Three new sesquiterpene glycosides from the roots of *Codonopsis pilosula*

Yueping Jiang^{a,b}, Yufeng Liu^a, Qinglan Guo^a, Chengbo Xu^a, Chenggen Zhu^a, and Jiangong Shi^{a*}

^a State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China ^b Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China

Supporting Information

^{*}Corresponding author. E-mail: shijg@imm.ac.cn.

No.	Content	Page
1	Detailed ECD Calculation of 1–3, their aglycones, the model compounds, and	S4
	(–)-α-barbatenal-reduction product	
2	Figure S1. The re-optimized conformer of 1.	S4
3	Figure S2. The re-optimized fourteen conformers of the aglycone of 1 and their equilibrium populations.	S5
4	Figure S3. The re-optimized sixteen conformers of the model of 1 and their equilibrium populations.	S 6
5	Figure S4. The experimental CD spectrum of 1 (black) and the calculated ECD spectra of 1 (dash dotted	S 7
	red), its aglycone (dashed green), and the model (dotted blue) in MeOH.	
6	Figure S5. The re-optimized conformer of 2.	S 7
7	Figure S6. The re-optimized five conformers of the aglycone of 2 and their equilibrium populations.	S 7
8	Figure S7. The re-optimized ten conformers of the model of 2 and their equilibrium populations.	S 8
9	Figure S8. The experimental CD spectrum of 2 (black) and the calculated ECD spectra of 2 (dash dotted	S 8
	red), its aglycone (dashed green), and the model (doted blue) in MeOH.	
10	Figure S9. The optimized conformer of 3.	S9
11	Figure S10. The optimized conformer of the aglycone of 3.	S9
12	Figure S11. The experimental CD (black and blue) and calculated ECD(dash dotted red and dashed	S9
	green) spectra of 3 and its aglycone in MeOH.	
13	Figure S12. The reoptimized six conformers of $(-)-\alpha$ -barbatenal-reduction product	S9
14	Figure S13. The calculated ECD spectrun of $(-)-\alpha$ -barbatenal-reduction product.	S10
15	Figure S12. The HPLC chromatograms of the sugar derivatives, from top to bottom, for D-glucose,	S10
	L-glucose, D-apiose, L-apiose, and sugars from hydrolysates 1 and 2.	
16	Figure S13. The UV spectrum of compound 1 in MeOH.	S11
17	Figure S14. The CD spectrum of compound 1 in MeOH.	S12
18	Figure S15. The IR spectrum of compound 1.	S13
19	Figure S16. The ESI mass spectrum of compound 1.	S14
20	Figure S17. The (+)-HR-ESI-MS report of compound 1, page 1.	S15
21	Figure S18. The (+)-HR-ESI-MS report of compound 1, page 2.	S16
22	Figure S19. The (+)-HR-ESI-MS report of compound 1, page 3.	S17
23	Figure S20. The ¹ H NMR spectrum of compound 1 in DMSO- d_6 (600 MHz).	S18
24	Figure S21. The ¹³ C NMR spectrum of compound 1 in DMSO- d_6 (150 MHz).	S19
25	Figure S22. The DEPT spectrum of compound 1 in DMSO- d_6 (150 MHz).	S20
26	Figure S23 . The ¹ H- ¹ H COSY spectrum of compound 1 in DMSO- d_6 (600 MHz).	S21
27	Figure S24 . The HSQC spectrum of compound 1 in DMSO- d_6 (600 MHz for ¹ H).	S22
28	Figure S25 . The HMBC spectrum of compound 1 in DMSO- d_6 (600 MHz for ¹ H).	S23
29	Figure S26. The NOE difference spectrum of 1 in DMSO- d_6 (600 MHz).	S24
30	Figure S27. The UV spectrum of compound 2 in MeOH.	S25
31	Figure S28. The CD spectrum of compound 2 in MeOH.	S26
32	Figure S29. The IR spectrum of compound 2.	S27
33	Figure S30. The ESI mass spectrum of compound 2.	S28
34	Figure S31. The (+)-HR-ESI-MS report of compound 2, page 1.	S29
35	Figure S32. The (+)-HR-ESI-MS report of compound 2, page 2.	S30
36	Figure S33. The (+)-HR-ESI-MS report of compound 2, page 3.	S31
37	Figure S34 . The ¹ H NMR spectrum of compound 2 in MeOH- d_4 (600 MHz).	S32
38	Figure S35 . The ¹³ C NMR spectrum of compound 2 in MeOH- d_4 (150MHz).	S33
39	Figure S36. The DEPT spectrum of compound 2 in MeOH- d_4 (150 MHz).	S34
40	Figure S37 . The ¹ H- ¹ H COSY spectrum of compound 2 in MeOH- d_4 (600 MHz).	S35
41	Figure S38 . The HSQC spectrum of compound 2 in MeOH- d_4 (600 MHz for ¹ H).	S36

42	Figure S39 . The HMBC spectrum of compound 2 in MeOH- d_4 (600 MHz for ¹ H).	S37
43	Figure S40. The NOE difference spectrum of 2 in MeOH- d_4 (600 MHz).	S38
44	Figure S41. The ¹ H NMR spectrum of compound 2a in MeOH- d_4 (600 MHz).	S39
45	Figure S42. The UV spectrum of compound 3 in MeOH.	S40
46	Figure S43. The CD spectrum of compound 3 in MeOH.	S41
47	Figure S44. The IR spectrum of compound 3.	S42
48	Figure S45. The ESI mass spectrum of compound 3.	S43
49	Figure S46. The (+)-HR-ESI-MS report of compound 3, page 1.	S44
50	Figure S47. The (+)-HR-ESI-MS report of compound 3, page 2.	S45
51	Figure S48. The (+)-HR-ESI-MS report of compound 3, page 3.	S46
52	Figure S49 . The ¹ H NMR spectra of compound 3 in acetone- d_6 (600 M).	S47
53	Figure S50 . The ¹³ C NMR spectra of compound 3 in acetone- d_6 (150 M).	S48
54	Figure S51. The DEPT spectra of compound 3 in acetone- d_6 (150 M).	S49
55	Figure S52 . The ¹ H- ¹ HgCOSY spectrum of compound 3 in acetone- d_6 (600 MHz).	S50
56	Figure S53 . The gHSQC spectrum of compound 3 in acetone- d_6 (600 MHz for ¹ H).	S51
57	Figure S54 . The gHMBC spectrum of compound 3 in acetone- d_6 (600 MHz for ¹ H).	S52
58	Figure S55. The NOE difference spectrum of 3 in acetone- d_6 (600 MHz).	S53
59	Figure S56 . The ¹ H NMR spectra of compound 3a in acetone- d_6 (600 M).	S54
60	Figure S57. The CD spectrum of compound 3a in MeOH.	S55
61	Figure S58 . The ¹ H NMR spectra of D-glucose hydrolyzed from 3 in D_2O (600 M).	S56
62	Figure S59 . The ¹ H NMR spectra of the authentic D-glucose in D_2O (600 M).	S57

Detailed ECD Calculation of 1–3, their aglycones, the model compounds, and (–)- α -barbatenal-reduction product. Conformational analysis was performed by using the MMFF94 molecular mechanics force field calculation using the MOE (Molecular Operating Environment) software package.

Conformational analysis showed conformer(s) for 1–3, their aglycones, the model compounds, and (–)- α -barbatenal-reduction product having relative energy within 2 kcal/mol, which were considered for further DFT calculations. Subsequently, using Gaussian 09 program package, the conformers were re-optimized using DFT at the B3LYP/6-31+G(d) level, and conductor-like polarizable continuum model (CPCM) was adopted to consider solvent effects using the dielectric constant of MeOH (ε = 32.6). The B3LYP/6-31G+(d) harmonic vibrational frequencies were calculated to confirm their stability. The energies, oscillator strengths, and rotational strengths of the first 30 electronic excitations of the conformers were calculated using the TDDFT methodology at the B3LYP/6-311++G (2d,2p) level in gas phase, and conformer(s) for 1–3, the aglycones, the model compounds, and (–)- α -barbatenal-reduction product (Figures S1–S3, S5–S7, S9, S10, and S12) showed relative Gibbs free energies (Δ G) under 2 kcal/mol. The ECD spectra of the conformers were then simulated using the Gaussian function (σ = 0.28 eV), respectively. The final spectra of the compounds (Figures S4, S8, and S11) were obtained by averaging the simulated spectra of the lowest energy conformers according to the Boltzmann distribution theory, in which their Gibbs free energy (G) were adopted.

Figure S1. The re-optimized conformer of 1.

Figure S3. The re-optimized sixteen conformers of the model and their equilibrium populations.

Figure 4. The experimental CD spectrum of 1 (black) and the calculated ECD spectra of 1 (dash dotted red), its aglycone (dashed green), and the **model** (dotted blue) in MeOH.

Figure S5. The re-optimized conformer of 2.

Figure S6. The re-optimized five conformers of the aglycone of 2 and their equilibrium populations.

model C6 (44%)model C7 (1.9 %)model C8 (2.2%)model C9 (2.7%)model C10 (1.9%)Figure S7.The re-optimized ten conformers of the model of 2 and their equilibrium populations.

Figure 8. The experimental CD spectrum of 2 (black) and the calculated ECD spectra of 2 (dash dotted red), its aglycone (dashed green), and the **model** (dotted blue) in MeOH.

Figure S9. The re-optimized conformer of 3.

Figure S10. The re-optimized conformer of the aglycone of 3.

Figure S11. The experimental CD (black and blue) and calculated ECD (dashed and dotted red and green) spectra of **3** and its aglycone in MeOH.

Figure S12. The reoptimized six conformers of $(-)-\alpha$ -barbatenal-reduction product.

Figure S13. The calculated ECD spectrum of $(-)-\alpha$ -barbatenal-reduction product

Figure S12. The HPLC chromatograms of the sugar derivatives, from top to bottom, for D-glucose, L-glucose, D-apiose, L-apiose, and sugars from hydrolysates of 1 and 2.

Figure S13. The UV spectrum of compound 1 in MeOH.

Figure S14. The CD spectrum of compound 1 in MeOH.

}

.

Figure S15. The IR spectrum of compound 1.

Single Mass Spectrum Deconvolution Report

.

Figure S16. The ESI mass spectrum of compound 1.

Qualitative Analysis Report

Data Filename Sample Type Instrument Name Acq Method DA Method

2014010601.d Sample Instrument 1 TEST LCMS.m Sample Name Position User Name IRM Calibration Status Comment

DS-40 P1-C3

NM STATE

User Chromatograms

Agilent Technologies

Page 1 of 2

Printed at: 2:44 PM on: 1/6/2014

Figure S17. The (+)-HR-ESI-MS report of compound 1, page 1.

.

Qualitative Analysis Report

--- End Of Report ---

Agilent Technologies

Page 2 of 2

Printed at: 2:44 PM on: 1/6/2014

Figure S18. The (+)-HR-ESI-MS report of compound 1, page 2.

	m/z	lon	Formula	Abundance												
	551.2461	(M+Na)+	C26 H40 Na O11	102137												
Г	Best	Formula (M)	Ion Formula	Calc m/z	Score V	Cross S	Mass	Calc Mass	Diff (ppm)	Abs Diff (ppm)	Abund Match	Spacing Mat	Mass Match	m/z	DBE	
•	V	C26 H40 O11	C26 H40 Na O11	551.2463	99.96	/	528.2568	528.2571	0.43	0.43	99.93	99.91	99.99	551.2461	7	
	Г	C27 H36 N4 O7	C27 H36 N4 Na O7	551.2476	99.65		528.2568	528.2584	2.95	2.95	99.26	99.96	99.72	551.2461	12	
	Г	C30 H40 O6 S	C30 H40 Na O6 S	551.2438	98.51		528.2568	528.2546	-4.31	4.31	95.98	99.77	99.41	551.2461	11	
5	r-	C31 H36 N4 O2 S	C31 H36 N4 Na O2 S	551.2451	98.39		528.2568	528.2559	-1.79	1.79	94.69	99.8	99.9	551.2461	16	
	Г	C27 H44 O6 S2	C27 H44 Na O6 S2	551.2472	97.39		528.2568	528.2579	2.06	2.06	91.51	99.52	99.86	551.2461	6	
F	Г	C28 H40 N4 O2 S2	C28 H40 N4 Na O2 S2	551.2485	97.19		528.2568	528.2593	4.58	4.58	91.67	99.54	99.33	551.2461	11	
-	Г	C22 H44 N2 O8 S2	C22 H44 N2 Na O8 S2	551.2431	96.83		528.2568	528.2539	-5.56	5.56	91.01	99.45	99.02	551.2461	2	
	Г	C36 H36 N2 S	C36 H36 N2 Na S	551.2491	96.57		528.2568	528.2599	5.83	5.83	89.94	99.84	98.92	551.2461	20	
	Г	C39 H32 N2	C39 H32 N2 Na	551.2458	96.3		528.2568	528.2565	-0.55	0.55	87.12	99.92	99.99	551.2461	25	
_		and the second se										And and a second s				

MS Formula Results: + Scan (6.119 min) Sub (2014010601.d)

=0 Но HO юн но он 1

page 1

Figure S19. The (+)-HR-ESI-MS report of compound 1, page 3.

Figure S20. The ¹H NMR spectrum of compound **1** in DMSO- d_6 (600 MHz).

Figure S21. The ¹³C NMR spectrum of compound 1 in DMSO- d_6 (150 MHz).

Figure S22. The DEPT spectrum of compound 1 in DMSO-*d*₆ (150 MHz).

Figure S23. The ${}^{1}\text{H}$ - ${}^{1}\text{H}$ COSY spectrum of compound 1 in DMSO- d_{6} (600 MHz).

Figure S24. The HSQC spectrum of compound **1** in DMSO- d_6 (600 MHz for ¹H).

Figure S25. The HMBC spectrum of compound 1 in DMSO- d_6 (600 MHz for ¹H).

.

Figure S26. The NOE difference spectrum of **1** in DMSO-*d*₆ (600 MHz).

Figure S27. The UV spectrum of compound 2 in MeOH.

Figure S28. The CD spectrum of compound 2 in MeOH.

Figure S29. The IR spectrum of compound 2.

Single Mass Spectrum Deconvolution Report

· · ·

Analysis Name: jngyp1 Method: TEST.MS Sample Name: DS-77b Analysis Info:					161.	d	1	Ins Ope	trum erato	ent: or:	0	C-M per	ISD- ator	Tra	p-SL		Pri Ac	int D q. D	ate:	6/2 6/2	27/2 27/2	014 014	3 1:5	:10:	18 0 P	PM M	
Acquis	ition F	arar	neter				<i></i>																				
Mass Range ModeStd/NorIon PolarityPositiveIon Source TypeESIDry Temp (Set)330 °CNebulizer (Set)15.00 pDry Gas (Set)6.00 l/n			mal si nin		Trap Drive Octopole RF Amplitude Capillary Exit Skimmer Oct 1 DC Oct 2 DC						47.2 194.5 Vpp 132.3 Volt 40.0 Volt 12.00 Volt 1.70 Volt				Scan Begin Scan End Averages Max. Accu Time ICC Target Charge Control				ne ol	300 m/z 700 m/z 5 Spectra 200000 µs 20000 on			a JS				
Intens. x106- 2.5-			-362.4																jngyp	o161.	d: +I	MS, ().1-	0.1m	in #	# (3-	5)
2.0	-318.4																										
1.5																											
1.0		330.4	46.4			0.4																					
0.5			250	374.4		406.4	F-418.5	430.4	444.5	հոքրութ Մ	478.4	-488.3	500	E512.6	525.5 533.5	551.	F 567.3	ىمىرى	591.3 600.7	للتبيط	623.6	Linguti	550.3 E 658 5	0.000	675.5	1684.6	Fuero
300	0	Con	pone	nt	Mo Ma	lecu ss	la	r	450 N	, Mole	cul	le	500		Abs Abu	olut	e ice	Re] Abu	ati Inda	ve nce		0	50			m	12

MSD Trap Report v 4 (A4-Opt2)

.

Page 1 of 1

Agilent Technologies

Figure S30. The ESI mass spectrum of compound 2.

Qualitative Analysis Report

m/z	Z	Abu	nd	Forn	nula		Ion]	
551.2462	1	1753	385	C26	H40 Na O	11	(M+Na)+	1	
552.2494	1	5131	18	C26 I	H40 Na O	11	(M+Na)+		
Formula Ca	lculat	or Ele	eme	nt Lin	nits			•	
Element	Min		Max	(
С		3	1	00					
Н		0	5	00					
0		0	9	90					
N		0		5					
S		0		0					
CI		0		0					
Br		0		0					
Si		0		0					
F		0		0					
Р		0		0					
Formula Ca	lculat	or Re	sult	s					
Formula		Bes	t	Mass	S	Tgt Mass	Diff (ppm)	Ion Species	Score
C26 H40 O1	1	TR	UE		528.257	528.2571	0.11	C26 H40 Na O11	99.98
C27 H36 N4	07				528.257	528.2584	2.63	C27 H36 N4 Na O7	99.74
C27 H36 N4	07				528.2565	528.2584	3.68	C27 H37 N4 O7	99.72
C26 H40 O1	1	TR	UE		528.2564	528.2571	1.17	C26 H41 O11	99.67
C39 H32 N2					528,2565	528,2565	0.19	C39 H33 N2	98.2

.

Qualitative Analysis Report

--- End Of Report ---

HO HO HC юн óн 2

Agilent Technologies

Page 2 of 2

Printed at: 2:10 PM on: 5/8/2014

98.2

Figure S32. The (+)-HR-ESI-MS report of compound 2, page 2

MS Formula Results: + Scan (6.366 min) Sub (2014050801.d)

	m/z	lon	Formula	Abundance											
	529.2637	(M+H)+	C26 H41 O11	43614.1											
ſ	Best	Formula (M)	Ion Formula	Calc m/z	Score V	Cross S	Mass	Calc Mass	Diff (ppm)	Abs Diff (ppm)	Abund Match	Spacing Mat	Mass Match	m/z	DBE
+	Г	C27 H36 N4 O7	C27 H37 N4 O7	529.2657	99.72		528.2565	528.2584	3.68	3.68	99.83	99.96	99.53	529.2637	12
	P	C26 H40 O11	C26 H41 O11	529.2643	99.67		528.2564	528.2571	1.17	1.17	98.94	99.99	99.95	529.2637	7
•	Г	C39 H32 N2	C39 H33 N2	529.2638	98.2		528.2565	528.2565	0.19	0.19	93.72	99.98	100	529.2637	25
	m/z	ton ·	Formula	Abundance											
	551.2462	(M+Na)+	C26 H40 Na O11	175384.6											
ſ	Best	Formula (M)	Ion Formula	Calc m/z	Score	Cross S	Mass	Calc Mass	Diff (ppm)	Abs Diff (ppm)	Abund Match	Spacing Mat	Mass Match	m/z	DBE
	9	C26 H40 O11	C26 H40 Na O11	551.2463	99.98	김 영습	528.257	528.2571	0.11	0.11	99.95	99.99	100	551.2462	7
	Г	C27 H36 N4 O7	C27 H36 N4 Na O7	551.2476	99.74		528.257	528.2584	2.63	2.63	99.47	100	99.78	551.2462	12

но он Но-HO юн 2

page 1

Figure S33. The (+)-HR-ESI-MS report of compound 2, page 3.

Figure S34. The ¹H NMR spectrum of compound **2** in MeOH- d_4 (600 MHz).

Figure S35. The ¹³C NMR spectrum of compound **2** in MeOH- d_4 (150MHz).

Figure S36. The DEPT spectrum of compound 2 in MeOH- d_4 (150 MHz).

.

Figure S37. The ¹H-¹H COSY spectrum of compound **2** in MeOH- d_4 (600 MHz).

1

Figure S38. The HSQC spectrum of compound **2** in MeOH- d_4 (600 MHz for ¹H).

Figure S39. The HMBC spectrum of compound **2** in MeOH- d_4 (600 MHz for ¹H).

Figure S40. The NOE difference spectrum of **2** in MeOH- d_4 (600 MHz).

Bruker AVIIIHD 600 20141102 PROTON Acetone D:\\ DATA2014 7

Figure S41. The ¹H NMR spectrum of the aglycone of **2** in MeOH- d_4 (600 MHz).

Figure S42. The UV spectrum of compound 3 in MeOH.

.

Figure S43. The CD spectrum of compound 3 in MeOH.

Figure S44. The IR spectrum of compound 3.

Single Mass Spectrum Deconvolution Report

· · · ·

Analysis Na Method: Sample Na Analysis In	me: TEST.I me: [fo:	jngyp MS OS-135	173.d	Inst Oper	rument: rator:	LC-MSD Operato	-Tra r	ıp-SL	Pri Acc	nt Date q. Date	e: 6/27/2 : 6/27/2	014 3:3 014 2:26	1:53 PM :26 PM
Acquisition	Param	eter:											
Mass Range I Ion Polarity Ion Source T Dry Temp (Se Nebulizer (Se Dry Gas (Set)	Mode ype et) et)	Std/Nor Positive ESI 330 °C 15.00 p 6.00 l/n	rmal si nin	Trap Octo Capi Skim Oct Oct	Drive pole RF A llary Exit mer 1 DC 2 DC	Amplitude		36.3 171.0 Vp 121.0 Vo 40.0 Volt 12.00 Vo 1.70 Volt	p It It	Scan Scan Avera Max. ICC T Charg	Begin End ages Accu Tim Target ge Contro	200 600 5 Sp 200 200 I on	m/z m/z pectra 000 µs 00
Intens.											jngyp173	3.d: +MS, (0.1min #(5)
x10 ⁰ 6- 4-		274.3	318.4								HOHOHO		/)=0
								133.2 49.2				3	
2-0.02	246.3		302.3	50.5 246.3	0 = 356.4 = 374.5	400.4	418.6	4 4	462.3	200 201 201 201 201 201 201 201 201 201	-507.8 -516.5 -525.9	541.4 00 550.0	579.7 591.6
	Comp	onent	Molec Mass	ular	Molec	ule		Absolu Abundan	te nce	Relat: Abunda	ive ance		
104- 4- 3-											jngyp17:	3.d: -MS, 0).1min #(4)
1								445.2			19.4		
2- 1- 0- 250		300				00 - 401.3 	433.2	450	472.2	500.1 500.1		6:19 <u>5</u> 550	5365.5 600.7 E/z
	Comp	onent	Molecu	lar	Molecu	ule		Absolut	e i	Relati	ve		
MSD Trap I	Report	v 4 (A4-	-Opt2)		Pa	age 1 o	f 1	Abunuar		Abunda		Agilent	Technologies

Figure S45. The ESI mass spectra of Compound 3.

Qualitative Analysis Report

Data Filename 2014060901.d Sample Name Sample Type Sample Position Instrument Name Instrument 1 User Name Acq Method **DA Method** TEST LCMS.m Comment

IRM Calibration Status

DS-135 P1-C2

Success.

User Chromatograms

Agilent Technologies

Page 1 of 2

Printed at: 11:33 AM on: 6/9/2014

Figure S46. The (+)-HR-ESI-MS report of compound 3, page 1.

Qualitative Analysis Report

--- End Of Report ---

Agilent Technologies

Page 2 of 2

•

Printed at: 11:33 AM on: 6/9/2014

Figure S47. The (+)-HR-ESI-MS report of compound 3, page 2.

MS Formula Results: + Scan (6.906 min) Sub (2014060901.d)

1

1	m/z	lon	Formula	Abundance											
	433.1827	(M+Na)+	C21 H30 Na O8	2145477.5											
Γ	Best	Formula (M)	Ion Formula	Calc m/z	Score	Cross S	Mass	Calc Mass	Diff (ppm)	Abs Diff (ppm)	Abund Match	Spacing Mat	Mass Match	m/z	DBE
•	1	C21 H30 O8	C21 H30 Na O8	433.1833	99.91	Sec. 2. 1	410.1935	410.1941	1.39	1.39	99.8	99.96	99.94	433.1827	7
• [F	C22 H26 N4 O4	C22 H26 N4 Na O4	433.1846	99.62		410.1935	410.1954	4.64	4.64	99.82	99.89	99.36	433.1827	12
• [Г	C25 H30 O3 S	C25 H30 Na O3 S	433.1808	98.83		410.1935	410.1916	-4.72	4.72	97.42	99.54	99.33	433.1827	11
	Г	C22 H34 O3 S2	C22 H34 Na O3 S2	433.1842	97.38		410.1935	410.1949	3.5	3.5	92.17	99.13	99.63	433.1827	6

.

.

page 1

Figure S48. The (+)-HR-ESI-MS report of compound 3, page 3.

Figure S49. The ¹H NMR spectra of compound **3** in acetone- d_6 (600 M).

Figure S50. The ¹³C NMR spectrum of compound **3** in acetone- d_6 (150 M).

Figure S51. The DEPT spectra of compound 3 in acetone- d_6 (150 M).

Figure S52. The ${}^{1}\text{H}-{}^{1}\text{H}$ gCOSY spectrum of compound **3** in acetone- d_{6} (600 MHz).

Figure S53. The gHSQC spectrum of compound **3** in acetone- d_6 (600 MHz for ¹H).

Figure S54. The gHMBC spectrum of compound **3** in acetone- d_6 (600 MHz for ¹H).

Figure S55. The NOE difference spectrum of **3** in acetone- d_6 (600 MHz).

Figure S56. The ¹H NMR spectrum of the aglycone of **3** in acetone- d_6 (600 M).

Figure S57. The CD spectrum of the aglycone of 3 in MeOH.

Figure S58. The ¹H NMR spectrum of D-glucose isolated from the hydrolysate of **3** in D_2O (600 M).

Bruker AVIIIHD 600 20141017 DS-D-Glu PROTON D20 D:\\ DATA2014 22

Figure S59. The ¹H NMR spectrum of the authentic D-glucose in D_2O (600 M).