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1 More simulation studies

As reviewer suggested, here we investigated the performance of different methods when assuming

same direction of genetic effects. We use the same simulation setup as follows.

We simulated 1000 individuals and considered two covariates: a standard normal covariate

X1, and a binary ancestry indicator X2 with Pr(X2 = 1) = 0.5. We consider testing K = 4

related traits with a compound-symmetry correlation matrix: Y1 = 1 + 0.5X1 + 0.5X2 + η1 + ε1,

Y2 = 1 +X1 +X2 + η2 + ε2, Y3 = 1 + 0.5X1 + 0.5X2 + η3 + ε3, and Y4 = 1 +X1 +X2 + η4 + ε4,

where (ε1, ε2, ε3, ε4) are zero-mean normal with variances (σ21 = 2, σ22 = 1, σ23 = 1, σ24 = 1)

and correlation ρ, and (η1, η2, η3, η4) are contributions from the set of rare variants, which are

simulated as follows.

Using a calibrated coalescent model (Schaffner et al., 2005), we first generated 10,000 European-

like haplotypes of length 1000 kb. Each time we randomly pair the haplotypes to simulate 1000

individuals. We study those rare variants with MAF ≤ 0.01 in a randomly selected gene region

of length 10 kb, denoted as (G1, . . . , Gm). We model the rare variant contribution to disease risk

as ηk =
∑m

j=1 βkjGj , k = 1, . . . ,K. We assign the variant weights following Wu et al. (2011),

which are the computed beta distribution density function with parameters 1 and 25 at the rare
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variant MAF.

We used 10,000 experiments under various combinations of βkj to evaluate the power. We

conducted simulations for ρ = (0.2, 0.5, 0.8). For the k-th trait, we set βkj as follows. Each time

we randomly selected θ proportion of rare variants and set their βkj = −d log10(pj), where pj

is the rare variant MAF. The other null rare variants have zero coefficients. We have assumed

that rarer variants have larger effect sizes. We conducted simulations for (1) θ = 0.25, d = 0.25,

(2) θ = 0.5, d = 0.2, (3) θ = 0.75, d = 0.15. They correspond to regression coefficients of 0.5,

0.4 and 0.3 for MAF=0.01 respectively. We conducted simulations for four scenarios: each time

only the first L traits were associated with the rare variant set, L = 1, 2, 3, 4. Intuitively in

the first scenario (L = 1), where only the first trait is associated with the rare variant set,

we expect that the minimum p-value based approach or testing the first trait alone will have

good performance. But we will show that by simultaneously testing correlated null traits, the

proposed MSKAT could actually improve the detection power compared to testing the first trait

alone. When there are multiple correlated traits that are associated with the rare variant set,

the proposed MSKAT could offer much improved detection power than the minimum p-value

based approach.

Table 1, 2, 3, and 4 summarize the power under significance level α = 10−4 for L = 1, 2, 3, 4

respectively. When only the first trait is associated with the rare variant set (Table 1), Pmin

performs better than MKMR, Q and Q′ under weak trait correlation (ρ = 0.2). Both MKMR

and the MSKAT statistic Q could benefit from increased trait correlations, and offer much

improved power by incorporating strongly correlated null traits. The statistic Q′ ignored the

trait dependence by directly summing over individual trait SKAT statistics. Overall we can

see that it suffered power loss with increasing trait correlations. The minimum p-value based

approach Pmin had nearly constant power across different trait correlations.

When there are multiple correlated traits that are associated with the rare variant set (Table

2, 3, and 4), the MSKAT statistic Q had the overall best performance. Overall we can see that

Q′ had reduced power with increasing trait correlations, and the Pmin had nearly constant

power across different trait correlations. Both MKMR and the MSKAT statistic Q accounted
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Table 1: Power of multivariate tests for four continuous traits with pairwise correlation ρ: Q is
the proposed MSKAT statistic incorporating the trait correlation, Q′ is the sum of individual
trait SKAT statistics, Pmin is the Bonferroni corrected minimum p-value based on the individual
trait SKAT significance p-values, and MKMR is the multivariate kernel machine regression
approach. Only the first trait is associated with the rare variant set (L = 1). The causal rare
variant proportion is θ and their regression coefficient is set as −d log10(MAF). The highest
powered tests in each column are bold-faced.

(d, θ) (0.25,0.25) (0.2,0.5) (0.15,0.75)
ρ 0.2 0.5 0.8 0.2 0.5 0.8 0.2 0.5 0.8

Q 0.037 0.070 0.257 0.084 0.141 0.416 0.088 0.142 0.395
Q′ 0.022 0.008 0.001 0.004 0.026 0.013 0.058 0.029 0.015

Pmin 0.048 0.048 0.049 0.102 0.102 0.101 0.104 0.104 0.105
MKMR 0.010 0.028 0.139 0.028 0.068 0.251 0.032 0.072 0.245

Table 2: Power of multivariate tests for four continuous traits with pairwise correlation ρ: Q is
the proposed MSKAT statistic incorporating the trait correlation, Q′ is the sum of individual
trait SKAT statistics, Pmin is the Bonferroni corrected minimum p-value based on the individual
trait SKAT significance p-values, and MKMR is the multivariate kernel machine regression
approach. Only the first L = 2 traits are associated with the rare variant set. The causal rare
variant proportion is θ and their regression coefficient is set as −d log10(MAF). The highest
powered tests in each column are bold-faced.

(d, θ) (0.25,0.25) (0.2,0.5) (0.15,0.75)
ρ 0.2 0.5 0.8 0.2 0.5 0.8 0.2 0.5 0.8

Q 0.194 0.328 0.749 0.327 0.483 0.896 0.296 0.414 0.851
Q′ 0.144 0.070 0.012 0.267 0.153 0.019 0.258 0.156 0.102

Pmin 0.180 0.178 0.123 0.302 0.297 0.174 0.277 0.272 0.268
MKMR 0.152 0.293 0.721 0.259 0.440 0.879 0.237 0.380 0.850

for the trait dependence, and had improved power with increasing trait correlations.

When most traits have similar genetic effects (Table 3 and 4), the Q′ performed slightly

better than Q under weak trait correlation (ρ = 0.2).

Overall we can see that the proposed MSKAT statistic Q is an attractive approach with

good power across a wide range of alternatives.

Table 5 compared the SKAT based rare variant set testing of Y1 alone versus the joint

multivariate testing under previous simulation settings. We can see that jointly testing highly

correlated traits could have greater power over testing Y1 alone. In general both MKMR and

the proposed MSKAT statistic Q could benefit from the trait correlations to largely improve

the detection power. The minimum p-value based approach is largely unaffected by the trait
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Table 3: Power of multivariate tests for four continuous traits with pairwise correlation ρ: Q is
the proposed MSKAT statistic incorporating the trait correlation, Q′ is the sum of individual
trait SKAT statistics, Pmin is the Bonferroni corrected minimum p-value based on the individual
trait SKAT significance p-values, and MKMR is the multivariate kernel machine regression
approach. Only the first L = 3 traits are associated with the rare variant set. The causal rare
variant proportion is θ and their regression coefficient is set as −d log10(MAF). The highest
powered tests in each column are bold-faced.

(d, θ) (0.25,0.25) (0.2,0.5) (0.15,0.75)
ρ 0.2 0.5 0.8 0.2 0.5 0.8 0.2 0.5 0.8

Q 0.394 0.575 0.934 0.560 0.710 0.979 0.464 0.548 0.921
Q′ 0.324 0.173 0.099 0.525 0.326 0.210 0.483 0.309 0.209

Pmin 0.275 0.269 0.263 0.417 0.406 0.393 0.367 0.354 0.337
MKMR 0.341 0.552 0.933 0.469 0.664 0.978 0.355 0.473 0.920

Table 4: Power of multivariate tests for four continuous traits with pairwise correlation ρ: Q is
the proposed MSKAT statistic incorporating the trait correlation, Q′ is the sum of individual
trait SKAT statistics, Pmin is the Bonferroni corrected minimum p-value based on the individual
trait SKAT significance p-values, and MKMR is the multivariate kernel machine regression
approach. All L = 4 traits are associated with the rare variant set. The causal rare variant
proportion is θ and their regression coefficient is set as −d log10(MAF). The highest powered
tests in each column are bold-faced.

(d, θ) (0.25,0.25) (0.2,0.5) (0.15,0.75)
ρ 0.2 0.5 0.8 0.2 0.5 0.8 0.2 0.5 0.8

Q 0.581 0.739 0.975 0.726 0.798 0.984 0.573 0.523 0.813
Q′ 0.522 0.312 0.185 0.739 0.518 0.351 0.673 0.468 0.328

Pmin 0.353 0.343 0.331 0.503 0.485 0.462 0.429 0.406 0.379
MKMR 0.512 0.692 0.972 0.593 0.670 0.972 0.360 0.255 0.681
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Table 5: Detection power incorporating correlated null traits: only the first trait Y1 is associated
with the rare variant set. The causal rare variant proportion is θ and their regression coefficient
is set as −d log10(MAF). We compared the multivariate trait based test approach, MKMR,
Q, Q′ and Pmin, to the SKAT applied to testing Y1 only, denoted as SKAT(Y1). The highest
powered tests in each row are bold-faced.

α = 10−4, d = −0.25, θ = 0.25

ρ SKAT(Y1) Q Q′ Pmin MKMR

0.2 0.038 0.016 0.008 0.024 0.003
0.5 0.038 0.038 0.003 0.024 0.011
0.8 0.038 0.204 0.001 0.024 0.091

α = 10−4, d = −0.2, θ = 0.5

ρ SKAT(Y1) Q Q′ Pmin MKMR

0.2 0.054 0.024 0.012 0.035 0.004
0.5 0.054 0.054 0.004 0.035 0.016
0.8 0.054 0.280 0.002 0.035 0.128

α = 10−4, d = −0.15, θ = 0.75

ρ SKAT(Y1) Q Q′ Pmin MKMR

0.2 0.036 0.017 0.008 0.022 0.002
0.5 0.036 0.036 0.002 0.022 0.010
0.8 0.036 0.205 0.001 0.023 0.089

correlations.
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