
Supplementary material

S1 Analysis of WHO data, 1980–2012

Yearly case counts and pertussis vaccine coverage estimates were extracted from the WHO database

for all years between 1980 and 20121. Yearly population data, available from the World Bank’s

development indicator2, were used to calculate yearly country-specific incidences. Estimated seg-

mented regression models and yearly trends in the 63 countries that met our inclusion criteria are

presented in Figures S1 and S2. Incidence data for the 43 countries that did not switch to aP are

presented in Figure S3; vaccination characteristics for countries that switched to aP are shown in

Table S1.
1http://www.who.int/immunization/monitoring_surveillance/data/en/, accessed 23 June 2014
2http://data.worldbank.org/data-catalog/world-development-indicators, accessed 23 June 2014
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Figure S1: Summary of segmented regression models in 63 countries that met our inclusion criteria
(population size >5 million and >80% complete case count). Number of slopes estimated in each
model, and sign of each estimated slope (red: significantly >0, blue: significantly < 0; grey: not
significantly different from 0) are indicated for each country. White rectangles indicates slopes that
were not estimated because the best model had fewer breakpoints.
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Figure S2: Summary of incidence trends in 63 countries that met our inclusion criteria (population
size >5 million and >80% complete case count). Yearly trends (red: significantly >0, blue: signif-
icantly < 0; grey: not significantly different from 0) are indicated for each country. For bottom to
top, countries are ranked by increasing year of first change in trend, if any.

3



Algeria Argentina Bangladesh Bolivia Brazil Burkina Faso Burundi

Cambodia Chile Colombia Cuba Dominican Republic Ecuador Egypt

El Salvador Ghana Guatemala Honduras India Indonesia Iran

Iraq Madagascar Mexico Morocco Myanmar Nepal Niger

Nigeria North Korea Pakistan Peru Philippines Poland Saudi Arabia

Sri Lanka Sudan Syria Thailand Tunisia Venezuela Vietnam

Zimbabwe

−8

−6

−4

−2

−8

−6

−4

−2

−8

−6

−4

−2

−8

−6

−4

−2

−8

−6

−4

−2

−8

−6

−4

−2

−8

−6

−4

−2

1980 1990 2000 2012

Year

lo
g 1

0(
Ye

ar
ly

 in
ci

de
nc

e,
 p

er
 c

ap
ita

)

DTP3 coverage

[0,25]

(25,50]

(50,75]

(75,100]

Trend

increasing

NS

decreasing

Figure S3: Segmented regression on incidence data in 43 countries that use wP vaccines for primary immunization and that met our inclusion criteria
(population size >5 million and >80% case count). For each country, we represent the annual incidence (black solid lines) and the fitted values
from segmented regression, colored according to the trend (red lines: significantly increasing; grey lines: no significant trend; blue lines: significantly
decreasing). Colored blue areas indicate the vaccine coverage for the third dose of DTwP vaccine. From left to right and top to bottom, countries are
sorted by alphabetical order.
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Country Primary Series Pediatric booster Adolescent/Adult booster Switch wP to aP Source
Second year Preschool

Australia 2, 4, 6 mo NA 4 yo 10–15 yo March 1999 [1]
Austria 3 doses 0–1 yo 1–2 yo NA NA 1998 [2]
Bulgaria 2, 3, 4 mo 16 mo 6 yo NA 2010 http://tinyurl.com/qfuqyzo
Canada 2, 4, 6 mo 18 mo 4–6 yo 14–16 yo 1997 http://tinyurl.com/ksljyc5
China 3, 4, 5 mo 18 mo NA NA 2007 [3]

Denmark 3, 5, 12 mo NA 5 yo NA 1997 [4]
Finland 3, 5, 12 mo NA 4 yo 14–15 yo 2005 [5]
Greece 2, 4, 6 mo 15–18 mo 4–6 yo 11–12 yo 1997 [6]
Hungary 2, 3, 4 mo 18 mo NA 11 yo 2006 http://tinyurl.com/qfuqyzo
Israel 2, 4, 6 mo 12 mo NA 14 yo 2002 [7]
Italy 3, 5–6, 11–13 mo 11–13 mo 5–6 yo 11–18 yo 1994 [8]

Malaysia 2, 3, 5 mo 18 mo NA NA 2008 http://tinyurl.com/q4anyy9
Netherlands 2, 3, 4 mo 11 mo 4 yo NA 2005 [9]
Portugal 2, 4, 6 mo 18 mo 5–6 yo NA 2006 http://tinyurl.com/qz6nanw

South Korea 2, 4, 6 mo 15–18 mo 4–6 yo 11–12 yo 1989 [10]
Spain 2, 4, 6 mo 15–18 mo NA 6 yo 2002 [11]
Sweden 3, 5, 12 mo NA 5–6 yo 14–16 yo 1996 [12]
Turkey 2, 4, 6 mo 18 mo 6 yo NA 2008 [13]

United Kingdom 2, 3, 4 mo NA 3–5 yo NA October 2004 [14]
United States 2, 4, 6 mo 15–18 mo 4–6 yo 11–12 yo 1996 [15]

Table S1: Pertussis vaccination characteristics in 20 countries that switched to aP and that met our inclusion criteria (population size >5 million
and >80% complete case count). The date of switch corresponds to the switch to aP for primary immunization (that is, for the primary course in
unvaccinated infants).
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S2 Pertussis in adults

S2.1 Review of incidence estimates in adults

We reviewed estimates of symptomatic cases incidence in adults presented in ref. [16] (for a review

of incidence estimates specific to U.S. adults, please see ref. [17]). For all these studies, the estimates

represent the yearly number of symptomatic cases per adult population, a quantity that can be

linked to outputs of standard epidemic models (cf text below). From Table S2, reported estimates

were in the range (5–500) cases per 100,000 adult population per year.

Study Location Age group Yearly incidence in age group, 105 × ΛA

[18] USA 10–49 yr 507 (C+PCR+S)
150 (C)

[19] USA ≥18 yr 176 (S)
[20] France ≥18 yr 508 (C+PCR+S)

[21] USA 11–19 yr 71 (C+PCR+S)
≥ 20 yr 5 (C+PCR+S+E)

Table S2: Review of incidence estimates in adults. C: culture; S: serology; E: epidemiological link.

S2.2 Model of pertussis in adults

To allow comparison with empirical estimates of incidence in adults and to assess the role of waning

immunity in shaping pertussis epidemiology, we formulated a simple age-structured SIR model with

two age classes (Figure S4), children (subscript C) and adults (subscript A). Assuming a symmetric

transmission matrix, Γ =

 β χβ

χβ ξβ

 and no mortality in children, the model equations for the

proportions of vaccinated, susceptibles, infected, and recovered are:
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dVC
dt

= µp− (αV + µC)VC
dSC
dt

= µ(1− p) + αV VC − SC(βIC + χβIA)− µCSC + αIRC

dIC
dt

= SC(βIC + χβIA)− (γ + µC)IC
dRC
dt

= γIC − (αI + µC)RC
dVA
dt

= µCVC − (αV + µA)VA
dSA
dt

= µCSC + αV VA − SA(χβIC + ξβIA)− µASA + αIRA

dIA
dt

= µCIC + SA(χβIC + ξβIA)− (γ + µA)IA
dRA
dt

= µCRC + γIC − (αI + µA)RA

Here µ represents the birth rate, p the effective vaccine coverage, µC the aging rate, γ the recovery

rate, µA the death rate in adults, αI the rate of loss of infection-derived immunity, and αV the rate

of loss of vaccine-derived immunity (Table S3). Assuming that 1
µ = 1

µC
+ 1

µA
, the proportions in

each age group remain constant, NC = µ
µC

and NA = 1 −NC = µ
µA

, leading to a reduced system

of equations:

dVC
dt

= µp− (αV + µC)VC
dSC
dt

= µ(1− p) + αV VC − SC(βIC + χβIA)− µCSC + αI(NC − VC − SC − IC)

dIC
dt

= SC(βIC + χβIA)− (γ + µC)IC

RC = NC − VC − SC − IC
dVA
dt

= µCVC − (αV + µA)VA
dSA
dt

= µCSC + αV VA − SA(χβIC + ξβIA)− µASA + αI(NA − VA − SA − IA)

dIA
dt

= µCIC + SA(χβIC + ξβIA)− (γ + µA)IA

RA = NA − VA − SA − IA

The parameters χ (ratio of contact rate between children and adults to that between children) and ξ

(ratio of contact rate between adults to that between children) were fixed from self-reported contacts

from the POLYMOD study (Table S3). In numerical applications, we assumed a vaccine coverage
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of 90% and a vaccine efficacy of 85%, leading to an effective vaccine coverage of ca. 0.75. Following

the results of Wearing and Rohani [22], we considered three possible values for the duration of

infection-derived immunity, in the range 30–80 years (Table S3).

Because waning immunity results in higher prevalences at equilibrium, it is often necessary to

rescale the basic reproduction number [22]. To do this, we back-calculated the transmission rate β

to keep the age at first infection at equilibrium constant in the pre-vaccine era (p = 0). For the

system of equations above in the pre-vaccine era, this quantity equals:

mean age at

first infection
=

mean age to

exit

susceptible

children

class︷ ︸︸ ︷( 1
λC + µC

)

probability

of getting

infected as

a child︷ ︸︸ ︷( λC
λC + µC

)
+

mean age to exit

susceptible adult

class︷ ︸︸ ︷( 1
λC + µC

+ 1
λA + µA

)

probability

of not

getting

infected as

a child︷ ︸︸ ︷( µC
λC + µC

)

probability

of getting

infected as

an adult︷ ︸︸ ︷( λA
λA + µA

)
( λC
λC + µC

)
︸ ︷︷ ︸
probability

of getting

infected as

a child

+
( µC
λC + µC

)
︸ ︷︷ ︸
probability

of not

getting

infected as

a child

( λA
λA + µA

)
︸ ︷︷ ︸
probability

of getting

infected as

an adult

= 1
λC + µC

+ µCλA
(λA + µA)(λC(λA + µA) + λAµC)

where λC = βIC + χβIA and λA = χβIC + ξβIA are the per-susceptible force of infection at

equilibrium in children and adults, respectively. With this value of β, we then solved the system of

equations to find the equilibrium values (VC , SC , IC , VA, SA, IA) and calculated the per-susceptible

force of infection in adults at equilibrium, λA. To allow comparison with empirical estimates of

pertussis incidence in adults, we calculated the per-adult force of infection (that is, the number of

cases in adults divided by the total number of adults) from the model: ΛA = λA × SA

NA
. The results

are presented in Fig. S5.
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Figure S4: Model schematic.

Parameter Meaning Value Reference
p Effective vaccine coverage 0.75 Assumed
µ Birth rate 1

75 yr−1 Assumed
µC Aging rate in children 1

18 yr−1 Assumed
µA Death rate in adults 1

57 yr−1 Assumed

β Transmission rate varied
Fixed to keep age at first
infection constant in the

pre-vaccine era

χ
Ratio of contact rate between children
and adults to that between children 0.31 [23]

ξ
Ratio of contact rate between adults to

that between children 0.21 [23]

A
Mean age at first infection in the

pre-vaccine era 4 years [22]

1/γ Average infectious period 21 days [24]

1/αI Duration of infection-derived immunity 30, 50, or
80 years [22]

1/αV Duration of vaccine-derived immunity
varied in
[10, ∞)
years

[25]

Table S3: Parameters used in the model.
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Figure S5: Incidence in adults predicted from a simple age-structured model.
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S3 Figure S6 and Table S4
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1. Pertussis is reemerging everywhere.
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4. Natural infection and vaccination

confer short-term immunity.

5. Adults are a reservoir of infection to

young children.

U.S. Italy

Sweden

Australia

Thailand

Transmission Transmission Transmission No Transmission

US

Heterogeneity of trends across the globe (cf. Fig. 1).

Strong evidence of vaccine-induced herd immunity 
(cf. Fig. 2 and refs. 25, 27–30, 32–35, 45).

Resurgence in the U.S. predated switch to modern 

diagnostic methods (cf. ref. 3).

Long average durations of immunity estimated 

from population-based models (cf. Table S4).

Decrease in incidence in adults after resumption of infant 

immunization in Sweden (cf. refs. 32–34); little impact of repeat 

infections inferred from population-based models (cf. Table S4).

3. Changes in diagnostics and increased

awareness alone explain pertussis resurgence.
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Figure S6: Illustration of widespread views on pertussis. Common views on pertussis epidemiology
are represented in the left column; corresponding empirical evidence is represented in the right
column. Citation numbers refer to references in the main text. Illustration by John Megahan.
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Study Data Model(s) used Inference
method

Duration of
infection-derived

immunity

Duration of
vaccine-derived

immunity

Impact of repeat
infections

[22] Weekly cases,
England and

Wales

Base model: VSEIRS2E2I2;
Immune-boosting model:

VSEIRS2BE2I2 (stochastic,
process noise and observation

noise)

Model-data
agreement on
epidemiologi-

cal
signatures

>30 y (E) Not well identified,
but likely shorter
than duration of
infection- derived

immunity

Small contribution
to transmission

cycle

[26] Age-stratified
annual cases,

Sweden
1986–2007

Base model: Age-structured SEIR;
Extended model: age-structured
SEIRS (stochastic, process noise

and observation noise)

Likelihood-
based

(assuming
steady state)

SEIR: ∞ (F);
SEIRS: 25, 10, 5 y

(F)

Assumed equal to
duration of infection-
derived immunity

SEIR: no impact
SEIRS: minimal
contribution to

transmission cycle
[24] Monthly cases,

Thailand
1981–2000

Model comparison, based on AIC;
Best model: VSIR; Other models

tested: VSIRS, VSIRS2I2,
VSIRS2BI2 (stochastic, process
noise and observation noise)

Likelihood-
based
(MIF)

VSIR: ∞ (F);
VSIRS: 69 y (E);
VSIRS2I2: 70

y (E); VSIRS2BI2:
not identified (E)

Assumed equal to
duration of infection-
derived immunity

VSIR: no impact
VSIRS2BI2:

repeat infections
account for 4–6%

of primary
infections

[27] Weekly cases,
Copenhagen
1900–1937

Model comparison, based on AIC;
Best model: SIRWS; Other models

tested: SIR, SIRS (stochastic,
process noise and observation

noise)

Likelihood-
based
(MIF)

SIRWS: 34
(17–66) y (E);

SIR: ∞ (F); SIRS:
192 (178–192)

y (F)

Not applicable
(prevaccine-era data)

Not applicable

[28] Annual cases,
U.S 1950–1989;
age-stratified
annual cases,
U.S. 1990–2009

VSIRS2I2, with leaky
infection-derived immunity

(stochastic, no process noise but
observation noise)

Markov Chain
Monte Carlo
(MCMC),

assuming no
process noise

Waning rate:
3× 10−5

(2×10−6, 2×10−4)
yr−1; Leakiness:

0.32

Waning rate:
Whole-cell: 3× 10−5

(2× 10−6, 2× 10−4)
yr−1; Acellular:

0.018 (0.015, 0.02)
yr−1

Unstated

Table S4: Summary findings of population-based models that used statistical inference on pertussis incidence data. MIF: maximum iterated filtering
algorithm [29]. E: estimated parameter; F: fixed parameter. Models signification. S(E)IR, Susceptible (Exposed) Infected Recovered: basic epidemic
model, assuming perfect infection- and vaccine-derived immunity (i.e., no repeat infections). VS(E)IR: S(E)IR model extension allowing to track
vaccinated individuals, assuming perfect infection- and vaccine-derived immunity (no repeat infections). (V)S(E)IRS: extension of the (V)S(E)IR
model allowing for waning infection- or vaccine-derived immunity; repeat infections are allowed and assumed identical (i.e., as infectious and as
observable) to primary infections. S(E)IRWS: extension of the S(E)IRS model, allowing for waning infection- or vaccine-derived immunity and
immune boosting (2 recovered classes: R, recently recovered and highly immune individuals; W, individuals still immune, but whose immunity can
be boosted upon reexposure). VS(E)IRS2(E2)I2: extension of the VS(E)IRS model, in which repeat infections are explicitly modeled and, therefore,
may differ from primary infections. VS(E)IRS2B(E2)I2: extension of the VS(E)IRS2(E2)I2 model, with immune boosting. References for this table
were identified through searches of PubMed by use of the terms "pertussis" or "whooping cough", "mathematical" or "dynamical", and "modeling". We
restricted to papers that used statistical inference on longitudinal incidence data to estimate the duration of infection- or vaccine-derived immunity.
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