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ABSTRACT The overall geometry of chromosomes in
mammalian cells during interphase is analyzed. On scales
larger than 104 bp, a chromosome is modeled as a Gauan
polymer subjected to additional forces that confine it to a
subvolume of the cell nudeus. An appropriate partial differ-
ential equation for the polymer Green's function leads to
predictions for the average geometric length between two
points on the chromosome. The model reproduces several ofthe
experimental observations: (i) a square root dependence of
average geometric d ce between two marked chromosome
locations on their genomic separation over genomic length
scales from =10 to "10' bp; (u) an approach of the geometric
ditance to a maimum value for still larger genomic separa-
tions of the two points; (iu) overall chromosome l tion in
subdomains of the cell nuceus, as suggested by fluorescent
labeling of whole chromosomes and by radiobiologial evi-
dence. The model is also consistent with known properties of
the 30 nm chromatin fiber. It makes a testable prediction: that
for two markers a given number of base pairs apart on a given
chromosome, the average geometric separation is larger if the
confguration is near one end of the chromosome than if it is
near the center of the chromosome.

During the interphase part of the cell cycle, chromatin (i.e.,
DNA and its associated proteins) is comparatively dispersed,
in contrast to its more condensed state during cell division.
Chromatin geometry may have an important influence on
transcription, DNA replication, cell development, and cel-
lular response to perturbing agents such as ionizing radiation
(1-3). This paper presents a mathematical polymer model for
the large-scale geometric structure of chromosomes in a
mammalian cell during interphase.

Extensive mathematical modeling efforts have been de-
voted to the physical and geometric structure ofchromatin on
a scale of <104 bp (1, 2, 4). Some mathematical analyses
relevant to larger scales have been considered (5) but,
comparatively speaking, little effort has been devoted to the
very largest scales during interphase. We shall here consider
scales >104 bp, emphasizing the range from -w105 bp up to the
length ofan entire chromosome-i.e., >3 x 108 bp in the case
of the largest human chromosomes (6).
Emphasizing large scales means that such comparatively

well understood structures as the basic DNA double helix,
and its winding onto histones to form nucleosomes (1, 2), are
too small scale to be explicitly considered in our main
calculation. On scales somewhat larger than the nucleo-
somes, chromatin is organized into a 30-nm fiber (1, 2).
Appendix 1 discusses the interrelation of the parameters of
the 30-nm chromatin fiber with the parameters we shall use
in the large-scale models.
The 30-nm chromatin fiber has segments that are delin-

eated by special DNA sequences called matrix-associated
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regions (MARs); the term MAR refers to a possible protein
matrix within the cell nucleus, whose properties are still
controversial (1, 2). The segments are of variable length but
on average there are somewhat <105 bp between consecutive
MARs (1, 2). There is even higher-order structure, which is
not well understood, organizing the segments into chromo-
somes (1, 2, 7). It is this higher-order structure that is our
primary concern here.
Some analyses of large-scale chromosome geometry dur-

ing interphase are more than a century old. But new exper-
imental techniques have recently produced an increase in our
qualitative understanding of nuclear ultrastructure (8). For
example, by fluorescently "painting" a pair ofhomologues in
a cell nucleus, it has been found that a single chromosome
does not wind and twist its way throughout the entire
interphase cell nucleus. Rather, at any instant, a chromosome
in a mammalian cell seems to be confined to a subregion
comprising, very roughly, 10%1 of the nuclear volume (8-12).
Less direct evidence for chromosome localization also

comes from studies of ionizing radiation damage to chromo-
somes. An important kind of damage occurs when ionizing
radiation-induced DNA double-strand breaks undergo flle-
gitimate recombination to produce chromosome aberrations
(3, 13). Because this process involves pairs of double-strand
breaks, it gives information on chromosome geometry, spe-
cifically on the point-pair distribution function (essentially a
geometric autocovariance function), which determines how
far apart, on average, two double-strand breaks are. For
example, pairs located on a single chromosome undergo
pairwise interaction more often than is predicted by a model
assuming complete spatial randomness, indicating some level
ofchromosome localization (3, 14, 15). Arguments involving
the interrelation between chromosome geometry and the
geometry of ionizing radiation tracks give further evidence
for chromosome localization (16).

Recently, a technique has been developed for repeated
measurements in different cells of the physical distance
between two chosen points on one specified chromosome
(17-20). This technique gives a direct measurement of the
point-pair distribution function.

Thus, enough data are now accumulating to justify at-
tempts to analyze quantitatively overall chromosome struc-
ture in interphase mammalian cells. The key question for a
mathematical model is whether the higher-order structure is
highly systematic and organized or has a considerable
amount ofrandomness. In the latter case, a potentially useful
approach is that of polymer physics, which models the
behavior of a large, flexible linear molecule with some of its
bending angles partially or wholly random (21). As long as
random influences are dominant, many complications can be
averaged out and surprisingly simple overall models can be
obtained, even in situations in which the molecule is sub-
jected to a complicated variety of forces.

Abbreviation: MAR, matrix-associated region.
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Chromosomes do show systematic interactions, con-
straints, and structural motifs. It is known, for example, that
certain specific portions of specific chromosomes are sys-
tematically associated in the nucleolus regions, where they
cooperate in the biogenesis of ribosomes (1). On the other
hand, there is also evidence for considerable randomness in
the ultrastructure of cell nuclei (8, 15).

Recently (20), large-scale chromosome structure during
interphase was modeled by regarding chromatin as a Gaus-
sian polymer. The model predicts that geometric separations
between pairs of points on the chromosome are proportional
to the square root of the genomic separations. It was found
that the Gaussian polymer model works surprisingly well on
scales of 105-106 bp, at least for cells prepared by the methods
of van den Engh et al. (20). But at still larger scales, instead
of continuing to increase approximately as the square root of
the genomic separation, the measured geometric separations
increase more slowly or become independent of genomic
separations (17, 18, 20). This leveling-off effect may persist
for separations up to the full length of a chromosome, from
near one telomere to near the other (ref. 17; B. Trask,
personal communication). The aim of the present paper is to
model an interphase chromosome as a Gaussian polymer with
additional constraints, thereby taking into account the ob-
served leveling off. The models are intended to apply pri-
marily to the time period beforeDNA replication (i.e., to G1).

Polymer Models

In view of these arguments, we shall model the overall
geometry of an interphase chromosome, analyzed on large
scales, as a polymer (21) constrained to lie within its own
nuclear subvolume, idealized as a sphere (14). Possible
physical mechanisms that might induce confinement include
protein tethers or the influence of other macromolecules in
the nucleus.
We shall neglect many refinements in order to get a viable

0th order model. We shall calculate configuration probabil-
ities only in thermal equilibrium. Polymer motions will not be
analyzed. Only one chromosome at a time will be considered,
without explicit analysis of interactions between different
chromosomes or the degree to which the domains ofdifferent
chromosomes may overlap.

Notation. The methods, results, and notation of the text by
Doi and Edwards (ref. 21; section 2.2, section 2.3, and
appendix 2.1I) will be used. The chromosome is idealized as
a set ofN + 1 beads connected in order by N links. Apart
from corrections for the influence of large-scale constraints,
the geometric length of a single link, rather than being fixed,
is determined by a Gaussian normal probability distribution,
and the angle between successive links is wholly random.
This approach is used because the empirical results (20)
indicate that, for scales of 105-106 bp, the Gaussian polymer
model applies. We could identify a bead with a MAR and/or
assume that a single link corresponds to =105 bp, but these
identifications are not essential features ofthe model because
all the formal calculations are invariant under appropriate
rescaling of link sizes (21). We show in Appendix I that
Gaussian behavior at scales of 105-106 bp is consistent with
known chromatin properties at smaller scales if chromatin is
modeled as a worm-like coil (22-24), possibly with some
additional randomness due to random angles at the locations
of the MARs.
The basic configuration to be analyzed is shown in Fig. 1,

where a chromosome is sketched on a scale so large the
individual polymer links are not resolved. Our main goal is to
calculate quantities such as the mean square physical sepa-
ration L2 = (JR - R'12) of the points R = (X, Y, Z) and R' =
(X', Y', Z') in Fig. 1; here and throughout ( ) denotes an
average (over cells, at thermal equilibrium). Direct observa-

FIG. 1. Physical separations and base-pair separations. Drawing
shows a chromosome, a point R, which might be fluorescently
labeled, separated by n links from a point R', which might be labeled
a different color. The two points are, respectively, no and n' = N -
n - no links from the chromosome ends (i.e., the telomeres). Circle
indicates schematically a spherical subregion of the cell nucleus
inside of which the chromosome is confined.

tions (17, 18, 20), with R and R' fluorescently labeled,
actually are determined by two-dimensional projected dis-
tances such as p = [(X - X')2 + (y - y')2]1/2. In the simple
Gaussian and confinement models analyzed in the present
paper, (p2) = (2/3)L2 in all cases.

Green's Functions. We shall use the Green's function G(Ro,
RN; N), also sometimes referred to as the "statistical weight"
or "distribution function" or "partition function" (21). For
an integer n' with 0 < n' < N, the Green's function obeys a
propagator equation analogous to the Kolmogorov-Chapman
relation-namely (21),

G(Ro, RN; N) = fdRG(RO, R; n')G(R, RN; N - n'), [1]

where dR = dXdYdZ = R2dfldR. The Green's function can
be used to calculate averages. For example, consider a
functionf(R, R'), which depends on R and R' in Fig. 1 but not
on any other oftheN + 1 bead coordinates. Then the average
is (21)

(f(R, R'))

= (1/K)fdRodRdR'dRN G(RO, R; no)G(R, R'; n)

G(R', RN; n')f(R, R'). [2]

Here K is a normalization constant, determined by

K = JdROdRNG(RO, RN; N).

For a Gaussian polymer the Green's function (21) is

2'rnb2 -3/2 [ 3(R - R')2
G(R, R'; n) = [ 3 exp 2nb2 J

[3]

[4]

where b is the rms geometric length ofone link. A calculation
using Eq. 2, Eq. 4, and L2 = (JR - R'12) gives

K= 1, L2 =nb2. [5]

Biophysics: Hahnfeldt et al.
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Thus, in the Gaussian case, geometric lengths are propor-
tional to the square root of the genomic distance-i.e., L X
1i/2
Spherical Confinement. As discussed above, the Gaussian

polymer model breaks down for base-pair separations larger
than =106. Therefore, suppose that, in addition to its contour
linkage, supplied by harmonic forces between successive
beads, the polymer is confined within a sphere ofradius A by
forces localized at the surface ofthe sphere. In an appropriate
continuum limit, which we henceforth adopt, N, n, and no are
treated as continuous variables and the problem offinding the
Green's function G(R, R'; n) reduces (21) to solving, for n >
0, a familiar initial-value, boundary-value problem for the
diffusion equation, as follows:

a b2 a2
[n - G(R, R'; n) = 0,
an 6 aR2]-

[6]

where G(R, R', 0) = 8(R - R') and [G]IRI=A = 0. Here a2/aR2
is the Laplacian and 8 is the three-dimensional Dirac 8
function.

Solutions. The solution of Eq. 6, and some applications to
polymer physics, are well known (25-27). By standard super-
position (25)

IF lm(R)TImi(R')
G =

l
exp[-k,jn], [7]

imi Ali

where 1 2 0, Iml ' 1, i 2: 1; %Ilmi(R) = Yim(O, ))xli(R); Ali =
fR2dRIXuIj2; Y,, denotes a spherical harmonic; radial inte-
grals, such as the integral in Eq. 7, always have limits 0, A;
and XU(R) is a radial eigenfunction with eigenvalue kli. In
terms of the lth spherical Bessel function, ji, and its ith
ordered zero Kli we have (25):

X,,(R) =jj(K11R/A); jl(Klj) = 0; kl, = Kib2/(6A2). [8]

In the cases of interest to us, A >> b. In the limit A 0,
solving Eq. 6 gives the function G in Eq. 4-i.e., this case is
the Gaussian polymer already analyzed.

Results

Appendix 2 gives details on evaluating averages, using the
Green's function and Eq. 2. This section presents some
graphs on averages and a comparison to empirical data.
We shall regard the number of links n between R and R' in

Fig. 1 as the basic independent variable. In the Gaussian
case, Eq. 5 shows that L2 is independent of the polymer
configuration outside the genomic stretch of interest-i.e.,
independent of no and n' in Fig. 1. In the spherical confine-
ment case, there is a weak dependence on no and n' but the
main dependence is still on n. Consequently, we consider
extreme values of no and n'; intermediate cases are easily
estimated from the extreme ones. One extreme case for no is
no = 0, corresponding to a situation where R is very near a
chromosome telomere (Fig. 1). The other limit is no large,
specifically nokol >> 1, where kol = ir2b2/(6A2) is the smallest
eigenvalue in Eq. 8. For n0ko1>> 1, L2 is independent of no
(see Appendix 2). Considering also the two extreme cases for
n' we get three nonequivalent cases: no = 0 = n'; no = 0, n'kol
>> 1; and n0k01>> 1, n'k01>> 1.

Fig. 2 shows the results for these cases. For "small"
genomic separations-i.e., for nkol << 1, the behavior is
similar to that of a corresponding Gaussian polymer (curve
d), and for larger n the curves show the leveling off observed
(17, 18, 20) experimentally.
More specifically, the data of van den Engh et al. (20)

concerns a 6-Mbp region very near one end of human

eqI 0.5
el_

z

0.0
1 2

RELATI GENONMC DISTANCE - n
3

FIG. 2. Predicted values of interphase separations. In the models,
average physical distance is a function of genomic distance, and
genomic distance can be taken as 105n bp, where n is the number of
links. Horizontal axis is nb2/A2-i.e., n rescaled by using the rms
length b of one link for a corresponding, unconstrained Gaussian
polymer and using the radius A of the confining sphere for the
chromosome. Vertical axis is the predicted mean square distance, L2
= (JR - R'12), in units ofA (see Fig. 1). Here ( ) denotes an average.
Curve a, curve for nokol >> 1, n'kol >> 1, appropriate for a
configuration near the middle ofa long chromosome (see text). Curve
b, curve for no = 0, n'kD, >> 1, appropriate for a configuration near
one telomere of a long chromosome. Curve c, curve for no = 0 = n',
appropriate for a chromosome whose entire length is n links. The
height at which the curve levels offis a measure of the chromosome
domain size. Cases intermediate between curves a and b, or b and c,
have intermediate curves (not shown). Curve d, line for a corre-
sponding Gaussian polymer without confinement.

chromosome 4. Using the Green's function for the case no =
0, n'kol >> 1 and fitting an appropriate theoretical average to
the data by adjusting A and b give the curve shown in Fig. 3.
The inferred values for b and A are considerably larger than

_s 5 /

e4A
C.v

0'

0 2 4

GENOMIC DISTANCE (Megabasepair)

FIG. 3. Comparing model and experiment. Data points are from
van den Engh et a!. (20). The curve is obtained from the model
assuming a measured distance is a two-dimensional projection p=
[(X - X')2 + (y - y')2]l/2 and averaging (see Appendix 2). Param-
eters A and b were adjusted to give the best fit to the data; A -6.3
pAm. Assigning the nominal value of iO5 bp to one link gives b -0.6
tim. Results for other nominal values can be obtained from the scale
invariance of the formalism-i.e., 10W --+ K x 105 coffesponds to b
-_* K1/2b and A -.) A. Numerical values (A -6.3 pAm, b -0.6 Ian)
apply to slides prepared from cells swollen in suspension (18, 20).
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would be found in a live cell, owing to the slide preparation
procedure, which includes hypotonic swelling (18, 20).

Discussion

The success of the polymer models in the range =101 to %106
bp (20) is evidence that over such scales there is indeed
considerable randomness. We have shown (Fig. 2) that a
simple confinement polymer model can account for the
observed leveling off of physical separations at still larger
genomic separations. There are two essential adjustable
parameters (Fig. 3) and these suffice to give reasonable fits to
the published data. The parameters are consistent with the
structure of DNA and chromatin on the level of the 30-nm
fiber (see Appendix 1).
The confinement model predicts that, for a given genomic

separation (n links in Fig. 1), the physical separations are
larger for a configuration near the end of a chromosome than
for a configuration near the middle of a chromosome. Intu-
itively speaking, there is very low probability of finding a
point on the chromosome near the confining surface, since a
configuration with that point on the surface would have low
entropy (due to the systematic location of all nearby points on
the same side-namely, the inside-of the surface). Simi-
larly, given a stretch of n links, it tends to be closer to the
center, and thus also shorter, if there are two long tails
flanking the stretch-i.e., if no and n' in Fig. 1 are large.
For the end points of a chromosome, the rms separation,

read off the asymptote in Fig. 2 (curve c), is -0.885A where
A is the confining sphere radius. This value can be compared
to the separation of two points located at random within the
confining sphere. The probability that two randomly located
points are a distance r or less apart is (28) F(y) = 8y3 - 9y4
+ 2y6, where y = r/2A. The mean square distance is
consequently (2A)2flOy2F'(y)dy = 1.2A2, corresponding to a
rms separation of -1.1A-i.e., a somewhat larger separation
in the random case than in the polymer case, even for a value
of n so large that the asymptote in curve c of Fig. 2 is attained.
Confinement of the kind we have modeled could occur in

various ways. There might be one or more organizing cen-
ter(s) for each chromosome, with protein tethers to some
locations on the chromosome. Alternatively, the overall
excluded volume influence of other macromolecules within
the cell nucleus could induce confinement.
The current model does not specify the extent to which

different chromosomes intertwine. However, the value ofA
derived in Fig. 3 corresponds to considerable overlapping,
consistent with fluorescent in situ hybridization studies (8,
10-12) and radiobiological evidence (3, 14).
A realistic geometric model of the large-scale structure of

chromosomes would have many applications. In particular,
analyzing chromosomal aberrations formed by pairwise in-
teractions of ionizing radiation-produced DNA double-strand
breaks requires considerable geometric detail (16). It also
requires some knowledge of chromatin motion, since it is
known (14, 16, 29) that the pairwise interactions are not well
mixed. An attractive feature of polymer models for radiobi-
ological applications is that each model for the average
geometry at thermal equilibrium automatically implies a
dynamic model with which to estimate chromatin motion
(21).

Various generalizations ofour results are possible-e.g., to
confining domains having cylindrical rather than spherical
symmetry or to confinement achieved by conservative forces
rather than rigid walls (21, 26, 27).
To summarize, we have suggested that polymer models

may be capable of predicting the main features of large-scale
interphase chromosome geometry. If so, the simplifications
obtained by averaging out details will be significant in a
variety of applications, including radiobiology. Further ex-

periments on point-pair distributions, of the kind developed
by Trask and coworkers (17-20), should help determine the
appropriate intermixture of systematic and random structural
motifs, leading to refinement of the models.

Appendix 1: Worm-Like Coils

A Gaussian polymer is a convenient way to approximate, for
large scales, the behavior of a worm-like coil (22, 23).
Presumably, however, a worm-like coil model for chromatin
based on the 30-nm fiber as the basic structure gives a more
realistic detailed picture. Here we outline the relation be-
tween these two pictures.
The thermal equilibrium properties of a worm-like coil are

specified by its persistence length a and by its contour length
L4 (22-24). In our notation, the contour length is given by Lc
= l05n/v gm, where we have used the same nominal value
of base pairs per link as before and v is the number of base
pairs per micrometer. The persistence length of the 30-nm
fiber is not known but can be estimated from the value of b
- 0.6 gm found in Fig. 3 by using the standard equation (22,
24) L2 = 2aLc[1 - (a/LL)(1 - e-a/LC)]. For the straight line
portion of the curve in Fig. 3, this becomes nb2 2aLc =

105an/v-i.e., a 1.8 x 10-6v ,um. For the 30-nm fiber in a
live cell, v 1.2 x 105 bp/,m (1, 2) and we get a 0.22 Am,
corresponding to =2.6 x 104 bp. More generally, since the
slide preparation involves a swelling step, we can take for the
30-nm fiber v = 1.2 x 105/f, wherefis a linear swelling factor,
which might be in the range 1-3. Then the argument gives a
-- 0.22/f im, corresponding to =2.6 x 104/f2 bp and a has
the same order of magnitude as the persistence length of
DNA itself, without associated proteins, which is -0.060 Am
(30, 31). The stiffness is then also comparable, since persis-
tence length is proportional to stiffness [the proportionality
constant depending on the temperature (32) and, for DNA, on
the salt concentration (33)], which is reasonable given the
structure of the 30-nm fiber.
The estimated statistical length 2a corresponds to <10W bp,

as is required (21-24) for the observed near-Gaussian behav-
ior in Fig. 3 at scales of 105-106 bp. It could be that other
small-scale models of chromatin-e.g., the nucleosome,
"beads-on-a-string" model, or a model that has random
angles at the MARs-are more appropriate for the experi-
mental conditions of interest. However, in such cases the
statistical length in base pairs is even smaller than that
estimated above, so the argument suffices to show that our
Gaussian assumption about the chromosome structure at a
scale of 10o bp is consistent with standard information about
smaller scales.

Appendix 2: Averages

Given the series from (Eqs. 7 and 8) for the Green's function,
averages can be computed, as we now illustrate. Suppose
that, in Fig. 1, no = 0-i.e., the point R is very near a
telomere. Then calculating (IR - R'12) involves calculating
(R2), (R'2), and

(R-R') = idRdR'dRN G(R, R'; n)G(R', RN; n') R-R'. [9]

This expression can be evaluated by Eqs. 3, 7, 8, and
standard properties (25) of spherical harmonics and spherical
Bessel functions to obtain:

4X ~~~e-nkii-n'koj
(R-R') = - I DiFijBjK uwh

where

Biophysics: Hahnfeldt et al.
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B2exp[-koj(n + n')]K=4rrXE
j=l Aoj

Aoj = A3/(2j2ir2),
Ali = A3sin(Kl,)2/(2K2),

B= fxojR2dR = (-l)j+'A3/(irj)2, (101

Di = -A4SinKl/K21i,
Fij= 2(-l)j 1A4sinKlj/(K1 -r2i2)2.

Eqs. 10 can be evaluated numerically. The code needed is
very simple and runs rapidly even on a workstation.

Ifwe need the limit of Eqs. 10 for n' large, we merely drop
all terms in the series of Eqs. 10 except terms involving the
factor exp[-n'ko1l. Then the n' dependence cancels between
the numerator and denominator of Eqs. 10 for (R-R')-i.e.,
for n' sufficiently large, the average (R-R') is independent of
n.
The remaining quantities needed to calculate L2, for the

various cases discussed in Fig. 2, can be calculated by wholly
analogous manipulations and Fig. 2 presents the main results.

Calculating (p) for Fig. 3 is slightly more difficult, because
p involves a square root. We proceeded as follows. For nkol
<< 1, the Gaussian limit, Eq. 4, applies and a direct integra-
tion gives (p)2 = (7r/4)(p2) = (2/3)(Xr/4)L2, where L2 can be
calculated as discussed above. In the opposite limit-i.e.,
nkoD >> 1-only the leading term (1 = 0 = m, i = 1) in the
series expansion (Eq. 7) for the Green's function G(R, R', n)
need be retained, by an argument similar to that given above.
Evaluating the leading term in the average reduces to com-
puting the integral

0drf dr'L dof dof dcss'

[S2 + S,2 - 2ss'cosC]l/2sin(irr)sin(irr'), [11]

where s = rsinO. This integral apparently cannot be evaluated
analytically. It was performed numerically, using an adaptive
technique involving a one-dimensional method in each di-
mension (34). The result is that in this limit (p)2 (2/
3)(0.805)L2. We then interpolated between the two limits by
interpolating between the two factors ir/4 0.785 and 0.805;
the interpolation was checked by evaluating, also by numer-
ical integration, the next two terms in the expansion of the
Green's function G(R, R', n) for large n. The results are
presented in Fig. 3.
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