tail of the distribution
becoming heavier with age. We thus expect older organ-
isms with lower thymic output to have a larger tail in
their clone-size distribution. We predict thymectomy to
lead to distributions with very fat tails.
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