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Table 1. Number, percentage of gene-associated reactions and percentage of reactions of each context-
specific reconstruction that have a high, medium and low confidence score to be expressed at the protein
level. An enrichment in high and medium confidence level is observed for discretization-based algorithms
(GIMME, iMAT, FASTCORE z-score, FASTCORMICS and FASTCORMICS medium constrained.

algorithms description high medium low not detected
number of reactions 628 641 65 265
Recon % of the reactions of the model 11% 11 % 1% 5%
% of the gene-associated reactions 17 % 17 % 2% 1%
number of reactions 213 266 47 108
HepatoNet % of the reactions of the model 9 % 11 % 2% 5%
% of the gene-associated reactions 12% 15 % 3% 6%
number of reactions 518 444 47 126
GIMME % of the reactions of the model 15% 13 % 1% 4%
% of the gene-associated reactions 25 % 21 % 2% 6%
number of reactions 574 525 55 153
iMAT % of the reactions of the model 16% 14 % 2% 4%
% of the gene-associated reactions 24 % 22 % 2% 6%
number of reactions 453 499 55 155
iNIT % of the reactions of the model 12% 13 % 1% 4%
% of the gene-associated reactions 16 % 18 % 2% 6%
number of reactions 376 418 41 186
RegrEX % of the reactions of the model 12% 13 % 1% 6%
% of the gene-associated reactions 15% 16 % 2% 1%
number of reactions 624 637 64 260
Akesson08 % of the reactions of the model 11% 11% 1% 5%
% of the gene-associated reactions 17 % 17 % 2% 1%
number of reactions 584 413 21 123
FASTCORE z-score % of the reactions of the model 20% 14 % 1% 4%
% of the gene-associated reactions 28 % 20 % 1% 6%
number of reactions 570 391 15 73
FASTCORMICS % of the reactions of the model 21% 15% 1% 3%
% of the gene-associated reactions 30 % 21 % 1% 4%
number of reactions 481 343 15 66
FASTCORMICS % of the reactions of the model 22% 16 % 1% 3%
medium constrained % of the gene-associated reactions 29 % 21 % 1% 4%
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Figure 1. Similarity index of the models built by the different algorithms. The Jaccard index was computed
for each pair of models, the rows and column were then clustered in function of the Euclidean distance.
Contrary to what was expected, the output models of the tested algorithms, despite having been fed with
the same input show a huge variability. The descritization-based algorithms (GIMME, iMAT, Akesson,
FASTCORE, FASTCORMICS and FASTCORMICS no medium constrained) show the highest similarity

levels.
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Figure 2. Reactions overlap: Each subplot represents HepatoNet or a model built by one of the tested
algorithm. From left to right, in the top: HepatoNet, GIMME, iMAT, in the second row: INIT, RegrEx,
Akesson in the third row: FASTCORE z-score, and FASTCORMICS no medium constraint. The different
bars of the stacked boxplot illustrate the number of reactions that are common to 1, 2, 3, 4, 5 to all the
models. The colour in the stacked plots represent the reactions of different models (HepatoNet (orange), the
GIMME (dark blue), iMAT (light blue), INIT (green), RegrEx (gray), Akesson (dark green), FASTCORE
z-score (pink), FASTCORMICS (brown) and FASTCORMICS no medium constrained (violet). The size
of the colors areas are proportional to the number of reactions shared between the methods. A greater
percentage of reactions in the GIMME, IMAT, FASTCORE, FASTCORMICS and FASTCORMICS
medium constrained models are supported by at least 3 other algorithms.
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Figure 3. Confidence score at the transcriptomic level: Median z-score of the intensity measured in the
liver samples to the median intensity distribution for the genes in an unexpressed context mapped the
genes-associated reactions of Recon2 (yellow), HepatoNet (orange), the GIMME (dark blue), iIMAT (light
blue), INIT (green), RegrEx (gray), Akesson (dark green), FASTCORE z-score (pink), FASTCORMICS
(brown) and FASTCORMICS no medium constrained (violet).
Discretization-based algorithms (GIMME, iMAT, FASTCORE, FASTCORMICS and FASTCORMICS
medium constrained) are enriched for higher z-score values.
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Figure 4.

Tissue specificity of reconstructed models. Number of reactions that are present in 1, 2, 3 up to 36 tissues
models. For INIT and RegrEX, more than 1500 and 3000 reactions are present in all tissues models, while
a similar number is present in all but one model created by the Akesson method. Due to computational
complexity iMAT was only able to generate 14 out of 36 tissue models.
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Figure 5. Percentage of reactions that are associated with high confidence (dark blue), medium confidence
level (light blue), low confidence level (khaki) and not detected (yellow). Each subplot represent a different
tissue. The x-axis represent the different algorithms: 1-GIMME, 2-iMAT, 3-INIT, 4-RegrEX, 5-Akesson,
6-FASTCORE z-score, 7-FASTCORMICS and 8-FASTCORMICS medium constrained and the y-axis the
percentage of reactions.
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Figure 6: Cluster plots of the tissue models built by the different tested algorithms: The fraction of active
reactions in each pathway as defined by Recon2 was computed for each tissue model. The models were
then cluster in function of the Euclidean distance.
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Created Model Similarities
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Figure 7. Resolution power: The plot shows the mean Jaccard distance between the networks generated

by the different algorithms along with the distances of the original models. Each square represents the
comparison between all reconstructions of one model and all reconstructions of another model, with the
diagonal representing the comparison of all reconstructed model of the same model. The diagonal can
therefore be an indicator for robustness (the brighter, the more similar the models) while the off diagonal
indicates similarities between the generated models and is therefore an indicator for specificity to the input
(the darker, the more distinct the generated models). When 90% of the data is available, all the algorithms
are able to distinguish variations between the different models. But with a less complete data set, inclusive
algorithms (here GIMME and Akesson) lose in specificity. It would also be expected that when only 50%
of the data is available, the robustness decreases. But GIMME and Akesson only show a modest decrease
of robustness.
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Reconstructed model sizes
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Figure 8. Model Sizes of the reconstructed Models. The target models had the following sizes:

Model 1: 961, Model2 : 1276, Model 3: 1528, Model 4: 1876, Model 5: 2123, Model 6: 2377, Model
7:2629, Model 8: 2935, Model 9: 3264, Model 10: 3455 The plots show that for a more complete input set,
all algorithms tend to approach the real model size.
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Figure 9. The plots show the mean Jaccard distance between the networks generated by the different
algorithms for several artificial models and input percentages. For each algorithm, the corresponding
networks (using the same input data) are compared. Smaller models (e.g. Model 1) tend to yield more
distinguishable results, while larger models (due to a larger fraction of common reactions), tend to
yield more similar networks. Overall, the difference between inclusive (GIMME/Akesson) and exclusive
(Fastcore/FASTCORMICS) algorithms is clearly visible.
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2 MODIFICATIONS FOR RECON TO ALLOW THE RECONSTRUCTION OF
HEPATONET

e A reaction to create tag_hs from 3 stearoyl-CoAs was introduced to allow synthesis of biomass without
an uptake of unidentified fatty acids.

¢ HepatoNet metabolites were matched to Recon Metabolites

e 2 reactions converting NH3 into NH4 were removed.

e 2 reactions converting Carbonate into HCO3.

e Recon reactions were matched to HepatoNet Reactions

¢ Reversibilities of HepatoNet were used for all Recon reactions that were mapped.

¢ Uptake Exchange reactions were adjusted to a maximal uptake of 1 (since there are several reactions
which can take up Proteins and those would lead to a biomass above the upper bound.

e Gene AI971036 was converted to 3417 (according to GeneCards)
¢ In addition, the following reversibilities were adjusted:

¢ GTHRDt was made irreversible (active transport of glutathione into the mitochondrion can otherwise
generate ATP in Recon2).

e Cl6txc was made irreversible , as it led to the production of free ATP in Recon2
e GTHPm was made irreversible as it allowed the free generation of reductants in Recon?2.
e BILDGLCURte was made irreversible , as it led to the production of free ATP in Recon2

e The GPRs used in Recon?2 version 4 were used as those are more consistent.

Our HepatoNet was than constructed by extracting all reactions which are in HepatoNet from the modified
Recon network and adding all Importers and Exporters from Recon.
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Reaction Formula using Recon ids Flux
r0083 H(C01434[m] <=> co2[m] + akg[m] 1
r0400 nad[c] + 02[c] + acnam[c] <=> h2o[c] + nadh|c] + HC01115[c] 0.5
r0425 nad|m] + icit[m| <=> nadh[m] + HC01434[m] 1
r0617 nadplc] + 4hprorT[c] <=> nadph[c] + 1p3hbc|c] 0.5
r0668 ctple] + HC01115[c] <=> ppi[c] + HC01162]c] 0.5
71459 ppi|c] <=> ppi|n] 0.5
r1461 empacnalc] <=> empacnan] 0.5
r0082 HC01434[c] <=> co2[c] + akg|c] -1
r0268  nadph[c] + 02[c] + empacnalc] <=> h2o[c] + nadplc] + HC01162[c] —0.5
r0269 ctp[n] + acnam|[n] <=> ppi[n] + ecmpacnaln] -0.5
r0422 nadp|c] + icit[c] <=> nadph[c] + HC01434|c] -1
r0615 nad|c] + 4hproT'[c] <=> nadh|c] + 1p3h5c|c] -0.5
r0868 co2[c] <=> co2[m] -1
r1147 akglc] + icitim] <=> akg[m] + icit[c] -1
r1460 ctple] <=> ctpln] —0.5
r1462 acnam|c] <=> acnam[n] -0.5

Table 2. Overview of methods used for validation of automated tissue specific reconstruction algorithms.

3 EXAMPLE OF FREE NADPH PRODUCTION IN HEPATONET

An example solution can be found in Table 2]

The Flux distribution can be split into the following reactions:
r0083 + 10425 - 10082 - 10422 - 0868 - r1147 :
NAD(m) + NADPH(c) <=> NADH(m) + NADP(c) (1)

r1459 - r1462 - r1460 - r0269 :
cmpacna[c] + ppi[c] <=> ctp[c] + acnam|c] (2)

10615 - 10615 :
NADH(c) + NADP(c) <=> NADPH(c) + NAD(c) (3)

r0400 + r0668 - r0268 :
NADIc] + acnam[c]+ NADP][c] + ctp[c] <=> cmpacna[c] + ppi[c] + NADPH[c] + NADH|c] (4)

With (4) + (2) clearly producing free reductant.
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