Supplement to "Tests for Gene-Environment Interactions and Joint Effects with Exposure Misclassification" Running head: GxE Interactions with Exposure Misclassification PHILIP S. BOONSTRA, BHRAMAR MUKHERJEE*, STEPHEN B. GRUBER, JAEIL AHN, STEPHANIE L. SCHMIT, NILANJAN CHATTERJEE. ^{*} Correspondence to Dr. Bhramar Mukherjee, Department of Biostatistics, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109-2029, (e-mail: bhramar{at}umich.edu). ## Web Appendix 1 In the following algebraic development, we develop exact expressions for the log-odds ratios β_E , β_G , and β_{GE} as functions of the quantities α_G , α_E , θ_{GE} , $P_G \equiv \Pr(G=1|D=0)$, and $P_E \equiv \Pr(E=1|D=0)$. As given in the text, the control probabilities relate to θ_{GE} , P_G , and P_E according to $$\exp\{\theta_{GE}\} = \frac{p_{000}(p_{000} - (1 - P_G - P_E))}{(1 - P_G - p_{000})(1 - P_E - p_{000})},$$ $$p_{001} = 1 - P_G - p_{000}, \ p_{010} = 1 - P_E - p_{000}.$$ The case probabilities are then given by $p_{100} \propto p_{000}$, $p_{101} \propto \exp\{\beta_E\}p_{001}$, $p_{110} \propto \exp\{\beta_G\}p_{010}$, and $p_{111} \propto \exp\{\beta_E + \beta_G + \beta_{GE}\}p_{011}$, normalized to sum to one. Thus, the marginal log-ORs, α_G and α_E , are written as $$\alpha_{G} = \log \left(\frac{p_{111} + p_{110}}{p_{101} + p_{100}} \right) + \log \left(\frac{p_{001} + p_{000}}{p_{011} + p_{010}} \right)$$ $$= \log \left(\frac{\exp\{\beta_{E} + \beta_{G} + \beta_{GE}\}p_{011} + \exp\{\beta_{G}\}p_{010}}{\exp\{\beta_{E}\}p_{001} + p_{000}} \right) + \log \left(\frac{p_{001} + p_{000}}{p_{011} + p_{010}} \right)$$ $$= \beta_{G} + \log \left(\frac{\exp\{\beta_{E} + \beta_{GE}\}p_{011} + p_{010}}{\exp\{\beta_{E}\}p_{001} + p_{000}} \right) + \log \left(\frac{p_{001} + p_{000}}{p_{011} + p_{010}} \right)$$ $$\alpha_{E} = \log \left(\frac{p_{111} + p_{101}}{p_{110} + p_{100}} \right) + \log \left(\frac{p_{010} + p_{000}}{p_{011} + p_{001}} \right)$$ $$= \log \left(\frac{\exp\{\beta_{E} + \beta_{G} + \beta_{GE}\}p_{011} + \exp\{\beta_{E}\}p_{001}}{\exp\{\beta_{G}\}p_{010} + p_{000}} \right) + \log \left(\frac{p_{010} + p_{000}}{p_{011} + p_{001}} \right)$$ $$= \beta_{E} + \log \left(\frac{\exp\{\beta_{G} + \beta_{GE}\}p_{011} + p_{001}}{\exp\{\beta_{G}\}p_{010} + p_{000}} \right) + \log \left(\frac{p_{010} + p_{000}}{p_{011} + p_{001}} \right), \tag{W2}$$ Thus, the marginal log-ORs α_G and α_E can be written as functions of the control probability vector and the ORs β_G , β_E , and β_{GE} , and specification of any three of α_G , α_E , β_G , β_E , or β_{GE} determine the value of the remaining two. Web Table 1: Simulation settings for additional GEI results, given in Web Figures 1–6 (top), and additional gene discovery results, given in Web Figures 7–9 (bottom)^a | Web Figure | range $\exp\{\beta_{GE}\}$ | β_G | P_E | α_E | n_0, n_1 | p_{ind} | $\#\{\beta_G^{\text{NULL}} \neq 0\}$ | |------------|----------------------------|-------------|-------|--------------|-------------------|-----------|--------------------------------------| | 1 | (1.00, 1.75) | $\log(1.2)$ | 0.3 | $\log(1.5)$ | 2×10^{4} | 0.995 | 0 | | 2 | (1.00, 1.35) | log(1.0) | 0.3 | $\log(1.5)$ | 2×10^{4} | 0.995 | 0 | | 3 | (1.00, 1.35) | $\log(1.2)$ | 0.3 | $\log(1.5)$ | 10^{4} | 0.995 | 0 | | 4 | (1.00, 1.35) | $\log(1.2)$ | 0.1 | $\log(1.75)$ | 2×10^{4} | 0.995 | 0 | | 5 | (1.00, 1.75) | $\log(1.2)$ | 0.1 | $\log(1.75)$ | 2×10^4 | 0.995 | 0 | | 6 | (1.00, 1.35) | $\log(1.2)$ | 0.3 | $\log(1.5)$ | 2×10^4 | 0.995 | 500 | | 7 | (1.00, 1.75) | $\log(1.0)$ | 0.3 | $\log(1.5)$ | 2×10^{4} | _ | _ | | 8 | (1.00, 1.35) | log(1.2) | 0.3 | $\log(1.5)$ | 2×10^4 | _ | _ | | 9 | (1.00, 1.75) | $\log(1.0)$ | 0.1 | $\log(1.75)$ | 2×10^4 | _ | | Abbreviations: GEI, gene-environment interaction. ^a Those items in red indicate differences in settings from Figure 1 (GEI) or Figure 2 (gene discovery) in the main text. In regards to the last column, this gives the number of null markers, i.e. $\beta_{GE}=0$, with genetic main effects sampled from $\beta_G\sim \text{Unif}(\log(1.05),\log(1.2))$. Each gene discovery method tests each marker independently. Thus, because we focus only on markers for which $\beta_{GE}\neq 0$, we do not need to consider parameters whose scope is limited to null markers, i.e. p_{ind} and $\#\{\beta_G^{\text{NULL}}\neq 0\}$. Web Figure 1: Empirical power to detect gene-environment interaction in one marker for 7 GEI methods (CC, case-control; CO, case-only; EB, empirical Bayes; TS, two-step gene-environment screening; H2, hybrid two-step; EDGxE, joint marginal/association screening; CT, cocktail) and the marginal (MA) method from 5,000 datasets with n=20,000 each of cases and controls and M=100,000-1 null genetic markers. From top to bottom, each row corresponds to perfect classification, non-differential misclassification (sensitivity and specificity of 0.8), and differential misclassification (sensitivity of 1 and specificity of 0.8 for cases and sensitivity and specificity of 0.8 for controls) of the exposure variable. From left to right, each column corresponds to $\theta_{GE} = \log(0.8)$, $\theta_{GE} = 0$, and $\theta_{GE} = \log(1.1)$. The exposure prevalence was $P_E = 0.3$ and the marginal exposure log-OR was $\alpha_E = \log(1.5)$. For the non-null marker, the main genetic log-OR was $\beta_G = \log(1.2)$ and the carrier prevalence was $P_G = 0.36$. For each null marker, $\beta_G = 0$ and $P_G = f^2 + 2f(1-f)$, where $f \sim \text{Unif}[0.1, 0.3]$ is the minor allele frequency. These settings are identical to those of Figure 1 in the main text, but the range of $\exp\{\beta_{GE}\}$ extends to 1.75 Web Figure 2: Empirical power to detect gene-environment interaction in one marker for 7 GEI methods (CC, case-control; CO, case-only; EB, empirical Bayes; TS, two-step gene-environment screening; H2, hybrid two-step; EDGxE, joint marginal/association screening; CT, cocktail) and the marginal (MA) method from 5,000 datasets with n=20,000 each of cases and controls and M=100,000-1 null genetic markers. From top to bottom, each row corresponds to perfect classification, non-differential misclassification (sensitivity and specificity of 0.8), and differential misclassification (sensitivity of 1 and specificity of 0.8 for cases and sensitivity and specificity of 0.8 for controls) of the exposure variable. From left to right, each column corresponds to $\theta_{GE} = \log(0.8)$, $\theta_{GE} = 0$, and $\theta_{GE} = \log(1.1)$. The exposure prevalence was $P_E = 0.3$ and the marginal exposure log-OR was $\alpha_E = \log(1.5)$. For the non-null marker, the main genetic log-OR was $\beta_G = 0$ and the carrier prevalence was $P_G = 0.36$. For each null marker, $\beta_G = 0$ and $P_G = f^2 + 2f(1-f)$, where $f \sim \text{Unif}[0.1, 0.3]$ is the minor allele frequency. Web Figure 3: Empirical power to detect gene-environment interaction in one marker for 7 GEI methods (CC, case-control; CO, case-only; EB, empirical Bayes; TS, two-step gene-environment screening; H2, hybrid two-step; EDGxE, joint marginal/association screening; CT, cocktail) and the marginal (MA) method from 5,000 datasets with n=10,000 each of cases and controls and M=100,000-1 null genetic markers. From top to bottom, each row corresponds to perfect classification, non-differential misclassification (sensitivity and specificity of 0.8), and differential misclassification (sensitivity of 1 and specificity of 0.8 for cases and sensitivity and specificity of 0.8 for controls) of the exposure variable. From left to right, each column corresponds to $\theta_{GE}=\log(0.8)$, $\theta_{GE}=0$, and $\theta_{GE}=\log(1.1)$. The exposure prevalence was $P_E=0.3$ and the marginal exposure log-OR was $\alpha_E=\log(1.5)$. For the non-null marker, the main genetic log-OR was $\beta_G=\log(1.2)$ and the carrier prevalence was $P_G=0.36$. For each null marker, $\beta_G=0$ and $P_G=f^2+2f(1-f)$, where $f\sim \text{Unif}[0.1,0.3]$ is the minor allele frequency. Web Figure 4: Empirical power to detect gene-environment interaction in one marker for 7 GEI methods (CC, case-control; CO, case-only; EB, empirical Bayes; TS, two-step gene-environment screening; H2, hybrid two-step; EDGxE, joint marginal/association screening; CT, cocktail) and the marginal (MA) method from 5,000 datasets with n=20,000 each of cases and controls and M=100,000-1 null genetic markers. From top to bottom, each row corresponds to perfect classification, non-differential misclassification (sensitivity and specificity of 0.8), and differential misclassification (sensitivity of 1 and specificity of 0.8 for cases and sensitivity and specificity of 0.8 for controls) of the exposure variable. From left to right, each column corresponds to $\theta_{GE}=\log(0.8), \theta_{GE}=0$, and $\theta_{GE}=\log(1.1)$. The exposure prevalence was $P_E=0.1$ and the marginal exposure log-OR was $\alpha_E=\log(1.75)$. For the non-null marker, the main genetic log-OR was $\beta_G=\log(1.2)$ and the carrier prevalence was $P_G=0.36$. For each null marker, $\beta_G=0$ and $P_G=f^2+2f(1-f)$, where $f\sim \text{Unif}[0.1,0.3]$ is the minor allele frequency. Web Figure 5: Empirical power to detect gene-environment interaction in one marker for 7 GEI methods (CC, case-control; CO, case-only; EB, empirical Bayes; TS, two-step gene-environment screening; H2, hybrid two-step; EDGxE, joint marginal/association screening; CT, cocktail) and the marginal (MA) method from 5,000 datasets with n=20,000 each of cases and controls and M=100,000-1 null genetic markers. From top to bottom, each row corresponds to perfect classification, non-differential misclassification (sensitivity and specificity of 0.8), and differential misclassification (sensitivity of 1 and specificity of 0.8 for cases and sensitivity and specificity of 0.8 for controls) of the exposure variable. From left to right, each column corresponds to $\theta_{GE}=\log(0.8)$, $\theta_{GE}=0$, and $\theta_{GE}=\log(1.1)$. The exposure prevalence was $P_E=0.1$ and the marginal exposure log-OR was $\alpha_E=\log(1.75)$. For the non-null marker, the main genetic log-OR was $\beta_G=\log(1.2)$ and the carrier prevalence was $P_G=0.36$. For each null marker, $\beta_G=0$ and $P_G=f^2+2f(1-f)$, where $f\sim \text{Unif}[0.1,0.3]$ is the minor allele frequency. These settings are identical to those of Figure 4, but the range of $\exp\{\beta_{GE}\}$ extends to 1.75. Web Figure 6: Empirical power to detect gene-environment interaction in one marker for 7 GEI methods (CC, case-control; CO, case-only; EB, empirical Bayes; TS, two-step gene-environment screening; H2, hybrid two-step; EDGxE, joint marginal/association screening; CT, cocktail) and the marginal (MA) method from 5,000 datasets with n=20,000 each of cases and controls and M=100,000-1 null genetic markers. From top to bottom, each row corresponds to perfect classification, non-differential misclassification (sensitivity and specificity of 0.8), and differential misclassification (sensitivity of 1 and specificity of 0.8 for cases and sensitivity and specificity of 0.8 for controls) of the exposure variable. From left to right, each column corresponds to $\theta_{GE}=\log(0.8)$, $\theta_{GE}=0$, and $\theta_{GE}=\log(1.1)$. The exposure prevalence was $P_E=0.3$ and the marginal exposure log-OR was $\alpha_E=\log(1.5)$. For the non-null marker, the main genetic log-OR was $\beta_G=\log(1.2)$ and the carrier prevalence was $P_G=0.36$. For 500 null markers, $\beta_G\sim \text{Unif}[\log(1.05),\log(1.2)]$, with $\beta_G=0$ for the remainder. For all null markers, $P_G=f^2+2f(1-f)$, where $f\sim \text{Unif}[0.1,0.3]$ is the minor allele frequency. Web Figure 7: Empirical power for discovery of one marker for the case-control method (CC) and 7 gene discovery methods (MA, marginal; JOINT(CC), 2-DF joint test; JOINT(EB), empirical Bayes 2-DF joint test; MA+CC, marginal + CC; MA+EB, marginal + empirical Bayes; CC(EXP), CC applied to exposed subgroup; EB(EXP), empirical Bayes applied to exposed subgroup) from 5,000 datasets with n=20,000 each of cases and controls. From top to bottom, each row corresponds to perfect classification, non-differential misclassification (sensitivity and specificity of 0.8), and differential misclassification (sensitivity of 1 and specificity of 0.8 for cases and sensitivity and specificity of 0.8 for controls) of the exposure variable. From left to right, each column corresponds to $\theta_{GE} = \log(0.8)$, $\theta_{GE} = 0$, and $\theta_{GE} = \log(1.1)$. The exposure prevalence was $P_E = 0.3$ and the marginal exposure log-OR was $\alpha_E = \log(1.5)$. The main genetic log-OR was $\beta_G = 0$ and the carrier prevalence was $P_G = 0.36$. These settings are identical to those of Figure 2 in the main text, but the range of $\exp\{\beta_{GE}\}$ extends to 1.75. Web Figure 8: Empirical power for discovery of one marker for the case-control method (CC) and 7 gene discovery methods (MA, marginal; JOINT(CC), 2-DF joint test; JOINT(EB), empirical Bayes 2-DF joint test; MA+CC, marginal + CC; MA+EB, marginal + empirical Bayes; CC(EXP), CC applied to exposed subgroup; EB(EXP), empirical Bayes applied to exposed subgroup) from 5,000 datasets with n=20,000 each of cases and controls. From top to bottom, each row corresponds to perfect classification, non-differential misclassification (sensitivity and specificity of 0.8), and differential misclassification (sensitivity of 1 and specificity of 0.8 for cases and sensitivity and specificity of 0.8 for controls) of the exposure variable. From left to right, each column corresponds to $\theta_{GE} = \log(0.8)$, $\theta_{GE} = 0$, and $\theta_{GE} = \log(1.1)$. The exposure prevalence was $P_E = 0.3$ and the marginal exposure log-OR was $\alpha_E = \log(1.5)$. The main genetic log-OR was $\beta_G = \log(1.2)$ and the carrier prevalence was $P_G = 0.36$. Web Figure 9: Empirical power for discovery of one marker for the case-control method (CC) and 7 gene discovery methods (MA, marginal; JOINT(CC), 2-DF joint test; JOINT(EB), empirical Bayes 2-DF joint test; MA+CC, marginal + CC; MA+EB, marginal + empirical Bayes; CC(EXP), CC applied to exposed subgroup; EB(EXP), empirical Bayes applied to exposed subgroup) from 5,000 datasets with n=20,000 each of cases and controls. From top to bottom, each row corresponds to perfect classification, non-differential misclassification (sensitivity and specificity of 0.8), and differential misclassification (sensitivity of 1 and specificity of 0.8 for cases and sensitivity and specificity of 0.8 for controls) of the exposure variable. From left to right, each column corresponds to $\theta_{GE} = \log(0.8)$, $\theta_{GE} = 0$, and $\theta_{GE} = \log(1.1)$. The exposure prevalence was $P_E = 0.1$ and the marginal exposure log-OR was $\alpha_E = \log(1.75)$. The main genetic log-OR was $\beta_G = 0$ and the carrier prevalence was $P_G = 0.36$.