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Supporting Information

A summary of intrinsic information, integrated information and mismatched
decoding

In this section, we summarize three key concepts in this paper, namely, intrinsic information, integrated
information and mismatched decoding. The former two concepts are introduced and explained in [1, 2].
The latter is explained in [3]. Here, we briefly summarize these concepts with somewhat different emphases
than the original papers for readers who are not familiar with these concepts.

Intrinsic and extrinsic information

In IIT, information always refers to intrinsic information in contrast to extrinsic information [2]. Intrinsic
and extrinsic here refers to the perspective from which information is considered. Intrinsic information
is quantified from the perspective of the system itself while extrinsic information is quantified from the
perspective of an external observer.

In neuroscience, the informational relationship between neural states X and external stimuli S (or
observable output behaviors) have been extensively quantified [4–7], in a form of the mutual information
I between X and S as

I(X;S) = H(S)−H(S|X). (1)

where the entropy H(S) and the conditional entropy H(S|X) are given by

H(S) = −
∑
s

p(s) log p(s), (2)

H(S|X) = −
∑
x,s

p(s, x) log p(s|x). (3)

Here, x and s represent a particular neural state and a particular external stimulus, respectively, with
p(x), p(s), p(s, x), and p(s|x) denoting the probability of x and s, the joint probability of x and s, and
a conditional probability of s given x. The sum is calculated for all possible neural states x or over all
stimuli s. The capital S and X represent an entire set of s or x, respectively (Replace the sum

∑
with

the integral
∫
when neural states are represented with continuous variables). As shown in Eq. 1, mutual

information is expressed as the difference between the entropy of stimuli, H(S), and the conditional
entropy of stimuli given neural states, H(S|X). Thus, I(X;S) quantifies the reduction of uncertainty
about stimuli by acquiring knowledge of neural states from the perspective of an external observer, i.e.
to what extent can an external observer know about external stimuli by observing neural states. This
type of information is called extrinsic information because the information is quantified from an external
observer’s point of view.

Intrinsic information, in contrast, should depend only on internal variables of the system and is quan-
tified from the viewpoint of the system itself, independent of external variables, requiring no external
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observers [2]. If information concerns consciousness, it should be intrinsic information, because con-
sciousness is independent of external observers. With this concept of intrinsic information, IIT aims to
quantify how much “difference” the internal mechanisms of a system makes for the system itself, i.e. the
degree of influence a system exerts on itself through its internal causal mechanisms. How the past states
would affect the present states can be determined by the transition probability matrix of the system,
p(Xt|Xt−τ ), which specifies probabilities according to which any state of a system transits to any other
state. Here, Xt and Xt−τ are the present and past states of the system at time t and t− τ , respectively.
IIT quantifies intrinsic information using the transition probability matrix.

The intrinsic information proposed in IIT 2.0 quantifies to what extent the mechanisms of the system
make the posterior probability distribution of the past states given a present state different compared
with a prior distribution of the past states. The posterior probability distribution of the past states
given a present state represents the likelihood of potential causes of the given present state. Intrinsic
information in IIT 2.0, which is called “effective information”, is defined as the difference between the
posterior probability distribution, p(Xt−τ |xt), and a prior distribution of the past states, p(Xt−τ ) as
follows:

ei(xt) = DKL

(
p(Xt−τ |xt)||p(Xt−τ )

)
, (4)

where DKL(p(X)||q(X)) is the Kullback-Leibler divergence, which measures the distance between the
two probability distributions p and q and is given by

DKL(p(X)||q(X)) =
∑
x

p(x) log
p(x)

q(x)
. (5)

If there are no causal mechanisms within the system, the present states are not affected by the past
states. Thus, the posterior distribution of the past states does not differ from the prior distribution. IIT
interprets the degree of the “difference” made in the posterior probability distribution of the past states
according to its internal mechanisms, as information generated intrinsically within the system. Note that
while intrinsic information is based on an intrinsic property of the system, it does not mean that it cannot
be quantified by an external observer.

To quantify intrinsic information, in addition to the transition probability matrix, a prior distribution
of the past states must be specified. Although the transition probability matrix is determined by the
intrinsic mechanisms of a system, a prior distribution of the past states cannot be uniquely determined.
There are many possible methods to choose a prior distribution from different standards. For example, in
the context of channel capacity in information theory, the prior distribution that maximizes information
may be selected [8]. In contrast, IIT selects the maximum entropy distribution as a prior distribution [1,9].
If a system’s states are represented as a set of discrete variables, the maximum entropy distribution is the
uniform distribution over all possible past states Xt−τ . Thus, using the maximum entropy distribution
as a prior distribution means that every possible past state is equally likely as a cause of a present state.

Although the maximum entropy distribution can be uniquely defined for discrete variables, this is not
possible for continuous variables [8,10]. If some constraints are given, the maximum entropy distribution
can be defined for continuous variables. For example, under the constraints that the mean and the
variance of the variables are fixed at specific values, the Gaussian distribution with the specified mean
and variance is the maximum entropy distribution. There is no principle that determines what types
of constraints should be imposed on and how the maximum entropy distribution should be uniquely
determined for continuous variables. Thus, intrinsic information (and integrated information) defined in
IIT 2.0 can be applied only to discrete variables.

Using entropy, Eq. 4 can be written as

ei(xt) = H(p(maxXt−τ ))−H(p(maxXt−τ |xt)), (6)

where the superscript max placed on the left side of Xt−τ is a reminder that the distribution of Xt−τ

is the maximum entropy distribution. Eq. 6 provides another interpretation of effective information. It
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quantifies to what extent uncertainty of the past states Xt−τ (the entropy, H(maxXt−τ )) can be reduced
by knowing a particular present state xt from the system’s intrinsic point of view. Using Bayes’ rule, the
posterior distribution, p(maxXt−τ |xt), can be calculated as

p(maxXt−τ |xt) =
p(xt|maxXt−τ )p(maxXt−τ )

p(xt)
. (7)

Averaging ei(xt) over all possible present states xt, the averaged effective information equals the
mutual information between the past and present states,

EI =
∑
xt

p(xt)ei(xt), (8)

= H(pmax(Xt−τ ))−H(p(maxXt−τ |Xt)), (9)

= I(maxXt−τ ;Xt). (10)

While effective information is originally quantified in a state-dependent manner as in Eq. 4 (with a
particular present state, xt), we consider only the averaged effective information in Eq. 10 (with an
entire set of present states, Xt) following the previous study [10].

Integrated information

Integrated information is the quantity that measures the information generated by the system as a whole
above and beyond the information generated independently by its parts [1, 11]. As performed when
computing intrinsic information, integrated information is computed between the system’s past Xt−τ

and present states Xt. Consider partitioning a system into m parts such as M1, M2, · · · , and Mm

and computing the amount of information that is integrated across m parts. Quantifying integrated
information is equivalent to quantifying the amount of information lost by partitioning the system. In
IIT, partitioning into m parts corresponds to splitting the transition probability matrix p(Xt|Xt−τ ) into
the product of each transition probability matrix in the parts p(M t

i |M
t−τ
i ). The partitioned transition

probability matrix, q(Xt|Xt−τ ), can be written as

q(Xt|Xt−τ ) =
m∏
i=1

p(M t
i |M t−τ

i ). (11)

Integrated information, ϕ(xt), proposed in IIT 2.0 is defined as the difference between the posterior
probability distribution of the past states given a present state in the intact system, p(maxXt−τ |xt) and
that in the “partitioned” system, q(maxXt−τ |xt) is as follows:

ϕ(xt) = DKL

(
p(maxXt−τ |xt)||q(maxXt−τ |xt)

)
, (12)

where DKL is the Kullback-Leibler divergence defined in Eq. 5, and the past states are assumed as the
maximum entropy distribution. q(maxXt−τ |xt) is defined as follows:

q(maxXt−τ |xt) =
q(xt|maxXt−τ )q(maxXt−τ )

q(xt)
, (13)

where q(xt) =
∑

Xt−τ q(xt|Xt−τ )q(maxXt−τ ) and q(maxXt−τ ) is the maximum entropy distribution.
Integrated information defined in Eq. 12 quantifies the difference in the posterior probability distribution
of the past states given a present state, if the parts of the system are forced to be independent.
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Although the original integrated information measure ϕ(xt) is defined for a particular present state xt,
we consider only the average of ϕ(xt) over all possible states as is performed for quantifying information
in the previous section. The averaged integrated information Φ can be calculated as follows:

Φ =
∑
xt

p(xt)ϕ(xt), (14)

=
∑
xt

p(xt)DKL

(
p(maxXt−τ |xt)||q(maxXt−τ |xt)

)
, (15)

=
∑
xt

p(xt)
∑
xt−τ

p(maxxt−τ |xt) log
p(maxxt−τ |xt)

q(maxxt−τ |xt)
. (16)

Using Eq 11 and 13, we can write Φ in terms of entropy as follows:

Φ =
m∑
i=1

H(maxM t−τ
i |M t

i )−H(maxXt−τ |Xt). (17)

As shown in Eq. 17, integrated information measures the difference between the uncertainty of the past
states given the present states in the intact system and that in the partitioned system. The uncertainty
of the partitioned system is always larger than that of the intact system and the increase in uncertainty
corresponds to the loss of information caused by partitioning. We can rewrite Eq. 17 in terms of mutual
information as follows:

Φ = I(maxXt−τ ;Xt)−
m∑
i=1

I(maxM t−τ
i ;M t

i ), (18)

where we use the fact that the entropy of the whole system H(maxXt−τ ) is the same as the sum of the
entropy of the subsystems

∑m
i=1 H(maxM t−τ

i ) when the maximum entropy distribution is assumed.

Quantitative meaning of I and I∗ in information theory

In this section, we briefly review the quantitative meaning of mutual information I in information theory
and that of its extension to mismatched decoding I∗, which was developed by Merhav et al. [12] (see
also [3, 8, 13]). Consider information transmission over a noisy channel p(Y |X) where X is the input
and Y is the output. For simplicity, assume that X and Y are both 0 or 1. (In the Results section, we
consider the case where X and Y are the past and present states of a system, Xt−τ and Xt, respectively,
and the states of a system are multidimensional variables but the arguments as described below are
applicable to such cases.) The sender transmits a sequence of X with length N called a code word,
c = [X1, X2, · · · , XN ], over the noisy channel. For binary inputs, there are 2N possible code words, but
the sender does not transmit them all. A set of the code words transmitted over the noisy channel is
called a codebook. The codebook is shared between the sender and the receiver. The transmitted code
word is disturbed by the noise that depends on p(Y |X) and is changed to c′ = [Y1, Y2, · · · , YN ], where
Yi is the output of Xi. The job of the receiver is to infer (decode) which code word is sent from the
received message c′. Consider the question as follows: For the receiver to decode the message “error-free”
(more precisely, with an infinitesimally small error with limits of N → ∞), how many code words can
the sender transmit, or how many code words can the codebook contain?

Shannon’s noisy channel coding theorem answers this question. According to the noisy channel coding
theorem, the mutual information determines the upper limit of the number of code words that can be
sent error-free over a noisy channel. We denote the maximal number of code words that can be sent
error-free over the noisy channel by 2RN , where R is called the information transfer rate and is less than
or equal to 1. The information transfer rate R is given by the mutual information I between X and Y ,

R = I(X;Y ). (19)
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To achieve the maximal information transfer rate given by the mutual information, the receiver must
optimally decode a message, which can be performed using the maximum likelihood estimation. The
maximum likelihood estimation means choosing the code word c in the codebook that maximizes the
likelihood p(c′|c),

p(c′|c) =
∏
i

p(Yi|Xi). (20)

Note that the optimal decoding scheme uses the actual probability distribution p(Y |X). This type of
decoding is called matched decoding, because the probability distribution used for decoding is matched
with the actual probability distribution. If a mismatched probability distribution q(Y |X) other than
p(Y |X) is used for decoding, the information transfer rate necessarily degrades. The information transfer
rate R∗ for a mismatched decoding is given by I∗,

R∗ = I∗(X;Y ). (21)

As in matched decoding, decoding is performed using the maximum likelihood estimation with the fol-
lowing “mismatched” likelihood function q(c′|c),

q(c′|c) =
∏
i

q(Yi|Xi). (22)

I∗(X;Y ) is an extension of the mutual information I(X;Y ) in the sense of the information transfer rate
over a noisy channel p(Y |X) when a mismatched distribution q(Y |X) is used for decoding.

The information transfer rate determines the amount of information that can be obtained from a
message. The receiver obtains more information from a message when the information transfer rate
increases. The mutual information I, which is equivalent to the maximal information transfer rate,
determines the maximum amount of information that can be obtained by matched decoding. I∗, in
contrast, determines the amount of information that can be obtained by a mismatched decoding.

Equivalence of Φ∗ with Φ under the assumption of maximum entropy distri-
bution

We show that Φ∗ is equivalent to Φ, proposed by [1] when the maximum entropy distribution is assumed
for the past state as follows.

First, we should note that when the maximum entropy distribution is assumed, the distribution of
the past states in the whole system can be decomposed into the product of the distribution of each part
as

p(maxXt−τ ) =
∏
i

p(maxM t−τ
i ). (23)

Bearing this in mind, we can compute I∗ as follows

I∗(β) = −
∫

dXtp(Xt) log
∏
i

∫
dM t−τ

i p(maxM t−τ
i )p(M t

i |M t−τ
i )β

+ β

∫
dXt−τ

∫
dXtp(maxXt−τ )p(Xt|Xt−τ ) log

∏
i

p(M t
i |M t−τ

i ), (24)

= −
∑
i

∫
dM t

i p(M
t
i ) log

∫
dM t−τ

i p(maxM t−τ
i )p(M t

i |M t−τ
i )β − β

∑
i

H(M t
i |M t−τ

i ). (25)

To obtain β that maximizes I∗, we differentiate I∗(β) as

dI∗(β)

dβ
= −

∑
i

∫
dM t

i

p(M t
i )

r(M t
i )

dr(M t
i )

dβ
−
∑
i

H(M t
i |M t−τ

i ). (26)
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where

r(M t
i ) =

∫
dM t−τ

i p(maxM t−τ
i )p(M t

i |M t−τ
i )β , (27)

dr(M t
i )

dβ
=

∫
dM t−τ

i p(maxM t−τ
i )p(M t

i |M t−τ
i )β log p(M t

i |M t−τ
i ), (28)

Substituting β = 1 into dI∗(β)
dβ , we obtain

dI∗(β = 1)

dβ
= −

∑
i

∫
dM t

i

∫
dM t−τ

i pmax(M t−τ
i )p(M t

i |M t−τ
i ) log p(M t

i |M t−τ
i )−

∑
i

H(M t
i |maxM t−τ

i ),

(29)

= 0, (30)

We therefore find that I∗(β) is maximized when β = 1. Substituting β = 1 into I∗(β), we obtain the
expression of I∗ as

I∗(β = 1) =
∑
i

H(M t
i )−

∑
i

H(M t
i |maxM t−τ

i ), (31)

=
∑
i

I(maxM t−τ
i ;M t

i ). (32)

From Eq. 32, we see that our measure is equivalent to the original measure when the maximum entropy
distribution is used.

Φ∗ is 0 when parts are perfectly correlated

We show that Φ∗ is 0 when parts are perfectly correlated. For simplicity, we consider a system consisting
of two units M1 and M2 and the mismatched decoder, q(Xt|Xt−τ ) = p(M t

1|M t−τ
1 )p(M t

2|M t−τ
2 ). It

is easy to generalize to the case of more than two units. When the two units are perfectly correlated,
M t−τ

1 = M t−τ
2 and M t

1 = M t
2. In this case, the joint probability distribution can be written as p(Xt−τ ) =

p(M t−τ
1 )p(M t−τ

2 |M t−τ
1 ) = p(M t−τ

1 )δ(M t−τ
2 − M t−τ

1 ) where δ(x) is the Dirac delta function. I∗ can be
calculated as follows.

I∗(β) = −
∫

dXtp(M t
1)δ(M

t
2 −M t

1) log

∫
dXt−τp(M t−τ

1 )δ(M t−τ
2 −M t−τ

1 )
2∏

i=1

p(M t
i |M t−τ

i )β

+ β

∫
dXt−τ

∫
dXtp(Xt−τ , Xt) log

2∏
i=1

p(M t
i |M t−τ

i ), (33)

= −
∫

dM t
1p(M

t
1) log

∫
dM t−τ

1 p(M t−τ
1 )p(M t

1|M t−τ
1 )2β − 2βH(M t

1|M t−τ
1 ). (34)

To obtain β that maximizes I∗, we differentiate I∗(β) as

dI∗(β)

dβ
= −

∫
dM t

1

p(M t
1)

r(M t
1)

dr(M t
1)

dβ
− 2H(M t

1|M t−τ
1 ). (35)

where

r(M t
1) =

∫
dM t−τ

1 p(M t−τ
1 )p(M t

1|M t−τ
1 )2β , (36)
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dr(M t
1)

dβ
= 2

∫
dM t−τ

1 p(M t−τ
1 )p(M t

1|M t−τ
1 )2β log p(M t

1|M t−τ
1 ), (37)

Substituting β = 1/2 into dI∗(β)
dβ , we obtain

dI∗(β = 1/2)

dβ
= −2

∫
dM t

1

∫
dM t−τ

1 p(M t−τ
1 )p(M t

1|M t−τ
1 ) log p(M t

1|M t−τ
1 )− 2H(M t

1|M t−τ
1 ), (38)

= 0, (39)

We therefore find that I∗(β) is maximized when β = 1/2. Substituting β = 1/2 into I∗(β), we obtain
the expression of I∗ as

I∗(β = 1/2) = H(M t
1)−H(M t

1|M t−τ
1 ), (40)

= I(M t−τ
1 ;M t

1). (41)

When M1 and M2 are perfectly correlated, mutual information in the whole system is just equal to the
mutual information in each part, i.e., I(Xt−τ ;Xt) = I(M t−τ

1 ;M t
1) = I(M t−τ

2 ;M t
2). Thus, Φ

∗ becomes 0.

Φ∗ = I(Xt−τ ;Xt)− I∗(Xt−τ ;Xt), (42)

= I(M t−τ
1 ;M t

1)− I(M t−τ
1 ;M t

1), (43)

= 0. (44)
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