## Joint Effects of Ambient Air Pollutants on Pediatric Asthma Emergency Department Visits in Atlanta, 1998-2004

Andrea Winquist, Ellen Kirrane, Mitch Klein, Matthew Strickland, Lyndsey A. Darrow, Stefanie Sarnat,

Katherine Gass, James Mulholland, Armistead Russell, Paige Tolbert

**Supplemental Material** 

## **Model Details**

The joint effect models for estimating the joint effects of p pollutants, without interactions, had the following form:

$$\begin{split} Log[E(Y)] &= \alpha + \sum_{i=1}^{p} \beta_{i} \, (pollutant)_{i} \\ &+ \lambda [\log(non - asthma \, pediatric \, resp \, ED \, visits)] + g(\gamma_{1}, \ldots, \gamma_{N}; \, day \, of \, season) \\ &+ g(\delta_{1}, \ldots, \delta_{N}; \, dewpt) + g(\eta_{1}, \ldots, \eta_{N}; \, min \, temp) + \sum_{j} \xi_{j} \, (year)_{j} \\ &+ \sum_{k} \nu_{k} (month)_{k} + \sum_{l} \zeta_{l} \, (day \, of \, week \, or \, holiday)_{l} + \sum_{m} \varphi_{m} \, (hospital)_{m} \\ &+ \sum_{n} \tau_{n} (max \, temp \, ^{\circ}\mathbf{C})_{n} + \sum_{jk} \psi_{jk} (year)_{j} \, (month)_{k} \\ &+ \sum_{kn} \omega_{kn} \, (month)_{k} (max \, temp \, ^{\circ}\mathbf{C})_{n} \\ &+ \sum_{kl} \vartheta_{kl} \, (month)_{k} (day \, of \, week \, or \, holiday)_{l} \end{split}$$

The dependent variable (Y) was the hospital-specific number of daily pediatric asthma ED visits. Analyses used the three-day moving average of pollutant concentrations (the average of the pollutant concentration on a given day (lag 0) and the previous two days (lags 1 and 2)) (pollutant), which was modeled as a linear term in our primary models. Models included a linear term for the logarithm of the daily number of non-asthma pediatric ED visits for acute upper respiratory infections (non-asthma pediatric resp ED visits); cubic polynomials (g) for day-of-season, the moving average of dew point (lags 0-2) (dewpt), and the moving average of minimum temperature (lags 1 and 2) (min temp); indicator variables for year, month, day of week or holiday (with holidays having a separate indicator), hospital and same-day (lag 0) maximum temperature (for each degree Celsius) ( $max temp \ ^{\circ}C$ ); and interaction terms between month and year, month and lag 0 maximum temperature, and month and day of week.

Joint effects were calculated for an interquartile-range (IQR) increment in each pollutant concentration, as the exponentiated sum (across the pollutants in the combination) of the product of each pollutant's model coefficient and that pollutant's IQR, using the following formulas:

$$\mathbf{L}'\boldsymbol{\beta} = \sum_{i=1}^{p} \beta_i \, (pollutant \, IQR)_i$$

$$RR_{IE} = \exp[\mathbf{L}'\boldsymbol{\beta}] \tag{3}$$

where the joint effect of p pollutants (i=1, 2,...,p) is represented by RR<sub>JE</sub>,  $\beta_i$  is the coefficient for a given pollutant (i) from equation 1 above,  $\beta$  is the vector of pollutant parameter estimates, and  $\mathbf{L}$  is the corresponding vector of pollutant IQRs. The 95% confidence interval for the joint effect was calculated (using an "estimate" statement in the SAS "genmod" procedure), according to the following formula:

$$se_{L'\beta} = \sqrt{L'\widehat{\Sigma}L}$$
 (4)

95% 
$$CI_{RR_{IE}} = (\exp(\mathbf{L}'\boldsymbol{\beta} - z_{1-\alpha/2}se_{L'\beta}), \exp(\mathbf{L}'\boldsymbol{\beta} + z_{1-\alpha/2}se_{L'\beta}))$$
 (5)

Where  $\hat{\Sigma}$  is the estimated covariance matrix of the estimates and  $\alpha=0.05$ .

The joint effect models for estimating the joint effects of p pollutants with interactions had the following form:

$$Log[E(Y)] = \alpha + \sum_{i=1}^{p} \beta_{i} (pollutant)_{i} + \sum_{i=2}^{p} \sum_{q=1}^{i-1} \beta_{iq} (pollutant)_{i} * (pollutant)_{q}$$

$$+ \lambda [\log(non - asthma \ pediatric \ resp \ ED \ visits)] + g(\gamma_{1}, ..., \gamma_{N}; \ day \ of \ season)$$

$$+ g(\delta_{1}, ..., \delta_{N}; \ dewpt) + g(\eta_{1}, ..., \eta_{N}; \ min \ temp) + \sum_{j} \xi_{j} (year)_{j}$$

$$+ \sum_{k} v_{k} (month)_{k} + \sum_{l} \zeta_{l} (day \ of \ week \ or \ holiday)_{l} + \sum_{m} \varphi_{m} (hospital)_{m}$$

$$+ \sum_{n} \tau_{n} (max \ temp \ ^{\circ}C)_{n} + \sum_{jk} \psi_{jk} (year)_{j} (month)_{k}$$

$$+ \sum_{kl} \omega_{kn} (month)_{k} (max \ temp \ ^{\circ}C)_{n}$$

$$+ \sum_{kl} \vartheta_{kl} (month)_{k} (day \ of \ week \ or \ holiday)_{l}$$

Joint effects for the interaction models were calculated for an increment equal in magnitude to the interquartile-range (IQR) for each pollutant concentration, starting at each pollutant's 15<sup>th</sup>, 25<sup>th</sup>, or 35<sup>th</sup> percentile levels. For joint effects including interactions, the joint effect was calculated as the exponentiated sum (across the pollutants in the combination and their first-order interactions) of 1) the product of each pollutant's model coefficient and that pollutant's IQR, and 2) the product of the coefficient for each interaction term and the difference in the products of the specific pollutant levels being contrasted (represented by a and b in equation 7 below, where b=a+IQR), using the following formulas:

$$L'\boldsymbol{\beta} = \sum_{i=1}^{p} \beta_i \left( pollutant \ IQR \right)_i + \sum_{i=2}^{p} \sum_{q=1}^{i-1} \beta_{iq} [(b_i * b_q) - (a_i * a_q)]$$
 (7)

$$RR_{IE} = \exp[\mathbf{L}'\boldsymbol{\beta}] \tag{8}$$

where the joint effect of p pollutants (i=1, 2,...,p) is represented by RR<sub>JE</sub>,  $\beta_i$  is the coefficient for a given pollutant (i) from equation 6 above,  $\beta_{iq}$  is the coefficient for the interaction term for a given pollutant pair,  $\beta$  is the vector of parameter estimates including estimates for pollutant s and interaction terms, and  $\mathbf{L}$  is the corresponding vector of pollutant IQRs (for pollutant betas) or differences in the product of contrasted pollutant levels (for interaction term betas). As in the no-interaction model, the 95% confidence interval for the joint effect was calculated (using an "estimate" statement in the SAS "genmod" procedure), according to the following formula:

$$se_{LB} = \sqrt{L'\widehat{\Sigma}L} \tag{9}$$

95% 
$$CI_{RR_{IE}} = (\exp(\mathbf{L}'\boldsymbol{\beta} - z_{1-\alpha/2}se_{L'\beta}), \exp(\mathbf{L}'\boldsymbol{\beta} + z_{1-\alpha/2}se_{L'\beta}))$$
 (10)

Where  $\hat{\Sigma}$  is the estimated covariance matrix of the estimates and  $\alpha=0.05$ .

Models used for estimating joint effects that included quadratic and cubic pollutant terms were similar to the model shown in equation 6 above except that quadratic and cubic terms for each pollutant were added to the model rather than interaction terms. The joint effect from these models was calculated as the exponentiated sum (across the pollutants in the combination and their quadratic and cubic terms) of 1) the product of each pollutant's model coefficient and that pollutant's IQR, and 2) the product of the coefficient for each quadratic and cubic term and the corresponding difference in the squared or cubed pollutant values for the specific pollutant levels being contrasted, in a manner similar to that shown in equation 7 above.

eTable 1. Percentage of warm and cold season days with all pollutants in various quartiles of their respective year-round distributions,<sup>a</sup> Atlanta, 1998-2004

| Combination                                                                   | Season | All Quartile | All Quartile | All Quartile | All Quartile | All not in same |
|-------------------------------------------------------------------------------|--------|--------------|--------------|--------------|--------------|-----------------|
|                                                                               |        | 1            | 2            | 3            | 4            | quartile        |
| Oxidant Gases                                                                 | WARM   | 3.6%         | 1.3%         | 1.3%         | 4.8%         | 89.0%           |
| (O <sub>3</sub> , NO <sub>2</sub> , SO <sub>2</sub> )                         |        |              |              |              |              |                 |
| Secondary                                                                     | WARM   | 3.7%         | 5.4%         | 9.4%         | 26.4%        | 55.1%           |
| $(O_3, Secondary PM2.5b)$                                                     |        |              |              |              |              |                 |
| Traffic                                                                       | WARM   | 11.5%        | 4.6%         | 4.2%         | 10.5%        | 69.2%           |
| (CO, NO <sub>2</sub> , EC)                                                    |        |              |              |              |              |                 |
| Power Plant                                                                   | WARM   | 4.9%         | 4.7%         | 7.0%         | 11.2%        | 72.2%           |
| $(SO_2, SO_4^{2-})$                                                           |        |              |              |              |              |                 |
| Criteria Pollutants                                                           | WARM   | 1.8%         | 0.4%         | 0.5%         | 2.6%         | 94.7%           |
| $(O_3, CO, NO_2, SO_2, PM_{2.5})$                                             |        |              |              |              |              |                 |
| Oxidant Gases                                                                 | COLD   | 4.5%         | 1.2%         | 2.0%         | 1.1%         | 91.2%           |
| $(O_3, NO_2, SO_2)$                                                           |        |              |              |              |              |                 |
| Secondary                                                                     | COLD   | 14.4%        | 9.0%         | 5.6%         | 1.5%         | 69.5%           |
| (O <sub>3</sub> , Secondary PM <sub>2.5</sub> b)                              |        |              |              |              |              |                 |
| Traffic                                                                       | COLD   | 9.1%         | 2.3%         | 3.0%         | 13.8%        | 71.8%           |
| (CO, NO <sub>2</sub> , EC)                                                    |        |              |              |              |              |                 |
| Power Plant                                                                   | COLD   | 8.4%         | 6.4%         | 5.4%         | 1.9%         | 77.9%           |
| (SO <sub>2</sub> , SO <sub>4</sub> <sup>2-</sup> )                            |        |              |              |              |              |                 |
| Criteria Pollutants                                                           | COLD   | 1.7%         | 0.1%         | 0.2%         | 0.5%         | 97.5%           |
| (O <sub>3</sub> , CO, NO <sub>2</sub> , SO <sub>2</sub> , PM <sub>2.5</sub> ) |        |              |              |              |              |                 |

Definition of Abbreviations:  $O_3$ =ozone, CO=carbon monoxide,  $NO_2$ =nitrogen dioxide,  $SO_2$ =sulfur dioxide,  $PM_{2.5}$ =particulate matter less than 2.5  $\mu$ m in diameter, EC=elemental carbon component of  $PM_{2.5}$ ,  $SO_4^{2^2}$ =sulfate component of  $PM_{2.5}$ .

<sup>&</sup>lt;sup>a</sup> Frequencies are calculated for percentage of warm or cold season days on which the various daily pollutant values were in various quartiles of the overall-year daily pollutant distribution.

<sup>&</sup>lt;sup>b</sup> Secondary PM<sub>2.5</sub> was calculated as the sum of the concentrations of selected PM<sub>2.5</sub> components including sulfate, nitrate, and ammonium.

eTable 2. Primary joint effect model effect estimates, Atlanta, 1998-2004, calculated for an inter-quartile range in the 3-day moving average of each pollutant

| Effect                                                                        | Season    | Model Specifications                                                           | Joint Effect Esti      | mate    | Interaction          |
|-------------------------------------------------------------------------------|-----------|--------------------------------------------------------------------------------|------------------------|---------|----------------------|
|                                                                               | Season    | Model Specifications                                                           | RR (95% CI)            | p-value | p-value <sup>b</sup> |
| Oxidant Gases                                                                 | \4/4 DA 4 | Model including only pollutants in joint effect, no interactions               | 1.0981 (1.0440-1.1550) | 0.0003  | NA                   |
| $(O_3, NO_2, SO_2)$                                                           | WARM      | Model including only pollutants in joint effect, with first order interactions | 1.0997 (1.0432-1.1593) | 0.0004  | 0.9748               |
| Secondary                                                                     | \4/4 DA 4 | Model including only pollutants in joint effect, no interactions               | 1.0851 (1.0354-1.1372) | 0.0006  | NA                   |
| (O <sub>3</sub> , Secondary PM <sub>2.5</sub> <sup>c</sup> )                  | WARM      | Model including only pollutants in joint effect, with first order interactions | 1.0853 (1.0281-1.1457) | 0.0031  | 0.9900               |
| Traffic                                                                       | \4/4 DA 4 | Model including only pollutants in joint effect, no interactions               | 1.1108 (1.0621-1.1616) | <0.0001 | NA                   |
| (CO, $NO_2$ , EC)                                                             | WARM      | Model including only pollutants in joint effect, with first order interactions | 1.1332 (1.0768-1.1924) | <0.0001 | 0.4209               |
| Power Plant                                                                   | 14/4 DA 4 | Model including only pollutants in joint effect, no interactions               | 1.0574 (1.0211-1.0950) | 0.0018  | NA                   |
| (SO <sub>2</sub> , SO <sub>4</sub> <sup>2-</sup> )                            | WARM      | Model including only pollutants in joint effect, with first order interactions | 1.0829 (1.0374-1.1304) | 0.0003  | 0.0598               |
| Criteria Pollutants                                                           | \4/4 DA 4 | Model including only pollutants in joint effect, no interactions               | 1.1289 (1.0573-1.2053) | 0.0003  | NA                   |
| $(O_3, CO, NO_2, SO_2, PM_{2.5})$                                             | WARM      | Model including only pollutants in joint effect, with first order interactions | 1.1540 (1.0698-1.2449) | 0.0002  | 0.3314               |
| Oxidant Gases                                                                 | COLD      | Model including only pollutants in joint effect, no interactions               | 1.0539 (0.9851-1.1275) | 0.1274  | NA                   |
| $(O_3, NO_2, SO_2)$                                                           | COLD      | Model including only pollutants in joint effect, with first order interactions | 1.0307 (0.9548-1.1126) | 0.4386  | 0.0088               |
| Secondary                                                                     | COLD      | Model including only pollutants in joint effect, no interactions               | 1.0617 (0.9918-1.1366) | 0.0850  | NA                   |
| $(O_3, Secondary PM_{2.5}^c)$                                                 | COLD      | Model including only pollutants in joint effect, with first order interactions | 1.0457 (0.9745-1.1222) | 0.2138  | 0.0890               |
| Traffic                                                                       | 601.0     | Model including only pollutants in joint effect, no interactions               | 1.0194 (0.9896-1.0500) | 0.2045  | NA                   |
| (CO, $NO_2$ , EC)                                                             | COLD      | Model including only pollutants in joint effect, with first order interactions | 1.0182 (0.9799-1.0579) | 0.3565  | 0.9941               |
| Power Plant                                                                   | COLD      | Model including only pollutants in joint effect, no interactions               | 0.9810 (0.9398-1.0240) | 0.3803  | NA                   |
| (SO <sub>2</sub> , SO <sub>4</sub> <sup>2-</sup> )                            | COLD      | Model including only pollutants in joint effect, with first order interactions | 0.9845 (0.9428-1.0280) | 0.4788  | 0.2658               |
| Criteria Pollutants                                                           | COLD      | Model including only pollutants in joint effect, no interactions               | 1.0397 (0.9670-1.1178) | 0.2926  | NA                   |
| (O <sub>3</sub> , CO, NO <sub>2</sub> , SO <sub>2</sub> , PM <sub>2.5</sub> ) | COLD      | Model including only pollutants in joint effect, with first order interactions | 0.9943 (0.9026-1.0953) | 0.9077  | 0.0002               |

Definition of Abbreviations:  $O_3$ =ozone, CO=carbon monoxide,  $NO_2$ =nitrogen dioxide,  $SO_2$ =sulfur dioxide,  $PM_{2.5}$ =particulate matter less than 2.5  $\mu$ m in diameter, EC=elemental carbon component of  $PM_{2.5}$ ,  $SO_4^{2-}$ =sulfate component of  $PM_{2.5}$ , RR=Rate Ratio

<sup>&</sup>lt;sup>a</sup> For comparability with previous analyses, <sup>1</sup> the analysis used the year-round IQR during 1993-2004 for O<sub>3</sub>, NO<sub>2</sub>, CO and SO<sub>2</sub>, and during August 1, 1998-December 31, 2004 for PM<sub>2.5</sub> and PM<sub>2.5</sub> components. The IQRs used in the analysis were: O<sub>3</sub> 29.18 ppb, CO 0.66 ppm, NO<sub>2</sub> 12.87 ppb, SO<sub>2</sub> 10.51 ppb, PM<sub>2.5</sub> 9.18 μg/m<sup>3</sup>, EC 0.69 μg/m<sup>3</sup>, SO<sub>4</sub><sup>2-</sup> 3.45 μg/m<sup>3</sup>, Secondary PM<sub>2.5</sub> 4.52 μg/m<sup>3</sup>, NO<sub>x</sub> 42.70 ppb.

<sup>&</sup>lt;sup>b</sup> Interaction test was a likelihood ratio test, testing the hypothesis that the coefficients for all interaction terms equal 0, performed using a contrast statement in SAS PROC GENMOD.

<sup>&</sup>lt;sup>c</sup>Secondary PM<sub>2.5</sub> was calculated as the sum of the concentrations of selected PM<sub>2.5</sub> components including sulfate, nitrate, and ammonium.

eTable 3. Single-pollutant model effect estimates, Atlanta, warm and cold seasons, 1998-2004, calculated for an inter-quartile range in the 3-day moving average of in each pollutant

| Effect                                   | Caasan | Madal Cracifications   | Effect Estim           | Effect Estimate |  |  |  |  |
|------------------------------------------|--------|------------------------|------------------------|-----------------|--|--|--|--|
| Ellect                                   | Season | Model Specifications   | RR (95% CI)            | p-value         |  |  |  |  |
| O <sub>3</sub>                           | WARM   | Single Pollutant Model | 1.0778 (1.0308-1.1270) | 0.0010          |  |  |  |  |
| СО                                       | WARM   | Single Pollutant Model | 1.1076 (1.0597-1.1576) | 0.0000          |  |  |  |  |
| $NO_2$                                   | WARM   | Single Pollutant Model | 1.0868 (1.0536-1.1211) | 0.0000          |  |  |  |  |
| SO <sub>2</sub>                          | WARM   | Single Pollutant Model | 1.0426 (1.0112-1.0750) | 0.0074          |  |  |  |  |
| PM <sub>2.5</sub>                        | WARM   | Single Pollutant Model | 1.0430 (1.0165-1.0703) | 0.0014          |  |  |  |  |
| EC                                       | WARM   | Single Pollutant Model | 1.0401 (1.0097-1.0714) | 0.0095          |  |  |  |  |
| SO <sub>4</sub> <sup>2-</sup> WARM       |        | Single Pollutant Model | 1.0261 (1.0041-1.0487) | 0.0200          |  |  |  |  |
| Secondary PM <sub>2.5</sub> <sup>b</sup> | WARM   | Single Pollutant Model | 1.0263 (1.0049-1.0481) | 0.0159          |  |  |  |  |
| O <sub>3</sub>                           | COLD   | Single Pollutant Model | 1.0702 (1.0079-1.1364) | 0.0266          |  |  |  |  |
| СО                                       | COLD   | Single Pollutant Model | 1.0150 (0.9869-1.0439) | 0.2993          |  |  |  |  |
| $NO_2$                                   | COLD   | Single Pollutant Model | 1.0193 (0.9917-1.0478) | 0.1723          |  |  |  |  |
| SO <sub>2</sub>                          | COLD   | Single Pollutant Model | 0.9841 (0.9578-1.0111) | 0.2446          |  |  |  |  |
| PM <sub>2.5</sub>                        | COLD   | Single Pollutant Model | 1.0045 (0.9785-1.0311) | 0.7372          |  |  |  |  |
| EC COLD                                  |        | Single Pollutant Model | 1.0032 (0.9814-1.0254) | 0.7787          |  |  |  |  |
| SO <sub>4</sub> <sup>2-</sup>            | COLD   | Single Pollutant Model | 0.9907 (0.9538-1.0290) | 0.6306          |  |  |  |  |
| Secondary PM <sub>2.5</sub> <sup>b</sup> | COLD   | Single Pollutant Model | 0.9840 (0.9530-1.0160) | 0.3221          |  |  |  |  |

Definition of Abbreviations:  $O_3$ =ozone, CO=carbon monoxide,  $NO_2$ =nitrogen dioxide,  $SO_2$ =sulfur dioxide,  $PM_{2.5}$ =particulate matter less than 2.5  $\mu$ m in diameter, EC=elemental carbon component of  $PM_{2.5}$ ,  $SO_4^{2-}$ =sulfate component of  $PM_{2.5}$ , RR=Rate Ratio

<sup>&</sup>lt;sup>a</sup> For comparability with previous analyses, <sup>1</sup> the analysis used the year-round IQR during 1993-2004 for O<sub>3</sub>, NO<sub>2</sub>, CO and SO<sub>2</sub>, and during August 1, 1998-December 31, 2004 for PM<sub>2.5</sub> and PM<sub>2.5</sub> components. The IQRs used in the analysis were: O<sub>3</sub> 29.18 ppb, CO 0.66 ppm, NO<sub>2</sub> 12.87 ppb, SO<sub>2</sub> 10.51 ppb, PM<sub>2.5</sub> 9.18 μg/m<sup>3</sup>, EC 0.69 μg/m<sup>3</sup>, SO<sub>4</sub><sup>2-</sup> 3.45 μg/m<sup>3</sup>, Secondary PM<sub>2.5</sub> 4.52 μg/m<sup>3</sup>.

<sup>&</sup>lt;sup>b</sup> Secondary PM<sub>2.5</sub> was calculated as the sum of the concentrations of selected PM<sub>2.5</sub> components including sulfate, nitrate, and ammonium.

eTable 4. Pollutant-specific parameter and concurvity estimates, primary models, Atlanta, 1998-2004, Warm Season

| Effect                        | Model Specifications                                              | Pollutant*                                                            | Unit             | Coefficient per<br>1 unit change | p-value | Concurvity:<br>all variables | Concurvity: pollutants only |
|-------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------|------------------|----------------------------------|---------|------------------------------|-----------------------------|
| O <sub>3</sub>                | Single Pollutant Model                                            | O <sub>3</sub>                                                        | ppb              | 0.0026                           | 0.0010  | 0.874                        | NA                          |
| CO                            | Single Pollutant Model                                            | СО                                                                    | ppm              | 0.1548                           | 0.0000  | 0.841                        | NA                          |
| $NO_2$                        | Single Pollutant Model                                            | NO <sub>2</sub>                                                       | ppb              | 0.0065                           | 0.0000  | 0.812                        | NA                          |
| SO <sub>2</sub>               | Single Pollutant Model                                            | SO <sub>2</sub>                                                       | ppb              | 0.0040                           | 0.0074  | 0.609                        | NA                          |
| PM <sub>2.5</sub>             | Single Pollutant Model                                            | PM <sub>2.5</sub>                                                     | μg/m³            | 0.0046                           | 0.0014  | 0.734                        | NA                          |
| EC                            | Single Pollutant Model                                            | EC                                                                    | μg/m³            | 0.0569                           | 0.0095  | 0.825                        | NA                          |
| SO <sub>4</sub> <sup>2-</sup> | Single Pollutant Model                                            | SO <sub>4</sub> <sup>2-</sup>                                         | μg/m³            | 0.0075                           | 0.0200  | 0.726                        | NA                          |
| Secondary PM <sub>2.5</sub> a | Single Pollutant Model                                            | Secondary PM <sub>2.5</sub> <sup>a</sup>                              | μg/m³            | 0.0057                           | 0.0159  | 0.727                        | NA                          |
|                               | Named in all reliance and a really tractain                       | O <sub>3</sub>                                                        | ppb              | 0.0003                           | 0.7949  | 0.923                        | 0.566                       |
|                               | Model including only pollutants in joint effect, no interactions  | NO <sub>2</sub>                                                       | ppb              | 0.0059                           | 0.0004  | 0.901                        | 0.646                       |
|                               | joint effect, no interactions                                     | SO <sub>2</sub>                                                       | ppb              | 0.0010                           | 0.5495  | 0.686                        | 0.443                       |
| Oxidant                       |                                                                   | O <sub>3</sub>                                                        | ppb              | 0.0006                           | 0.7216  | 0.972                        | 0.944                       |
|                               | No del in el coline en la cella tente in                          | NO <sub>2</sub>                                                       | ppb              | 0.0065                           | 0.1057  | 0.985                        | 0.972                       |
| Gases                         | Model including only pollutants in joint effect, with first order | SO <sub>2</sub>                                                       | ppb              | -0.0010                          | 0.8756  | 0.982                        | 0.976                       |
|                               | interactions                                                      | O <sub>3</sub> * NO <sub>2</sub>                                      | ppb <sup>2</sup> | 0.0000                           | 0.7608  | 0.992                        | 0.986                       |
|                               | meracions                                                         | O <sub>3</sub> * SO <sub>2</sub>                                      | ppb²             | 0.0000                           | 0.8999  | 0.986                        | 0.981                       |
|                               |                                                                   | NO <sub>2</sub> * SO <sub>2</sub>                                     | ppb <sup>2</sup> | 0.0000                           | 0.7013  | 0.969                        | 0.957                       |
|                               | Model including only pollutants in                                | O <sub>3</sub>                                                        | ppb              | 0.0026                           | 0.0091  | 0.927                        | 0.586                       |
|                               | joint effect, no interactions                                     | Secondary PM <sub>2.5</sub> <sup>a</sup>                              | μg/m³            | 0.0014                           | 0.6247  | 0.843                        | 0.583                       |
| Secondary                     | Model including only pollutants in                                | O <sub>3</sub>                                                        | ppb              | 0.0026                           | 0.0621  | 0.960                        | 0.897                       |
| •                             | joint effect, with first order                                    | Secondary PM <sub>2.5</sub> <sup>a</sup>                              | μg/m³            | 0.0015                           | 0.8375  | 0.977                        | 0.960                       |
|                               | interactions                                                      | O <sub>3</sub> * Secondary PM <sub>2.5</sub> <sup>a</sup>             | ppb*             | 0.0000                           | 0.9900  | 0.987                        | 0.978                       |
|                               |                                                                   | СО                                                                    | ppm              | 0.1151                           | 0.0377  | 0.940                        | 0.866                       |
|                               | Model including only pollutants in                                | NO <sub>2</sub>                                                       | ppb              | 0.0052                           | 0.0044  | 0.916                        | 0.777                       |
|                               | joint effect, no interactions                                     | EC                                                                    | μg/m³            | -0.0549                          | 0.0898  | 0.918                        | 0.839                       |
|                               |                                                                   | CO                                                                    | ppm              | 0.1257                           | 0.3404  | 0.990                        | 0.984                       |
| Traffic                       |                                                                   | NO <sub>2</sub>                                                       | ppb              | 0.0047                           | 0.2399  | 0.984                        | 0.973                       |
| Traffic                       | Model including only pollutants in                                | EC                                                                    | μg/m³            | 0.0380                           | 0.6552  | 0.989                        | 0.981                       |
|                               | joint effect, with first order                                    | CO*NO <sub>2</sub>                                                    | ppm*ppb          | 0.0017                           | 0.6877  | 0.996                        | 0.994                       |
|                               | interactions                                                      | CO*EC                                                                 | ppm*             | -0.0405                          | 0.5716  | 0.995                        | 0.992                       |
|                               |                                                                   | NO <sub>2</sub> *EC                                                   | ppb*             | -0.0017                          | 0.6214  | 0.996                        | 0.995                       |
|                               | Model including only pollutants in                                | SO <sub>2</sub>                                                       | ppb              | 0.0033                           | 0.0320  | 0.634                        | 0.256                       |
|                               | joint effect, no interactions                                     | SO <sub>4</sub> <sup>2-</sup>                                         | μg/m³            | 0.0060                           | 0.0667  | 0.738                        | 0.261                       |
| Power Plant                   | Model including only pollutants in                                | SO <sub>2</sub>                                                       | ppb              | 0.0099                           | 0.0096  | 0.950                        | 0.927                       |
|                               | joint effect, with first order                                    | SO <sub>4</sub> <sup>2-</sup>                                         | μg/m³            | 0.0150                           | 0.0096  | 0.927                        | 0.890                       |
|                               | interactions                                                      | SO <sub>2</sub> *SO <sub>4</sub> <sup>2-</sup>                        | ppb*             | -0.0010                          | 0.0602  | 0.971                        | 0.961                       |
|                               |                                                                   | O <sub>3</sub>                                                        | ppb              | 0.0008                           | 0.5182  | 0.953                        | 0.792                       |
|                               |                                                                   | СО                                                                    | ppm              | 0.0854                           | 0.0909  | 0.929                        | 0.820                       |
|                               | Model including only pollutants in                                | NO <sub>2</sub>                                                       | ppb              | 0.0032                           | 0.1460  | 0.942                        | 0.864                       |
|                               | joint effect, no interactions                                     | SO <sub>2</sub>                                                       | ppb              | 0.0007                           | 0.6979  | 0.693                        | 0.467                       |
|                               |                                                                   | PM <sub>2.5</sub>                                                     | μg/m³            | -0.0006                          | 0.7814  | 0.900                        | 0.767                       |
|                               |                                                                   | O <sub>3</sub>                                                        | ppb              | -0.0034                          | 0.1857  | 0.989                        | 0.979                       |
|                               |                                                                   | СО                                                                    | ppm              | 0.0877                           | 0.5605  | 0.992                        | 0.988                       |
|                               |                                                                   | NO <sub>2</sub>                                                       | ppb              | 0.0099                           | 0.1427  | 0.995                        | 0.991                       |
|                               |                                                                   | SO <sub>2</sub>                                                       | ppb              | -0.0039                          | 0.5749  | 0.984                        | 0.978                       |
| Criteria                      |                                                                   | PM <sub>2.5</sub>                                                     | μg/m³            | 0.0012                           | 0.8477  | 0.990                        | 0.985                       |
| Pollutants                    |                                                                   | O <sub>3</sub> *CO                                                    | ppb*ppm          | 0.0016                           | 0.5689  | 0.996                        | 0.994                       |
| · Ollacalits                  | Model including only pollutants in                                | O <sub>3</sub> *NO <sub>2</sub>                                       | ppb <sup>2</sup> | 0.0000                           | 0.7481  | 0.997                        | 0.996                       |
|                               | joint effect, with first order                                    | O <sub>3</sub> *SO <sub>2</sub>                                       | ppb <sup>2</sup> | 0.0002                           | 0.2309  | 0.993                        | 0.991                       |
|                               | interactions                                                      | O <sub>3</sub> *PM <sub>2.5</sub>                                     | ppb*             | 0.0001                           | 0.2531  | 0.996                        | 0.993                       |
|                               |                                                                   | CO*NO <sub>2</sub>                                                    | ppm*ppb          | -0.0061                          | 0.1016  | 0.994                        | 0.991                       |
|                               |                                                                   | CO*SO <sub>2</sub>                                                    | ppm*ppb          | 0.0076                           | 0.2357  | 0.993                        | 0.991                       |
|                               |                                                                   | CO*PM <sub>2.5</sub>                                                  | ppm*             | 0.0075                           | 0.8420  | 0.997                        | 0.996                       |
|                               |                                                                   | NO <sub>2</sub> *SO <sub>2</sub>                                      | ppiii*           | 0.0013                           | 0.8420  | 0.995                        | 0.993                       |
|                               |                                                                   | NO <sub>2</sub> 3O <sub>2</sub><br>NO <sub>2</sub> *PM <sub>2.5</sub> | ppb*             | -0.0002                          | 0.7281  | 0.998                        | 0.993                       |
|                               |                                                                   | SO <sub>2</sub> *PM <sub>2.5</sub>                                    | ppb*             | -0.0001                          | 0.7281  | 0.998                        | 0.997                       |
|                               | ozone CO-carbon monovide N                                        |                                                                       |                  |                                  |         |                              |                             |

Abbreviations:  $O_3$ =ozone, CO=carbon monoxide,  $NO_2$ =nitrogen dioxide,  $SO_2$ =sulfur dioxide,  $PM_{2.5}$ =particulate matter < 2.5  $\mu$ m in diameter, EC=elemental carbon component of  $PM_{2.5}$ ,  $SO_4^{2-}$ =sulfate component of  $PM_{2.5}$ , ppb=parts per billion, ppm=parts per million,  $\mu$ g/m³=micrograms per cubic millimeter.

 $<sup>^{\</sup>mathrm{a}}$  Secondary PM<sub>2.5</sub> was calculated as the sum of the concentrations of the PM<sub>2.5</sub> components sulfate, nitrate, and ammonium.

eTable 5. Pollutant-specific parameter and concurvity estimates, primary models, Atlanta, 1998-2004, Cold Season

| CO   Single Pollutant Model   NO; pph   0.0215   0.2931   0.740   N   S   S   NO;   Single Pollutant Model   NO;   pph   0.0015   0.1722   0.740   N   S   S   S   Single Pollutant Model   NO;   pph   0.0015   0.2466   0.721   N   N   N   N   N   N   N   N   N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Effect                        | Model Specifications               | Pollutant*                                                | Unit                                  | Coefficient per<br>1 unit change | p-value | Concurvity:<br>all variables | Concurvity: pollutants only |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|------------------------------------|-----------------------------------------------------------|---------------------------------------|----------------------------------|---------|------------------------------|-----------------------------|
| NO_c   Single Pollutant Model   SO_c   ppb   -0.0015   0.2446   0.721   N.P.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | O <sub>3</sub>                | Single Pollutant Model             | O <sub>3</sub>                                            | ppb                                   | 0.0023                           | 0.0266  | 0.905                        | NA                          |
| SO <sub>2</sub>   Single Pollutant Model   PN <sub>2</sub>   μg/m <sup>2</sup>   0.0015   0.2446   0.721   N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CO                            | Single Pollutant Model             | СО                                                        | ppm                                   | 0.0225                           | 0.2993  | 0.740                        | NA                          |
| PMys   Single Pollutant Model   EC   μg/m²   0.0005   0.7372   0.711   N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $NO_2$                        | Single Pollutant Model             | NO <sub>2</sub>                                           | ppb                                   | 0.0015                           | 0.1723  | 0.740                        | NA                          |
| EC   Single Pollutant Model   SQ2   Hg/m²   0.0046   0.7787   0.776   N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SO <sub>2</sub>               | Single Pollutant Model             | SO <sub>2</sub>                                           |                                       | -0.0015                          | 0.2446  | 0.721                        | NA                          |
| So, 2 <sup>2</sup>   Single Pollutant Model   So, 2 <sup>2</sup>   μμ/m   -0.0036   0.321   0.708   N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PM <sub>2.5</sub>             | Single Pollutant Model             | PM <sub>2.5</sub>                                         |                                       | 0.0005                           | 0.7372  | 0.711                        | NA                          |
| Secondary PM2_5*   Single Pollutant Model   Secondary PM2_5*   1µg/m²   0.0036   0.3221   0.700   No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               |                                    |                                                           |                                       | 0.0046                           | 0.7787  |                              | NA                          |
| Oxidant Gases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | Single Pollutant Model             |                                                           | μg/m³                                 | -0.0027                          | 0.6306  | 0.748                        | NA                          |
| No.   pub   0.0012   0.3085   0.790   0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Secondary PM <sub>2.5</sub> a | Single Pollutant Model             | Secondary PM <sub>2.5</sub> <sup>a</sup>                  | μg/m³                                 | -0.0036                          | 0.3221  | 0.700                        | NA                          |
| District effect, no interactions   SO <sub>2</sub>   ppb   0.0012   0.2175   0.751   0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               | Model including only pollutants in | O <sub>3</sub>                                            | ppb                                   | 0.0019                           | 0.0935  | 0.917                        | 0.398                       |
| Oxidant Gases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                    | NO <sub>2</sub>                                           | ppb                                   | 0.0012                           | 0.3085  | 0.790                        | 0.531                       |
| Model including only pollutants in joint effect, mith first order interactions   Sec.   ppb   0.00127   0.0059   0.981   0.001   0.1533   0.990   0.01   0.1533   0.990   0.01   0.1533   0.990   0.01   0.1533   0.090   0.01   0.1533   0.090   0.01   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                               | joint effect, no interactions      | SO <sub>2</sub>                                           | ppb                                   | -0.0017                          | 0.2175  | 0.751                        | 0.422                       |
| Model including only pollutants in joint effect, with first order interactions   Sorphis   Double                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Oxidant                       |                                    | O <sub>3</sub>                                            | ppb                                   | 0.0011                           | 0.6493  | 0.982                        | 0.965                       |
| Secondary   Model including only pollutants in joint effect, with first order interactions   Society   Secondary PM12   Secondary PM22   Sec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                               | Model including only pollutants in | NO <sub>2</sub>                                           | ppb                                   | 0.0006                           | 0.8541  | 0.976                        | 0.964                       |
| Interactions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Gases                         | _ , ,                              | SO <sub>2</sub>                                           |                                       | 0.0127                           | 0.0059  | 0.981                        | 0.972                       |
| Secondary   Model including only pollutants in joint effect, no interactions   NO2   ppb   -0.0002   0.1463   0.987   0.096   0.096   0.0975   0.0002   0.1463   0.987   0.0003   0.025   0.0133   0.908   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.0003   0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                               |                                    | O <sub>3</sub> * NO <sub>2</sub>                          |                                       | 0.0001                           | 0.1583  | 0.990                        | 0.985                       |
| Model including only pollutants in joint effect, no interactions   Secondary PM1.5*   µg/m³   0.0036   0.02877   0.7000   0.0056   0.0059   0.975   0.0056   0.0059   0.975   0.0056   0.0059   0.975   0.0056   0.0059   0.975   0.0056   0.0059   0.975   0.0056   0.0059   0.975   0.0056   0.0059   0.975   0.0056   0.0059   0.975   0.0056   0.0059   0.975   0.0056   0.0059   0.975   0.0056   0.0059   0.975   0.0056   0.0059   0.975   0.0056   0.0059   0.975   0.0056   0.0059   0.0056   0.0059   0.0056   0.0059   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056   0.0056                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                               | e. delle lie                       | O <sub>3</sub> * SO <sub>2</sub>                          | ppb²                                  | -0.0003                          | 0.0222  | 0.979                        | 0.970                       |
| Secondary   Model including only pollutants in joint effect, no interactions   O <sub>3</sub>   ppb   0.0056   0.0059   0.975   0.0056   0.0059   0.975   0.0056   0.0059   0.975   0.0056   0.0059   0.975   0.0056   0.0059   0.975   0.0056   0.0059   0.975   0.0056   0.0059   0.975   0.0056   0.0059   0.975   0.0056   0.0059   0.975   0.0056   0.0059   0.975   0.0056   0.0059   0.975   0.0056   0.0059   0.975   0.0056   0.0059   0.975   0.0056   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.0059   0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               |                                    | NO <sub>2</sub> * SO <sub>2</sub>                         | ppb²                                  | -0.0002                          | 0.1463  | 0.987                        | 0.982                       |
| Model including only pollutants in joint effect, with first order interactions   O, ppm   O,0056   O,0059   O,975   O,075                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                               | Model including only pollutants in | O <sub>3</sub>                                            | ppb                                   | 0.0026                           | 0.0133  | 0.908                        | 0.166                       |
| Figure   Secondary PM <sub>2.8</sub> *   Leg/m³   0.0134   0.2135   0.971   0.0000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.000000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.000000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.000000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.000000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.000000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.000000   0.000000   0.00000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               | joint effect, no interactions      | Secondary PM <sub>2.5</sub> <sup>a</sup>                  | μg/m³                                 | -0.0038                          | 0.2877  | 0.700                        | 0.170                       |
| Model including only pollutants in joint effect, no interactions   No.   ppb   0.0028   0.1410   0.922   0.005   0.0084   0.985   0.0028   0.1410   0.922   0.0028   0.1410   0.922   0.0028   0.1410   0.922   0.0028   0.1410   0.922   0.0028   0.1410   0.922   0.0028   0.1410   0.922   0.0028   0.1410   0.922   0.0028   0.1410   0.922   0.0028   0.1410   0.922   0.0028   0.1410   0.922   0.0028   0.1410   0.922   0.0028   0.1410   0.922   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028   0.0028                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Secondary                     | Model including only pollutants in | O <sub>3</sub>                                            | ppb                                   | 0.0056                           | 0.0059  | 0.975                        | 0.940                       |
| Model including only pollutants in joint effect, no interactions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               | joint effect, with first order     | Secondary PM <sub>2.5</sub> <sup>a</sup>                  | μg/m³                                 | 0.0134                           | 0.2135  | 0.971                        | 0.949                       |
| Traffic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                               | interactions                       | O <sub>3</sub> * Secondary PM <sub>2.5</sub> <sup>a</sup> |                                       | -0.0005                          | 0.0894  | 0.985                        | 0.975                       |
| Traffic  Tr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                    | СО                                                        | ppm                                   | -0.0074                          | 0.8466  | 0.920                        | 0.828                       |
| Traffic    Traffic   Robin elect, in interactions   EC   µg/m³   -0.0180   0.4414   0.897   0.500   0.000   0.0005   0.8478   0.992   0.0000   0.0005   0.5478   0.994   0.0000   0.995   0.0000   0.5478   0.994   0.0000   0.995   0.0000   0.5478   0.994   0.0000   0.995   0.0000   0.995   0.0000   0.995   0.0000   0.995   0.0000   0.995   0.0000   0.995   0.0000   0.995   0.0000   0.995   0.0000   0.995   0.0000   0.995   0.0000   0.995   0.0000   0.995   0.0000   0.995   0.0000   0.995   0.0000   0.995   0.0000   0.995   0.0000   0.995   0.0000   0.995   0.0000   0.995   0.0000   0.995   0.0000   0.995   0.0000   0.995   0.0000   0.995   0.0000   0.995   0.0000   0.995   0.0000   0.995   0.0000   0.995   0.0000   0.995   0.0000   0.995   0.0000   0.995   0.0000   0.995   0.0000   0.995   0.0000   0.995   0.0000   0.995   0.0000   0.995   0.0000   0.995   0.0000   0.995   0.0000   0.995   0.0000   0.995   0.0000   0.995   0.0000   0.995   0.00000   0.995   0.0000   0.995   0.0000   0.995   0.0000   0.995   0.0000   0.995   0.0000   0.995   0.0000   0.995   0.0000   0.995   0.0000   0.995   0.0000   0.995   0.0000   0.995   0.0000   0.995   0.0000   0.995   0.0000   0.995   0.0000   0.995   0.00000   0.995   0.0000   0.995   0.0000   0.995   0.0000   0.995   0.0000   0.995   0.0000   0.995   0.0000   0.995   0.0000   0.995   0.00000   0.995   0.00000   0.995   0.00000   0.995   0.00000   0.995   0.00000   0.995   0.00000   0.995   0.00000   0.995   0.00000   0.995   0.00000   0.995   0.00000   0.995   0.00000   0.995   0.00000   0.995   0.00000   0.995   0.00000   0.995   0.00000   0.995   0.00000   0.995   0.00000   0.995   0.00000   0.995   0.00000   0.995   0.00000   0.995   0.00000   0.995   0.00000   0.995   0.00000   0.995   0.00000   0.995   0.00000   0.995   0.00000   0.995   0.00000   0.995   0.00000   0.995   0.000000   0.995   0.00000   0.995   0.00000   0.995   0.00000   0.995   0.00000   0.995   0.00000   0.995   0.000000   0.995   0.000000   0.995   0.000000   0.995   0.00000   0.995   0.00000   0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               | _ , ,                              | NO <sub>2</sub>                                           | ppb                                   | 0.0028                           | 0.1410  | 0.922                        | 0.739                       |
| Traffic   Model including only pollutants in joint effect, with first order interactions   SO₂   ppb   0.0025   0.5478   0.984   0.992   0.0025   0.5478   0.984   0.0926   0.0025   0.5478   0.984   0.0025   0.5478   0.0946   0.0025   0.5478   0.0946   0.0025   0.5478   0.0946   0.0025   0.5478   0.0946   0.0025   0.5478   0.0946   0.0025   0.5478   0.0946   0.0025   0.5478   0.0946   0.0025   0.5478   0.0946   0.0025   0.5478   0.0946   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025   0.0025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               | joint effect, no interactions      | EC                                                        |                                       | -0.0180                          | 0.4414  | 0.897                        | 0.765                       |
| Traffic   Model including only pollutants in joint effect, with first order interactions   EC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                    | СО                                                        |                                       |                                  |         |                              | 0.986                       |
| Power Plant   So.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Traffic                       |                                    | NO <sub>2</sub>                                           | · · · · · · · · · · · · · · · · · · · |                                  |         | 0.984                        | 0.964                       |
| Power Plant   Model including only pollutants in joint effect, with first order interactions   SO <sub>2</sub>   ppb   -0.0013   0.3334   0.746   0.007   0.7813   0.996   0.007   0.7813   0.996   0.007   0.7813   0.096   0.007   0.7813   0.096   0.007   0.7813   0.096   0.007   0.7813   0.096   0.007   0.7813   0.096   0.007   0.7813   0.096   0.007   0.7813   0.096   0.007   0.7813   0.096   0.007   0.7813   0.096   0.007   0.7813   0.096   0.007   0.7813   0.096   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007   0.007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Traffic                       | _ , ,                              | EC                                                        | μg/m <sup>3</sup>                     |                                  |         |                              | 0.982                       |
| Model including only pollutants in joint effect, no interactions   SO <sub>2</sub>   ppb   -0.0013   0.3334   0.746   0.004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                               | •                                  | CO*NO <sub>2</sub>                                        |                                       |                                  |         | 0.996                        | 0.993                       |
| Model including only pollutants in joint effect, no interactions   SO <sub>2</sub>   ppb   -0.0013   0.3334   0.746   0.0000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               | interactions                       | CO*EC                                                     |                                       | -0.0074                          | 0.9049  | 0.995                        | 0.992                       |
| Model including only pollutants in joint effect, no interactions   SO2   ppb   -0.0013   0.3334   0.746   0.16   0.16   0.17   0.150   0.7984   0.762   0.16   0.15   0.7984   0.762   0.16   0.16   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               |                                    | NO <sub>2</sub> *EC                                       |                                       |                                  |         |                              | 0.993                       |
| Power Plant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                               | Model including only pollutants in | SO <sub>2</sub>                                           |                                       |                                  |         |                              | 0.053                       |
| Power Plant   Model including only pollutants in joint effect, with first order interactions   SO <sub>2</sub>   ppb   -0.0042   0.1500   0.950   0.500   0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               |                                    | SO <sub>4</sub> <sup>2-</sup>                             |                                       |                                  |         |                              | 0.069                       |
| joint effect, with first order interactions   SO <sub>4</sub> <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Power Plant                   |                                    | SO <sub>2</sub>                                           |                                       |                                  |         |                              | 0.915                       |
| Interactions   SO <sub>2</sub> *SO <sub>4</sub> <sup>2-</sup>   ppb*   0.0009   0.2654   0.963   0.92   0.0009   0.000000   0.000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                    | SO <sub>4</sub> <sup>2-</sup>                             |                                       | -0.0113                          |         |                              | 0.887                       |
| Model including only pollutants in joint effect, no interactions   O <sub>3</sub>   ppb   0.0017   0.1539   0.922   0.4     CO   ppm   0.0078   0.8306   0.913   0.5     NO <sub>2</sub>   ppb   0.0022   0.2942   0.933   0.4     SO <sub>2</sub>   ppb   -0.0020   0.1536   0.755   0.4     PM <sub>2.5</sub>   μg/m³   -0.0024   0.2096   0.838   0.4     O <sub>3</sub>   ppb   -0.0007   0.8073   0.988   0.5     CO   ppm   0.2354   0.0833   0.994   0.5     NO <sub>2</sub>   ppb   -0.0048   0.4776   0.994   0.5     NO <sub>2</sub>   ppb   0.0093   0.0818   0.985   0.5     SO <sub>2</sub>   ppb   0.0093   0.0818   0.985   0.5     SO <sub>2</sub>   ppb   0.0093   0.0818   0.985   0.5     PM <sub>2.5</sub>   μg/m³   -0.0076   0.2588   0.987   0.5     O <sub>3</sub> *CO   ppb*ppm   -0.0135   0.0000   0.995   0.5     O <sub>3</sub> *NO <sub>2</sub>   ppb²   0.0004   0.0008   0.996   0.5     O <sub>3</sub> *PN <sub>2</sub>   ppb²   0.0004   0.0008   0.996   0.5     CO*NO <sub>2</sub>   ppm*ppb   0.0089   0.0128   0.996   0.5     CO*SO <sub>2</sub>   ppm*ppb   -0.0081   0.1094   0.990   0.5     CO*PM <sub>2.5</sub>   ppm*   0.0043   0.5036   0.997   0.5     NO <sub>2</sub> *SO <sub>2</sub>   ppb²   -0.0004   0.1216   0.994   0.5     O <sub>3</sub> *SO <sub>2</sub>   ppb²   -0.0004   0.1216   0.994   0.5     O <sub>3</sub> *SO <sub>2</sub>   ppb²   -0.0004   0.1216   0.994   0.5     O <sub>3</sub> *SO <sub>2</sub>   ppb²   -0.0004   0.1216   0.994   0.5     O <sub>3</sub> *SO <sub>2</sub>   ppb²   -0.0004   0.1216   0.994   0.5     O <sub>3</sub> *SO <sub>2</sub>   ppb²   -0.0004   0.1216   0.994   0.5     O <sub>3</sub> *SO <sub>2</sub>   ppb²   -0.0004   0.1216   0.994   0.5     O <sub>3</sub> *SO <sub>2</sub>   ppb²   -0.0004   0.1216   0.994   0.5     O <sub>3</sub> *SO <sub>2</sub>   ppb²   -0.0004   0.1216   0.994   0.5     O <sub>3</sub> *SO <sub>2</sub>   ppb²   -0.0004   0.1216   0.994   0.5     O <sub>3</sub> *SO <sub>2</sub>   ppb²   -0.0004   0.1216   0.994   0.5     O <sub>3</sub> *SO <sub>2</sub>   ppb²   -0.0004   0.1216   0.994   0.5     O <sub>3</sub> *SO <sub>2</sub>   ppb²   -0.0004   0.1216   0.994   0.5     O <sub>3</sub> *SO <sub>2</sub>   ppb²   -0.0004   0.1216   0.994   0.5     O <sub>3</sub> *SO <sub>2</sub>   ppb²   -0.0004   0.1216   0.994   0.5     O <sub>3</sub> *SO <sub>2</sub>   ppb²   -0.0004   0.1216   0.994   0.5     O <sub>3</sub> *SO <sub>2</sub>   ppb²   -0.0004   0.1216   0.994   0.5     O <sub>3</sub> *SO <sub>2</sub>   ppb²   -0.0004   0.1216   0.994   0.5     O <sub>3</sub> *SO <sub>2</sub>   ppb²   -0.0004   0.1216   0.994   0.5     O <sub>3</sub> *SO <sub>2</sub>   ppb²   -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               |                                    |                                                           |                                       |                                  |         |                              | 0.947                       |
| Model including only pollutants in joint effect, no interactions   CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               |                                    |                                                           |                                       |                                  |         |                              | 0.456                       |
| No2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                               |                                    | СО                                                        |                                       |                                  |         |                              | 0.783                       |
| SO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                               | _ , ,                              | NO <sub>2</sub>                                           |                                       |                                  |         |                              | 0.815                       |
| PM <sub>2.5</sub> μg/m³ -0.0024 0.2096 0.838 0.0  O <sub>3</sub> ppb -0.0007 0.8073 0.988 0.0  CO ppm 0.2354 0.0833 0.994 0.0  NO <sub>2</sub> ppb -0.0048 0.4776 0.994 0.0  SO <sub>2</sub> ppb 0.0093 0.0818 0.985 0.0  PM <sub>2.5</sub> μg/m³ -0.0076 0.2588 0.987 0.0  PM <sub>2.5</sub> μg/m³ -0.0076 0.2588 0.987 0.0  O <sub>3</sub> *CO ppb*ppm -0.0135 0.0000 0.995 0.0  O <sub>3</sub> *NO <sub>2</sub> ppb² 0.0004 0.0008 0.996 0.0  O <sub>3</sub> *SO <sub>2</sub> ppb² -0.0002 0.0425 0.981 0.0  O <sub>3</sub> *SO <sub>2</sub> ppb* 0.0003 0.0814 0.995 0.0  CO*NO <sub>2</sub> ppm*ppb 0.0089 0.0128 0.996 0.0  CO*SO <sub>2</sub> ppm*ppb -0.0081 0.1094 0.990 0.0  CO*SO <sub>2</sub> ppm* 0.004 0.0004 0.099 0.0  CO*PM <sub>2.5</sub> ppm* 0.0004 0.0094 0.990 0.0  CO*PM <sub>2.5</sub> ppm* 0.0004 0.0094 0.990 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                               | joint effect, no interactions      |                                                           |                                       |                                  |         |                              | 0.446                       |
| Criteria Pollutants   Model including only pollutants in joint effect, with first order interactions   Model including only pollutants in joint effect, with first order interactions   O <sub>3</sub> *NO <sub>2</sub>   ppb   O <sub>2</sub> *NO <sub>2</sub>   O <sub>2</sub> |                               |                                    |                                                           |                                       |                                  |         |                              | 0.642                       |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               |                                    |                                                           |                                       |                                  |         |                              | 0.977                       |
| Criteria Pollutants  Model including only pollutants in joint effect, with first order interactions  Model including only pollutants in joint effect, with first order interactions  Model including only pollutants in joint effect, with first order interactions  Model including only pollutants in joint effect, with first order interactions  Model including only pollutants in joint effect, with first order interactions  Model including only pollutants in joint effect, with first order interactions  Model including only pollutants in joint effect, with first order interactions  Model including only pollutants in joint effect, with first order interactions  Mog*NO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                               |                                    |                                                           |                                       |                                  |         |                              | 0.989                       |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               |                                    |                                                           |                                       |                                  |         |                              | 0.990                       |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               |                                    |                                                           |                                       |                                  |         |                              | 0.979                       |
| Pollutants Model including only pollutants in joint effect, with first order interactions $O_3^*NO_2$ $ppb^2$ $0.0004$ $0.0008$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.996$ $0.99$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Criteria                      |                                    |                                                           |                                       |                                  |         |                              | 0.981                       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               |                                    |                                                           |                                       |                                  |         |                              | 0.991                       |
| joint effect, with first order interactions $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ronutants                     | Model including only pollutants in |                                                           |                                       |                                  |         |                              | 0.993                       |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               | 9 .                                |                                                           |                                       |                                  |         |                              | 0.972                       |
| CO*NO2         ppm*ppb         0.0089         0.0128         0.996         0.5           CO*SO2         ppm*ppb         -0.0081         0.1094         0.990         0.5           CO*PM25         ppm*         0.0043         0.5036         0.997         0.5           NO2*SO2         ppb²         -0.0004         0.1216         0.994         0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                               |                                    |                                                           |                                       |                                  |         |                              | 0.992                       |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               |                                    |                                                           |                                       |                                  |         |                              | 0.992                       |
| CO*PM2.5         ppm*         0.0043         0.5036         0.997         0.9           NO2*SO2         ppb²         -0.0004         0.1216         0.994         0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               |                                    |                                                           |                                       |                                  |         |                              | 0.994                       |
| NO <sub>2</sub> *SO <sub>2</sub> ppb <sup>2</sup> -0.0004 0.1216 0.994 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               |                                    |                                                           |                                       |                                  |         |                              |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                               |                                    |                                                           | - ' -                                 |                                  |         |                              | 0.994                       |
| NU₂"PM₂.5   ppb*   -0.0008   0.0199   0.998   0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                               |                                    |                                                           |                                       |                                  |         |                              | 0.992                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                               |                                    |                                                           |                                       |                                  |         |                              | 0.996<br>0.989              |

Abbreviations:  $O_3$ =ozone, CO=carbon monoxide,  $NO_2$ =nitrogen dioxide,  $SO_2$ =sulfur dioxide,  $PM_{2.5}$ =particulate matter < 2.5  $\mu$ m in diameter, EC=elemental carbon component of  $PM_{2.5}$ ,  $SO_4^2$ =sulfate component of  $PM_{2.5}$ , ppb=parts per billion, ppm=parts per million,  $\mu$ g/m³=micrograms per cubic millimeter.

 $<sup>^{\</sup>rm a}$  Secondary PM<sub>2.5</sub> was calculated as the sum of the concentrations of the PM<sub>2.5</sub> components sulfate, nitrate, and ammonium.

eTable 6. Variance-Covariance matrices for primary joint effect models, Atlanta, 1998-2004, Warm Season

|            |                                             | O <sub>3</sub> | СО          | NO <sub>2</sub> | SO <sub>2</sub> | PM <sub>2.5</sub> | EC          | SO <sub>4</sub> <sup>2-</sup> | Secondary<br>PM <sub>2.5</sub> <sup>a</sup> |
|------------|---------------------------------------------|----------------|-------------|-----------------|-----------------|-------------------|-------------|-------------------------------|---------------------------------------------|
| Oxidant    | O <sub>3</sub>                              | 9.5546E-07     |             | -9.6111E-07     | 1.6987E-07      |                   |             |                               |                                             |
| Gases      | NO <sub>2</sub>                             | -9.6111E-07    |             | 2.7883E-06      | -1.0764E-06     |                   |             |                               |                                             |
|            | SO <sub>2</sub>                             | 1.6987E-07     |             | -1.0764E-06     | 2.6953E-06      |                   |             |                               |                                             |
| Cocondoni  | O <sub>3</sub>                              | 9.7868E-07     |             |                 |                 |                   |             |                               | -1.6393E-06                                 |
| Secondary  | Secondary<br>PM <sub>2.5</sub> <sup>a</sup> | -1.6393E-06    |             |                 |                 |                   |             |                               | 8.4099E-06                                  |
| Tueffie    | СО                                          |                | 3.0670E-03  | -4.7960E-05     |                 |                   | -8.6823E-04 |                               |                                             |
| Traffic    | NO <sub>2</sub>                             |                | -4.7960E-05 | 3.3395E-06      |                 |                   | -1.4614E-05 |                               |                                             |
|            | EC                                          |                | -8.6823E-04 | -1.4614E-05     |                 |                   | 1.0455E-03  |                               |                                             |
| Power      | SO <sub>2</sub>                             |                |             |                 | 2.4133E-06      |                   |             | -1.0574E-06                   |                                             |
| Plant      | SO <sub>4</sub> <sup>2</sup> -              |                |             |                 | -1.0574E-06     | 06                |             |                               |                                             |
|            | O <sub>3</sub>                              | 1.4406E-06     | 1.6754E-05  | -1.1306E-06     | 1.9821E-07      | -1.4534E-06       |             |                               |                                             |
| Criteria   | СО                                          | 1.6754E-05     | 2.5525E-03  | -6.5342E-05     | -3.0834E-06     | -2.9971E-05       |             |                               |                                             |
| Pollutants | NO <sub>2</sub>                             | -1.1306E-06    | -6.5342E-05 | 4.7764E-06      | -1.0238E-06     | -1.9850E-07       |             |                               |                                             |
|            | SO <sub>2</sub>                             | 1.9821E-07     | -3.0834E-06 | -1.0238E-06     | 2.8149E-06      | -9.1418E-08       |             |                               |                                             |
|            | PM <sub>2.5</sub>                           | -1.4534E-06    | -2.9971E-05 | -1.9850E-07     | -9.1418E-08     | 4.6962E-06        |             |                               |                                             |

Definition of Abbreviations:  $O_3$ =ozone, CO=carbon monoxide,  $NO_2$ =nitrogen dioxide,  $SO_2$ =sulfur dioxide,  $PM_{2.5}$ =particulate matter less than 2.5  $\mu$ m in diameter, EC=elemental carbon component of  $PM_{2.5}$ ,  $SO_4^{2-}$ =sulfate component of  $PM_{2.5}$ .

<sup>&</sup>lt;sup>a</sup> Secondary PM<sub>2.5</sub> was calculated as the sum of the concentrations of selected PM<sub>2.5</sub> components including nitrate (NO<sub>3</sub><sup>-</sup>), ammonium (NH<sub>4</sub><sup>+</sup>), and sulfate (SO<sub>4</sub><sup>2-</sup>).

eTable 7. Variance-Covariance matrices for primary joint effect models, Atlanta, 1998-2004, Cold Season

|                   |                                             | O <sub>3</sub> | СО          | NO <sub>2</sub> | SO <sub>2</sub> | PM <sub>2.5</sub> | EC          | SO <sub>4</sub> <sup>2-</sup> | Secondary<br>PM <sub>2.5</sub> <sup>a</sup> |
|-------------------|---------------------------------------------|----------------|-------------|-----------------|-----------------|-------------------|-------------|-------------------------------|---------------------------------------------|
| Oxidant           | O <sub>3</sub>                              | 1.2486E-06     |             | -4.5664E-07     | 2.4593E-07      |                   |             |                               |                                             |
| Gases             | NO <sub>2</sub>                             | -4.5664E-07    |             | 1.4460E-06      | -4.9985E-07     |                   |             |                               |                                             |
|                   | SO <sub>2</sub>                             | 2.4593E-07     |             | -4.9985E-07     | 1.9131E-06      |                   |             |                               |                                             |
| Cocondom          | O <sub>3</sub>                              | 1.1417E-06     |             |                 |                 |                   |             |                               | -1.1427E-07                                 |
| Secondary         | Secondary<br>PM <sub>2.5</sub> <sup>a</sup> | -1.1427E-07    |             |                 |                 |                   |             |                               | 1.3045E-05                                  |
| Tueffie           | СО                                          |                | 1.4512E-03  | -4.5887E-05     |                 |                   | -2.7387E-04 |                               |                                             |
| Traffic           | NO <sub>2</sub>                             |                | -4.5887E-05 | 3.7117E-06      |                 |                   | -1.4109E-05 |                               |                                             |
|                   | EC                                          |                | -2.7387E-04 | -1.4109E-05     |                 |                   | 5.4888E-04  |                               |                                             |
| Power             | SO <sub>2</sub>                             |                |             |                 | 1.9323E-06      |                   |             | -1.7643E-06                   |                                             |
| Plant             | SO <sub>4</sub> <sup>2</sup> -              |                |             |                 | -1.7643E-06     | E-07              |             |                               |                                             |
|                   | O <sub>3</sub>                              | 1.3608E-06     | 5.3877E-06  | -7.1054E-07     | 2.3490E-07      | 1.2589E-08        |             |                               |                                             |
| Criteria          | СО                                          | 5.3877E-06     | 1.3210E-03  | -5.3425E-05     | -1.1995E-06     | -2.2904E-06       |             |                               |                                             |
| <b>Pollutants</b> | NO <sub>2</sub>                             | -7.1054E-07    | -5.3425E-05 | 4.4393E-06      | -5.2562E-07     | -1.5992E-06       |             |                               |                                             |
|                   | SO <sub>2</sub>                             | 2.3490E-07     | -1.1995E-06 | -5.2562E-07     | 2.0331E-06      | 9.1886E-08        |             |                               |                                             |
|                   | PM <sub>2.5</sub>                           | 1.2589E-08     | -2.2904E-06 | -1.5992E-06     | 9.1886E-08      | 3.5909E-06        |             |                               |                                             |

Definition of Abbreviations:  $O_3$ =ozone, CO=carbon monoxide,  $NO_2$ =nitrogen dioxide,  $SO_2$ =sulfur dioxide,  $PM_{2.5}$ =particulate matter less than 2.5  $\mu$ m in diameter, EC=elemental carbon component of  $PM_{2.5}$ ,  $SO_4^{2-}$ =sulfate component of  $PM_{2.5}$ .

<sup>&</sup>lt;sup>a</sup> Secondary PM<sub>2.5</sub> was calculated as the sum of the concentrations of selected PM<sub>2.5</sub> components including nitrate (NO<sub>3</sub><sup>-</sup>), ammonium (NH<sub>4</sub><sup>+</sup>), and sulfate (SO<sub>4</sub><sup>2-</sup>).

eTable 8. Sensitivity analyses for joint effect calculations, Atlanta, 1998-2004, calculated for an interquartile range change in the 3-day moving average of in each pollutant

|                                                                                                      |            |                                                                                                                              | Joint Effect E            | stimate <sup>b</sup> | Interaction or Non-                 |
|------------------------------------------------------------------------------------------------------|------------|------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------------------|-------------------------------------|
| Effect                                                                                               | Season     | Model Specifications                                                                                                         | RR (95% CI)               | p-value              | linear term<br>p-value <sup>c</sup> |
| Oxidant Gases                                                                                        | \A/A D \ 4 | Model including pollutants in joint effect, also controlling for CO and PM <sub>2.5</sub> , no interactions                  | 1.0729<br>(0.9990-1.1522) | 0.0531               | NA                                  |
| (O <sub>3</sub> , NO <sub>2</sub> , SO <sub>2</sub> )                                                | WARM       | Model including only pollutants in joint effect, with linear, quadratic and cubic terms for each pollutant                   | 1.0957<br>(1.0297-1.1658) | 0.0039               | 0.8487                              |
| Secondary                                                                                            | \A/A D \   | Model including pollutants in joint effect, also controlling for CO, NO <sub>2</sub> , and SO <sub>2</sub> , no interactions | 1.0206<br>(0.9628-1.0820) | 0.4929               | NA                                  |
| (O <sub>3</sub> , Secondary PM <sub>2.5</sub> <sup>d</sup> )                                         | WARM       | Model including only pollutants in joint effects, with linear, quadratic and cubic terms for each pollutant                  | 1.0855<br>(1.0233-1.1514) | 0.0064               | 0.7532                              |
| Traffic                                                                                              | \A/A D \ 4 | Model including pollutants in joint effect, also controlling for O3, SO2 and SO <sub>4</sub> <sup>2-</sup> , no interactions | 1.1113<br>(1.0523-1.1735) | 0.0001               | NA                                  |
| (CO, NO <sub>2</sub> , EC)                                                                           | WARM       | Model including only pollutants in joint effects, with linear, quadratic and cubic terms for each pollutant                  | 1.0900<br>(1.0279-1.1559) | 0.0040               | 0.0262                              |
| Power Plant                                                                                          | NA/A DA A  | Model including pollutants in joint effect, also controlling for O3, CO, NO₂ and EC, no interactions                         | 1.0033<br>(0.9613-1.0472) | 0.8802               | NA                                  |
| (SO <sub>2</sub> , SO <sub>4</sub> <sup>2-</sup> )                                                   | WARM       | Model including only pollutants in joint effects, with linear, quadratic and cubic terms for each pollutant                  | 1.0634<br>(1.0060-1.1240) | 0.0299               | 0.7920                              |
| Criteria Pollutants<br>(O <sub>3</sub> , CO, NO <sub>2</sub> , SO <sub>2</sub> , PM <sub>2.5</sub> ) | WARM       | Model including only pollutants in joint effects, with linear, quadratic and cubic terms for each pollutant                  | 1.1149<br>(1.0322-1.2041) | 0.0056               | 0.8846                              |
| Oxidant Gases                                                                                        | COL D      | Model including pollutants in joint effect, also controlling for CO and PM <sub>2.5</sub> , no interactions                  | 1.0572<br>(0.9778-1.143)  | 0.1628               | NA                                  |
| (O <sub>3</sub> , NO <sub>2</sub> , SO <sub>2</sub> )                                                | COLD       | Model including only pollutants in joint effect, with linear, quadratic and cubic terms for each pollutant                   | 1.1323<br>(1.0324-1.2418) | 0.0084               | 0.1948                              |
| Secondary                                                                                            | COLD       | Model including pollutants in joint effect, also controlling for CO, NO <sub>2</sub> , and SO <sub>2</sub> , no interactions | 1.0333<br>(0.9574-1.1153) | 0.3999               | NA                                  |
| (O <sub>3</sub> , Secondary PM <sub>2.5</sub> <sup>d</sup> )                                         | COLD       | Model including only pollutants in joint effects, with linear, quadratic and cubic terms for each pollutant                  | 1.1852<br>(1.0877-1.2914) | 0.0001               | 0.0004                              |
| Traffic                                                                                              | COLD       | Model including pollutants in joint effect, also controlling for O3, SO2 and SO <sub>4</sub> <sup>2-</sup> , no interactions | 1.0242<br>(0.9912-1.0584) | 0.1525               | NA                                  |
| (CO, NO <sub>2</sub> , EC)                                                                           | COLD       | Model including only pollutants in joint effects, with linear, quadratic and cubic terms for each pollutant                  | 1.0076<br>(0.9665-1.0505) | 0.7216               | 0.9279                              |
| Power Plant                                                                                          | COLD       | Model including pollutants in joint effect, also controlling for O3, CO, $NO_2$ and EC, no interactions                      | 0.9583<br>(0.9145-1.0042) | 0.0743               | NA                                  |
| (SO <sub>2</sub> , SO <sub>4</sub> <sup>2-</sup> )                                                   | COLD       | Model including only pollutants in joint effects, with linear, quadratic and cubic terms for each pollutant                  | 1.0258<br>(0.9727-1.0818) | 0.3468               | 0.0118                              |
| Criteria Pollutants<br>(O <sub>3</sub> , CO, NO <sub>2</sub> , SO <sub>2</sub> , PM <sub>2.5</sub> ) | COLD       | Model including only pollutants in joint effects, with linear, quadratic and cubic terms for each pollutant                  | 1.1322<br>(1.0252-1.2503) | 0.0142               | 0.0295                              |

Abbreviations:  $O_3$ =ozone, CO=carbon monoxide,  $NO_2$ =nitrogen dioxide,  $SO_2$ =sulfur dioxide,  $PM_{2.5}$ =particulate matter < 2.5 μm in diameter, EC=elemental carbon component of  $PM_{2.5}$ ,  $SO_4^{2-}$ =sulfate component of  $PM_{2.5}$ , RR=Rate Ratio

<sup>&</sup>lt;sup>a</sup> For comparability with previous analyses, <sup>1</sup> the analysis used the year-round IQR during 1993-2004 for O<sub>3</sub>, NO<sub>2</sub>, CO and SO<sub>2</sub>, and during August 1, 1998-December 31, 2004 for PM<sub>2.5</sub> and PM<sub>2.5</sub> components. The IQRs used in the analysis were: O<sub>3</sub> 29.18 ppb, CO 0.66 ppm, NO<sub>2</sub> 12.87 ppb, SO<sub>2</sub> 10.51 ppb, PM<sub>2.5</sub> 9.18 μg/m³, EC 0.69 μg/m³, SO<sub>4</sub><sup>2-</sup> 3.45 μg/m³, Secondary PM<sub>2.5</sub> 4.52 μg/m³, NO<sub>3</sub> 42.7 ppb, RR=Rate Ratio

<sup>&</sup>lt;sup>b</sup> In interaction models, the joint effects were calculated for an IQR change from the 25<sup>th</sup> percentile level to the 75<sup>th</sup> percentile level for each pollutant.

<sup>&</sup>lt;sup>c</sup>The test for the interaction terms and non-linear terms (quadratic and cubic terms) was a likelihood ratio test, testing the hypothesis that the coefficients for all interaction terms, or all quadratic and cubic terms, equal 0, performed using a contrast statement in SAS PROC GENMOD.

d Secondary PM<sub>2.5</sub> was calculated as the sum of the concentrations of the PM<sub>2.5</sub> components sulfate, nitrate, and ammonium.

eTable 9. Pollutant-specific parameter estimates from sensitivity analyses, Atlanta, 1998-2004, Warm Season

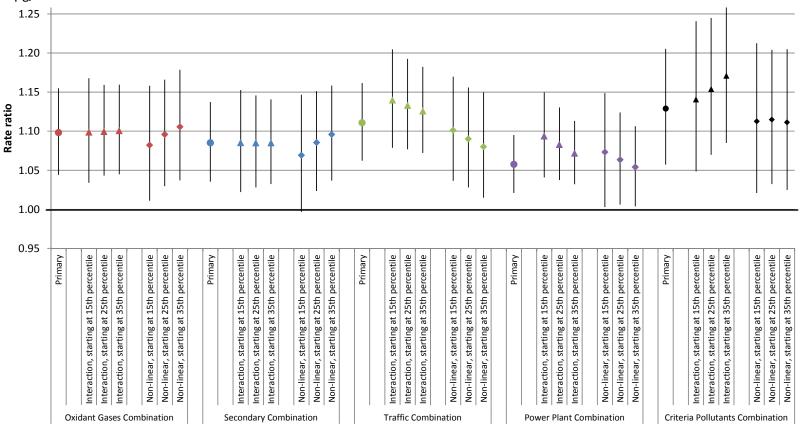
| Joint Effect | Model Specifications                                                                                 | Pollutant <sup>a</sup>                             | Unit                    | Coefficient per 1 unit change | p-value          |
|--------------|------------------------------------------------------------------------------------------------------|----------------------------------------------------|-------------------------|-------------------------------|------------------|
|              |                                                                                                      | O <sub>3</sub>                                     | ppb                     | 0.0008                        | 0.5182           |
|              | Model including pollutants in joint effect, also                                                     | СО                                                 | ppm                     | 0.0854                        | 0.0909           |
|              | controlling for CO and PM <sub>2.5</sub> , no interactions                                           | NO <sub>2</sub>                                    | ppb                     | 0.0032                        | 0.1460           |
|              | <u>,</u>                                                                                             | SO <sub>2</sub>                                    | ppb                     | 0.0007<br>-0.0006             | 0.6979<br>0.7814 |
|              |                                                                                                      | PM <sub>2.5</sub>                                  | μg/m³                   |                               |                  |
| Oxidant      |                                                                                                      | O <sub>3</sub><br>(O <sub>3</sub> ) <sup>2</sup>   | ppb<br>ppb <sup>2</sup> | -0.0096<br>0.0002             | 0.1990<br>0.2043 |
| Gases        |                                                                                                      | (O <sub>3</sub> ) <sup>3</sup>                     | ppb <sup>3</sup>        | 0.0000                        | 0.2376           |
| Gases        | Advantable of alternational transfer to test of the contract of the                                  | NO <sub>2</sub>                                    | ppb                     | 0.0143                        | 0.2540           |
|              | Model including only pollutants in joint effects, with                                               | (NO <sub>2</sub> ) <sup>2</sup>                    | ppb <sup>2</sup>        | -0.0003                       | 0.5968           |
|              | linear, quadratic and cubic terms for each pollutant                                                 | (NO <sub>2</sub> ) <sup>3</sup>                    | ppb³                    | 0.0000                        | 0.6912           |
|              |                                                                                                      | SO <sub>2</sub>                                    | ppb                     | -0.0030                       | 0.6781           |
|              |                                                                                                      | (SO <sub>2</sub> ) <sup>2</sup>                    | ppb <sup>2</sup>        | 0.0002                        | 0.6257           |
|              |                                                                                                      | (SO <sub>2</sub> ) <sup>3</sup>                    | ppb³                    | 0.0000                        | 0.6899           |
|              |                                                                                                      | O <sub>3</sub>                                     | ppb                     | 0.0006                        | 0.5886           |
|              | Model including pollutants in joint effect, also                                                     | CO                                                 | ppm                     | 0.0895                        | 0.0754           |
|              | controlling for CO, NO <sub>2</sub> , and SO <sub>2</sub> , no interactions                          | NO <sub>2</sub>                                    | ppb                     | 0.0039                        | 0.0859           |
|              | 5 , -, -,                                                                                            | SO <sub>2</sub>                                    | ppb                     | 0.0001                        | 0.9460           |
|              |                                                                                                      | Secondary PM <sub>2.5</sub> b                      | μg/m³                   | 0.0005                        | 0.8704           |
| Secondary    |                                                                                                      | O <sub>3</sub>                                     | ppb                     | -0.0074                       | 0.3461           |
| •            |                                                                                                      | (O <sub>3</sub> ) <sup>2</sup>                     | ppb²                    | 0.0002                        | 0.2095           |
|              | Model including only pollutants in joint effect, with                                                | (O <sub>3</sub> ) <sup>3</sup>                     | ppb³                    | 0.0000                        | 0.2360           |
|              | linear, quadratic and cubic terms for each pollutant                                                 | Secondary PM <sub>2.5</sub> b                      | μg/m³                   | 0.0033                        | 0.8755           |
|              |                                                                                                      | (Secondary PM <sub>2.5</sub> ) <sup>2 b</sup>      | (μg/m³)²                | -0.0004                       | 0.8110           |
|              |                                                                                                      | (Secondary PM <sub>2.5</sub> ) <sup>3 b</sup>      | (μg/m³)³                | 0.0000                        | 0.7255           |
|              |                                                                                                      | O <sub>3</sub>                                     | ppb                     | 0.0008                        | 0.4801           |
|              |                                                                                                      | CO                                                 | ppm                     | 0.1179                        | 0.0430           |
|              | Model including pollutants in joint effect, also                                                     | NO <sub>2</sub>                                    | ppb                     | 0.0041                        | 0.0706           |
|              | controlling for O <sub>3</sub> , SO <sub>2</sub> and SO <sub>4</sub> <sup>2-</sup> , no interactions | SO <sub>2</sub>                                    | ppb                     | 0.0001                        | 0.9468           |
|              |                                                                                                      | EC                                                 | μg/m³                   | -0.0369                       | 0.3133           |
|              |                                                                                                      | SO <sub>4</sub> <sup>2-</sup>                      | μg/m³                   | 0.0006                        | 0.8823           |
| <b>-</b>     |                                                                                                      | CO                                                 | ppm                     | 0.7011                        | 0.0347           |
| Traffic      |                                                                                                      | (CO) <sup>2</sup>                                  | ppm²                    | -0.5832                       | 0.0520           |
|              |                                                                                                      | (CO) <sup>3</sup>                                  | ppm³                    | 0.1580<br>0.0155              | 0.0466           |
|              | Model including only pollutants in joint effects, with                                               | NO <sub>2</sub><br>(NO <sub>2</sub> ) <sup>2</sup> | ppb<br>ppb <sup>2</sup> | -0.0005                       | 0.2502<br>0.3825 |
|              | linear, quadratic and cubic terms for each pollutant                                                 | (NO <sub>2</sub> ) <sup>3</sup>                    | ppb <sup>3</sup>        | 0.0000                        | 0.3589           |
|              |                                                                                                      | EC                                                 | μg/m³                   | -0.2653                       | 0.0611           |
|              |                                                                                                      | (EC) <sup>2</sup>                                  | (μg/m³)²                | 0.2277                        | 0.0243           |
|              |                                                                                                      | (EC) <sup>3</sup>                                  | (μg/m³)³                | -0.0572                       | 0.0057           |
|              |                                                                                                      | O <sub>3</sub>                                     | ppb                     | 0.0008                        | 0.4801           |
|              |                                                                                                      | CO                                                 | ppm                     | 0.1179                        | 0.0430           |
|              | Model including pollutants in joint effect, also                                                     | NO <sub>2</sub>                                    | ppb                     | 0.0041                        | 0.0706           |
|              | controlling for O₃, CO, NO₂ and EC, no interactions                                                  | SO <sub>2</sub>                                    | ppb                     | 0.0001                        | 0.9468           |
|              |                                                                                                      | EC                                                 | μg/m³                   | -0.0369                       | 0.3133           |
| Power        |                                                                                                      | SO <sub>4</sub> <sup>2</sup> -                     | μg/m³                   | 0.0006                        | 0.8823           |
| Plant        |                                                                                                      | SO <sub>2</sub>                                    | ppb                     | 0.0104                        | 0.1276           |
| riant        |                                                                                                      | (SO <sub>2</sub> ) <sup>2</sup>                    | ppb²                    | -0.0004                       | 0.3559           |
|              | Model including only pollutants in joint effects, with                                               | (SO <sub>2</sub> ) <sup>3</sup>                    | ppb <sup>3</sup>        | 0.0000                        | 0.4906           |
|              | linear, quadratic and cubic terms for each pollutant                                                 | SO <sub>4</sub> <sup>2</sup> ·                     | μg/m³                   | 0.0101                        | 0.6992           |
|              | 2. , 422.2.2.2.2.2.3. to to. cash poliutum                                                           | (SO <sub>4</sub> <sup>2-</sup> ) <sup>2</sup>      | μg/m³) <sup>2</sup>     | -0.0008                       | 0.8132           |
|              |                                                                                                      | (SO <sub>4</sub> <sup>2</sup> -) <sup>3</sup>      | (μg/m³)³                | 0.0000                        | 0.7686           |
|              |                                                                                                      |                                                    |                         |                               |                  |
|              |                                                                                                      | O <sub>3</sub><br>(O <sub>3</sub> ) <sup>2</sup>   | ppb<br>ppb <sup>2</sup> | -0.0072<br>0.0002             | 0.3505<br>0.3141 |
|              |                                                                                                      | (O <sub>3</sub> ) <sup>3</sup>                     | ppb <sup>3</sup>        | 0.0002                        | 0.3600           |
|              |                                                                                                      | CO                                                 | ppm                     | 0.5136                        | 0.1138           |
|              |                                                                                                      | (CO) <sup>2</sup>                                  | ppm²                    | -0.3857                       | 0.1950           |
|              |                                                                                                      | (CO) <sup>3</sup>                                  | ppm³                    | 0.1036                        | 0.2096           |
| Criteria     | Model including only pollutants in joint effects, with                                               | NO <sub>2</sub>                                    | ppb                     | 0.0081                        | 0.5549           |
| Pollutants   | linear, quadratic and cubic terms for each pollutant                                                 | (NO <sub>2</sub> ) <sup>2</sup>                    | ppb <sup>2</sup>        | -0.0002                       | 0.7217           |
| i onutants   |                                                                                                      | (NO <sub>2</sub> ) <sup>3</sup><br>SO <sub>2</sub> | ppb <sup>3</sup><br>ppb | 0.0000<br>-0.0009             | 0.7645<br>0.9020 |
|              |                                                                                                      | (SO <sub>2</sub> ) <sup>2</sup>                    | ppb <sup>2</sup>        | 0.0009                        | 0.9020           |
|              |                                                                                                      | (SO <sub>2</sub> ) <sup>3</sup>                    | ppb <sup>3</sup>        | 0.0000                        | 0.7096           |
|              |                                                                                                      | PM <sub>2.5</sub>                                  | μg/m³                   | -0.0089                       | 0.6576           |
|              |                                                                                                      |                                                    |                         |                               | 0.7950           |
|              |                                                                                                      | $(PM_{2.5})^2$                                     | (μg/m³)²                | 0.0003                        | 0.7930           |

Abbreviations:  $O_3$ =ozone, CO=carbon monoxide,  $NO_2$ =nitrogen dioxide,  $SO_2$ =sulfur dioxide,  $PM_{2.5}$ =particulate matter < 2.5  $\mu$ m in diameter, EC=elemental carbon component of  $PM_{2.5}$ ,  $SO_4$ <sup>2</sup>-sulfate component of  $PM_{2.5}$ ,  $PM_2$ =sulfate component of  $PM_2$ -sulfate component of  $PM_2$ -sulfat

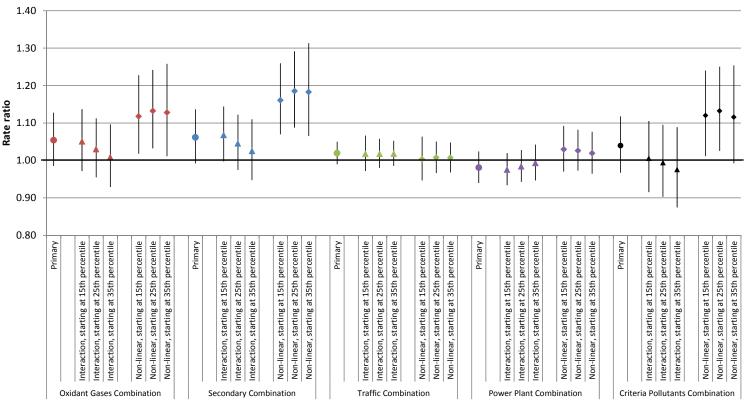
<sup>&</sup>lt;sup>a</sup> Shaded pollutants were not included in calculation of joint effect.

<sup>&</sup>lt;sup>b</sup> Secondary PM<sub>2.5</sub> was calculated as the sum of the concentrations of the PM<sub>2.5</sub> components sulfate, nitrate, and ammonium.

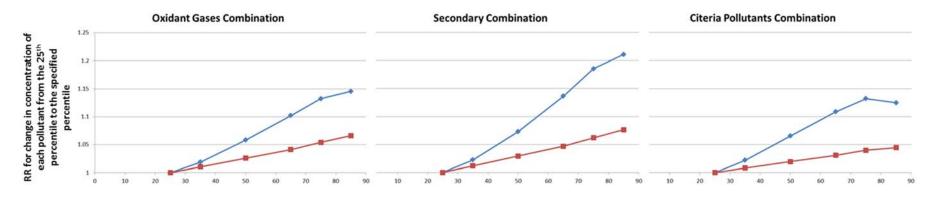
eTable 10. Pollutant-specific parameter estimates from sensitivity analyses, Atlanta, 1998-2004, Cold Season


| Joint Effect | Model Specifications                                                        | Pollutant <sup>a</sup>                                                 | Unit                                 | Coefficient per unit change | p-valu           |
|--------------|-----------------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------|-----------------------------|------------------|
|              | -                                                                           | O <sub>3</sub>                                                         | ppb                                  | 0.0017                      | 0.1539           |
|              | Model including pollutants in joint effect, also                            | CO                                                                     | ppm                                  | 0.0078                      | 0.8306           |
|              | controlling for CO and PM <sub>2.5</sub> , no interactions                  | NO <sub>2</sub>                                                        | ppb                                  | 0.0022                      | 0.2942           |
|              | ,                                                                           | SO <sub>2</sub><br>PM <sub>2.5</sub>                                   | ppb<br>μg/m³                         | -0.0020<br>-0.0024          | 0.1536<br>0.2096 |
|              |                                                                             | O <sub>3</sub>                                                         | ppb                                  | -0.0160                     | 0.0491           |
| Oxidant      |                                                                             | (O <sub>3</sub> ) <sup>2</sup>                                         | ppb <sup>2</sup>                     | 0.0004                      | 0.0579           |
| Gases        |                                                                             | (O <sub>3</sub> ) <sup>3</sup>                                         | ppb <sup>3</sup>                     | 0.0000                      | 0.1302           |
| Gases        | Model including only pollutants in joint effects, with                      | NO <sub>2</sub>                                                        | ppb                                  | -0.0046                     | 0.7993           |
|              | linear, quadratic and cubic terms for each pollutant                        | (NO <sub>2</sub> ) <sup>2</sup>                                        | ppb²                                 | 0.0002                      | 0.7776           |
|              | inical, quadratic and cable terms for each political                        | (NO <sub>2</sub> ) <sup>3</sup>                                        | ppb³                                 | 0.0000                      | 0.7914           |
|              |                                                                             | SO <sub>2</sub><br>(SO <sub>2</sub> ) <sup>2</sup>                     | ppb                                  | 0.0060<br>-0.0005           | 0.4683<br>0.3280 |
|              |                                                                             | (SO <sub>2</sub> ) <sup>3</sup>                                        | ppb <sup>2</sup><br>ppb <sup>3</sup> | 0.0000                      | 0.3280           |
|              |                                                                             | O <sub>3</sub>                                                         | ppb                                  | 0.0021                      | 0.0789           |
|              |                                                                             | CO                                                                     |                                      | -0.0025                     | 0.9464           |
|              | Model including pollutants in joint effect, also                            |                                                                        | ppm                                  |                             |                  |
|              | controlling for CO, NO <sub>2</sub> , and SO <sub>2</sub> , no interactions | NO <sub>2</sub><br>SO <sub>2</sub>                                     | ppb                                  | 0.0023                      | 0.2570           |
|              |                                                                             | <del>-</del>                                                           | ppb                                  | -0.0018                     | 0.2255           |
|              |                                                                             | Secondary PM <sub>2.5</sub> b                                          | μg/m³                                | -0.0061                     | 0.1194           |
| Secondary    |                                                                             | O <sub>3</sub>                                                         | ppb                                  | -0.0183                     | 0.0228           |
|              |                                                                             | (O <sub>3</sub> ) <sup>2</sup>                                         | ppb²                                 | 0.0005                      | 0.0226           |
|              | Model including only pollutants in joint effect, with                       | (O <sub>3</sub> ) <sup>3</sup>                                         | ppb³                                 | 0.0000                      | 0.0656           |
|              | linear, quadratic and cubic terms for each pollutant                        | Secondary PM <sub>2.5</sub> b                                          | μg/m³                                | -0.0306                     | 0.2433           |
|              |                                                                             | (Secondary PM <sub>2.5</sub> ) <sup>2 b</sup>                          | (μg/m³)²                             | 0.0047                      | 0.1341           |
|              |                                                                             | (Secondary PM <sub>2.5</sub> ) <sup>3 b</sup>                          | (μg/m³)³                             | -0.0002                     | 0.0410           |
|              |                                                                             | O <sub>3</sub>                                                         | ppb                                  | 0.0022                      | 0.0633           |
|              |                                                                             | CO                                                                     | ppm                                  | -0.0062                     | 0.8736           |
|              | Model including pollutants in joint effect, also                            | NO <sub>2</sub>                                                        | ppb                                  | 0.0021                      | 0.3260           |
|              | controlling for $O_3$ , $SO_2$ and $SO_4^{2-}$ , no interactions            | SO <sub>2</sub><br>EC                                                  | ppb<br>μg/m³                         | -0.0017<br>0.0021           | 0.260            |
|              |                                                                             | SO <sub>4</sub> <sup>2-</sup>                                          | μg/m³                                | -0.0072                     | 0.931            |
|              |                                                                             | CO                                                                     | ppm                                  | 0.2945                      | 0.2740           |
| Traffic      |                                                                             | (CO) <sup>2</sup>                                                      | ppm²                                 | -0.2698                     | 0.227            |
|              |                                                                             | (CO) <sup>3</sup>                                                      | ppm³                                 | 0.0703                      | 0.2183           |
|              | Model including only pollutants in joint effects, with                      | NO <sub>2</sub>                                                        | ppb                                  | -0.0104                     | 0.5815           |
|              | linear, quadratic and cubic terms for each pollutant                        | (NO <sub>2</sub> ) <sup>2</sup>                                        | ppb²                                 | 0.0004                      | 0.5013           |
|              | inical, quadratic and cable terms for each political                        | (NO <sub>2</sub> ) <sup>3</sup>                                        | ppb³                                 | 0.0000                      | 0.5332           |
|              |                                                                             | EC<br>(EC) <sup>2</sup>                                                | μg/m <sup>3</sup>                    | -0.0730                     | 0.4805           |
|              |                                                                             | (EC) <sup>3</sup>                                                      | (μg/m³)²<br>(μg/m³)³                 | 0.0327<br>-0.0046           | 0.5735           |
|              |                                                                             | O <sub>3</sub>                                                         | ppb                                  | 0.0022                      | 0.0633           |
|              |                                                                             | CO                                                                     |                                      |                             |                  |
|              |                                                                             |                                                                        | ppm                                  | -0.0062                     | 0.8736           |
|              | Model including pollutants in joint effect, also                            | NO <sub>2</sub>                                                        | ppb                                  | 0.0021                      | 0.3260           |
|              | controlling for O₃, CO, NO₂ and EC, no interactions                         | SO <sub>2</sub>                                                        | ppb                                  | -0.0017                     | 0.260            |
| Dover        |                                                                             | EC                                                                     | μg/m³                                | 0.0021                      | 0.9319           |
| Power        |                                                                             | SO <sub>4</sub> <sup>2-</sup>                                          | μg/m³                                | -0.0072                     | 0.2392           |
| Plant        |                                                                             | SO <sub>2</sub>                                                        | ppb                                  | 0.0100                      | 0.2223           |
|              |                                                                             | (SO <sub>2</sub> ) <sup>2</sup>                                        | ppb²                                 | -0.0008                     | 0.148            |
|              | Model including only pollutants in joint effects, with                      | (SO <sub>2</sub> ) <sup>3</sup>                                        | ppb³                                 | 0.0000                      | 0.164            |
|              | linear, quadratic and cubic terms for each pollutant                        | SO <sub>4</sub> <sup>2-</sup>                                          | μg/m³                                | -0.0404                     | 0.231            |
|              |                                                                             | (SO <sub>4</sub> <sup>2-</sup> ) <sup>2</sup>                          | (μg/m³)²                             | 0.0109                      | 0.084            |
|              |                                                                             | (SO <sub>4</sub> <sup>2-</sup> ) <sup>3</sup>                          | (μg/m³)³                             | -0.0007                     | 0.022            |
|              |                                                                             | O <sub>3</sub>                                                         | ppb                                  | -0.0172                     | 0.036            |
|              |                                                                             | (O <sub>3</sub> ) <sup>2</sup>                                         | ppb²                                 | 0.0005                      | 0.042            |
|              |                                                                             | (O <sub>3</sub> ) <sup>3</sup>                                         | ppb³                                 | 0.0000                      | 0.091            |
|              |                                                                             | (CO) <sup>2</sup>                                                      | ppm<br>ppm <sup>2</sup>              | 0.3685<br>-0.3269           | 0.153<br>0.130   |
|              |                                                                             | (CO) <sup>2</sup>                                                      | ppm²<br>ppm³                         | 0.0838                      | 0.130            |
| Criteria     | Additional above to the second of the second                                | NO <sub>2</sub>                                                        | pph                                  | -0.0132                     | 0.132            |
|              | Model including only pollutants in joint effects, with                      | (NO <sub>2</sub> ) <sup>2</sup>                                        | ppb <sup>2</sup>                     | 0.0005                      | 0.466            |
| ollutants    | linear, quadratic and cubic terms for each pollutant                        | (NO <sub>2</sub> ) <sup>3</sup>                                        | ppb³                                 | 0.0000                      | 0.510            |
|              |                                                                             | SO <sub>2</sub>                                                        | ppb                                  | 0.0114                      | 0.180            |
|              |                                                                             | (SO <sub>2</sub> ) <sup>2</sup>                                        | ppb²                                 | -0.0010                     | 0.093            |
|              |                                                                             | (SO <sub>2</sub> ) <sup>3</sup>                                        | ppb <sup>3</sup>                     | 0.0000                      | 0.0847           |
|              |                                                                             | PM <sub>2.5</sub>                                                      | μg/m <sup>3</sup>                    | -0.0253                     | 0.0625           |
|              |                                                                             | (PM <sub>2.5</sub> ) <sup>2</sup><br>(PM <sub>2.5</sub> ) <sup>3</sup> | (μg/m³)²<br>(μg/m³)³                 | 0.0013<br>0.0000            | 0.0374           |

Abbreviations:  $O_3$ =ozone, CO=carbon monoxide,  $NO_2$ =nitrogen dioxide,  $SO_2$ =sulfur dioxide,  $PM_{2.5}$ =particulate matter < 2.5  $\mu$ m in diameter, EC=elemental carbon component of  $PM_{2.5}$ ,  $SO_4$ <sup>2</sup>-sulfate component of  $PM_{2.5}$ ,  $PM_2$ -sulfate component of  $PM_2$ -sulfat


<sup>&</sup>lt;sup>a</sup> Shaded pollutants were not included in calculation of joint effect.

<sup>&</sup>lt;sup>b</sup> Secondary PM<sub>2.5</sub> was calculated as the sum of the concentrations of the PM<sub>2.5</sub> components sulfate, nitrate, and ammonium.


**eFigure 1.** Rate ratios for joint effects from multipollutant models, evaluated for various specific IQR increments in each pollutant, Warm Season. Rate ratios are shown in red for the oxidant pollutant combination, blue for the secondary pollutant combination, green for the traffic pollutant combination, purple for the power plant pollutant combination, and black for the criteria pollutant combination. For each combination of pollutants, joint effect rate ratios from the primary multipollutant models, which had linear pollutant terms and no interactions ("Primary", circle markers), are followed by multipollutant models with linear pollutant terms and first order interactions between pollutants, with IQR changes evaluated starting at the 15<sup>th</sup>, 25<sup>th</sup>, and 35<sup>th</sup> percentiles for each pollutant ("Interaction", triangle markers); and multipollutant models with linear, quadratic and cubic pollutant terms and no interactions, with IQR changes evaluated starting at the 15<sup>th</sup>, 25<sup>th</sup>, and 35<sup>th</sup> percentiles for each pollutant ("Non-linear", diamond markers). For comparability with previous analyses, the analysis used the year-round IQR during 1993-2004 for O<sub>3</sub>, NO<sub>2</sub>, CO and SO<sub>2</sub>, and during August 1, 1998-December 31, 2004 for PM<sub>2.5</sub> and PM<sub>2.5</sub> components. The IQRs used in the analysis were: O<sub>3</sub> 29.18 ppb, CO 0.66 ppm, NO<sub>2</sub> 12.87 ppb, SO<sub>2</sub> 10.51 ppb, PM<sub>2.5</sub> 9.18 μg/m3, EC 0.69 μg/m3, SO<sub>4</sub><sup>2-</sup> 3.45 μg/m3, Secondary PM<sub>2.5</sub> 4.52 μg/m3.



**eFigure 2.** Rate ratios for joint effects from multipollutant models, evaluated for various specific IQR increments in each pollutant, Cold **Season.** Rate ratios are shown in red for the oxidant pollutant combination, blue for the secondary pollutant combination, green for the traffic pollutant combination, purple for the power plant pollutant combination, and black for the criteria pollutant combination. For each combination of pollutants, joint effect rate ratios from the primary multipollutant models, which had linear pollutant terms and no interactions ("Primary", circle markers), are followed by multipollutant models with linear pollutant terms and first order interactions between pollutants, with IQR changes evaluated starting at the 15<sup>th</sup>, 25<sup>th</sup>, and 35<sup>th</sup> percentiles for each pollutant ("Interaction", triangle markers); and multipollutant models with linear, quadratic and cubic pollutant terms and no interactions, with IQR changes evaluated starting at the 15<sup>th</sup>, 25<sup>th</sup>, and 35<sup>th</sup> percentiles for each pollutant ("Non-linear", diamond markers). For comparability with previous analyses, the analysis used the year-round IQR during 1993-2004 for O<sub>3</sub>, NO<sub>2</sub>, CO and SO<sub>2</sub>, and during August 1, 1998-December 31, 2004 for PM<sub>2.5</sub> and PM<sub>2.5</sub> components. The IQRs used in the analysis were: O<sub>3</sub> 29.18 ppb, CO 0.66 ppm, NO<sub>2</sub> 12.87 ppb, SO<sub>2</sub> 10.51 ppb, PM<sub>2.5</sub> 9.18 μg/m3, EC 0.69 μg/m3, SO<sub>4</sub><sup>2-</sup> 3.45 μg/m3, Secondary PM<sub>2.5</sub> 4.52 μg/m3.



eFigure 3. Rate ratios per changes in the concentration of each pollutant from the 25<sup>th</sup> percentile to various specified percentiles based on results of joint effect models with and without non-linear terms (quadratic and cubic pollutant terms), for selected pollutant combinations, Atlanta, 1998-2004, cold season.



## Percentile of each pollutant distribution (absolute concentrations for the percentiles for each pollutant are listed below)

| a.                           |                         |       |       |       |       |       | VV    | ith Non-linear te | 11115 | Only  | near terr | 115   |       |       |       |       |       |       |       |
|------------------------------|-------------------------|-------|-------|-------|-------|-------|-------|-------------------|-------|-------|-----------|-------|-------|-------|-------|-------|-------|-------|-------|
|                              | Percentile              | 25    | 35    | 50    | 65    | 75    | 85    | 25                | 35    | 50    | 65        | 75    | 85    | 25    | 35    | 50    | 65    | 75    | 85    |
|                              | O3 (ppb)                | 30.10 | 35.44 | 43.55 | 52.02 | 59.27 | 67.44 | 30.10             | 35.44 | 43.55 | 52.02     | 59.27 | 67.44 | 30.10 | 35.44 | 43.55 | 52.02 | 59.27 | 67.44 |
|                              | CO(ppb)                 |       |       |       |       |       |       |                   |       |       |           |       |       | 0.54  | 0.63  | 0.78  | 0.99  | 1.19  | 1.45  |
| Absolute                     | NO2 (ppb)               | 16.29 | 18.68 | 22.04 | 26.04 | 29.16 | 32.89 |                   |       |       |           |       |       | 16.29 | 18.68 | 22.04 | 26.04 | 29.16 | 32.89 |
| pollutant<br>concentrations* | SO2 (ppb)               | 4.03  | 5.49  | 8.00  | 11.45 | 14.54 | 19.48 |                   |       |       |           |       |       | 4.03  | 5.49  | 8.00  | 11.45 | 14.54 | 19.48 |
|                              | PM2.5 (μg/m³)           |       |       |       |       |       |       |                   |       |       |           |       |       | 10.96 | 12.53 | 14.97 | 17.71 | 20.14 | 24.01 |
|                              | Secondary PM<br>(µg/m³) |       |       |       |       |       |       | 4.26              | 4.91  | 6.05  | 7.48      | 8.77  | 10.82 |       |       |       |       |       |       |

<sup>\*</sup>For comparability with previous analyses,¹ the percentiles were based on the year-round distribution during 1993-2004 for O3, NO2, CO and SO2, and during August 1, 1998-December 31, 2004 for PM2.5 and PM2.5 components.

## References

1. Strickland MJ, Darrow LA, Klein M, et al. Short-term Associations between Ambient Air Pollutants and Pediatric Asthma Emergency Department Visits. Am J Respir Crit Care Med 2010;182:307-16.