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siMEM 
 
Model overview 

The dropout behavior of a typical gene in our screen was measured in triplicate by 5 

shRNAs (hairpins) at 3 time-points across the 77 cell lines that survived quality control (for a 

total of 3465 measurements per gene). The siMEM (si/shRNA Mixed-Effect Model) hierarchical 

linear model represents each short time course as a line with a specific intercept and slope. It 

adjusts for hairpin- and cell line-induced systematic measurement effects by representing assay 

measurements as the sum of several components:  

overall int ercept
+ average line slope across all  hairpins
+ difference in slope associated  with genomic variable                             
+ hairpin int ercept & slope adjustments  (1 per hairpin )
+ hairpin in cell  line int ercept & slope adjustments (1 per hairpin / cell  line combination )
+  random error components  (1 per hairpin / cell  line  combination )

 

Several random effect components are associated with the measurements; values for 

these components are derived during the process of model optimization. A hairpin-specific 

intercept and slope adjustment is associated with all measurements of a given hairpin. An 

additional cell line intercept and slope adjustment is associated with all measurements of that 

hairpin in a specific cell line. The overall combination of intercept, slope and random effects 

defines a line that approximates the measurements for a hairpin in a specific cell line. The 

random error component summarizes any remaining differences between this model and 

measurements for a specific hairpin and cell line.  

The siMEM model estimates the magnitude and error associated with each component in 

the equation above (e.g., the difference in slope associated with a “genomic variable,” such as 
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HER2+ status, subtype, mutation status). We then test whether the estimated magnitude of this 

slope difference is consistent with the null hypothesis that the true slope difference is zero 

(described in detail in later sections). A small p-value indicates that the observed magnitude is 

very unlikely, allowing us to reject the null hypothesis.  

When a genomic variable is categorical, the associated difference in slope quantifies the 

differential essentiality (abbreviated DE) between two classes. For a continuous variable (e.g., 

expression log-FPKM), DE is the average up/down slope difference associated with each unit 

increase of the genomic variable. For example, as HER2 log-FPKM increases across cell lines, 

the average slope for hairpins targeting HER2 will tend to decrease, indicating increasing 

essentiality. 

 

siMEM model specification 

More formally, the hierarchical linear model is defined as:  

 

with h indexing the hairpins targeting a given gene, c indicating a given cell line, r=1,…,R 

indicating replicates, and t=0,…,T representing time-points. The column vector 

contains h- and c- associated measurements across all 

replicates r=1,…,R and time-points t=0,…,T. For our data, yhc is a 9-element column vector 

containing the 3 replicate x 3 time-point measurements that generate the dropout trend associated 

with h and c. 

Xhc is the (T+1) x R row, 3 column fixed-effect design matrix, containing 1 in all rows of 

its first column, time values in the second column, and either all 1s or all 0s in the third column 

(depending on whether c is, or is not, associated with the condition, respectively, e.g., 

yhc = Xhcβ + Zhbh + Zh,cbhc +εhc

yhc = yhc,r=1,t=0 ... yhc,r=R,t=T
!
"#

$
%&
transpose



	
   4	
  

HER2+/HER2-). If the genomic variable is continuous (e.g., cell line HER2 log-FPKM values), 

that value is repeated for each row of the third column instead of 0/1. In practice, continuous 

genomic values are median-centered across cell lines prior to modeling. 

 is the fixed-effect coefficient column vector. The coefficients 

summarize average measurement intensity at time t=0 (β0), linear slope (β1) for the baseline 

condition, and slope difference associated with a genomic variable (βD). βD coefficient estimates 

(magnitude, error, p-value) are the most relevant, as they summarize DE magnitude and 

significance. The volcano plots presented in this paper display the magnitude and p-value of βD 

for each gene in our assay (along the x and y axes, respectively). 

Model random-effect components are critical to generating adequate error and p-value 

estimates for βD. Models with very different random effects structures (Fig. S2A, S2B, discussed 

further below) produce very similar estimates for coefficient magnitudes. However, coefficient 

errors and p-values can differ greatly (see Fig. S2E and S2F).  

The model includes random effect regressor matrices Zh (hairpin-specific effect) and Zh,c 

(for hairpin-specific cell line effects). bh is a two (2-) element column vector, containing hairpin 

h intercept and trend adjustments relative to the overall average intercept and trend. bh is drawn 

from a bivariate Gaussian distribution ( ); this distribution represents hairpin-specific 

adjustments for the set of all hairpins targeting the gene, with the assay hairpins considered 

random instances from the set. The “0” is shorthand for , indicating that the bh 

adjustments, as a group, average to the overall gene intercept and slope. Σ is a 2 x 2 variance-

covariance matrix that contains the variance of hairpin intercept and slope adjustments as two 

β = β0 β1 βD
!
"#

$
%&
transpose

bh ~ N (0,Σ)

0 0!
"#

$
%&
transpose
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diagonal entries, and the covariance between hairpin intercept and slope adjustments in both off-

diagonal entries.  

Similarly, bhc is the intercept/slope adjustment specific to h and c, and is also drawn from 

a bivariate Gaussian ( ) summarizing the distribution of individual cell line 

intercepts/slopes around the hairpin h intercept/slope. A separate 2 x 2 Σh matrix is estimated for 

each h. This conditional structure gives rise to the “cell line nested in hairpin” nomenclature 

(Fig. S2A, Fig. S2B). The modeling of bh (or bhc) as a random instance from the set of all such 

possible intercept and slope adjustments gives rise to the “random effect” terminology.  

Finally, εhc is a random error term associated with each h- and c-specific line, with h x c 

error terms estimated for each gene. Once overall intercept/slope, genomic variable slope 

difference, bh and bhc have been summed, εhc accounts for any remaining differences between the 

model and measurements. The calculation of each εhc assumes that the measurements associated 

with h and c have no systematic error (or variance) trends (e.g., errors linked to measurement 

intensity or time-point). In other words, the sizes of the error bars around the line are assumed to 

be constant, regardless of measurement intensity or time-point. 

Pooled screen data deviate severely from this assumption, as seen by plotting the dropout 

measurements for any gene that substantially impacts proliferation. Replicate measurement error 

bars widen systematically as intensity decreases and as time increases (in other words, the 

measurements are heteroscedastic). As detailed in later sections, we mitigate this problem by 

using precision, or inverse-variance, weights. 

Although we refer to hairpins in the above model specification, siMEM is equally 

applicable to other similar types of screens (e.g., CRISPR/Cas9 screens). The model is agnostic 

bhc ~ N (0,Σh )
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to the specifics of the biological entity being measured, as long as several such entities map to 

each gene, and each produces multiple measurements in cell lines or samples. 

Finally, the siMEM model can be simplified to analyze individual hairpin DEs. 

Considering a single hairpin obviates the multiple hairpin adjustment; hence, only cell line 

adjustments are included in the model. 

 

Single time-point model 

The model also can be simplified to enable analysis of end-point measurements, such as 

the Achilles (Cheung et al., 2011) dataset (omitting the universal reference samples) or a single 

time-point subset of our measurements. The fixed-effect coefficients then simplify to 

, with β0 being the mean in the baseline condition and βD the difference in 

means associated with the genomic variable. If the genomic variable is continuous, βD is the 

slope of the line through the “measurement intensity vs. genomic variable” scatterplot, and β0 is 

the intercept of that line when the genomic variable is 0. 

The random effects structure also is simpler. Variable nesting structure does not change 

(cell line nested in hairpin), but the random effects are now univariate:  and 

, with and  representing variances of the Gaussians. 

 

P-values 

The siMEM model produces estimates of the magnitudes, errors and t-statistics (t-statistic 

= magnitude/error) for each fixed-effect coefficient (β0, β1, βD). These are used to estimate the 

probability of observing the magnitude of β0, β1 or βD, given the null hypothesis that the real 

β = β0 βD
!
"#

$
%&
transpose

bh ~ N (0,σ
2 )

bhc ~ N (0,σ h
2 ) σ 2 σ h

2
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magnitude is 0. P-values are obtained by comparing t-statistics to a t distribution, with the 

denominator degrees of freedom estimated using the “inner-outer” (or “between-within”) 

heuristic (Pinheiro and Bates, 2000). When comparing alternative model structures, Gaussian-

based p-values are used. All p-values are two-sided, and are adjusted using the False Discovery 

Rate (FDR) method of Benjamini & Hochberg (Benjamini and Hochberg, 1995). 

 

Regularization of random effects using weakly informative priors 

Estimation of some random effect parameters can be computationally difficult when the 

number of random effect groups is small: for example, when five hairpins target a gene. In some 

cases, likely positive parameter values, such as variances, are estimated as 0. This issue can be 

addressed by imposing a weakly informative prior on random effect parameter estimates (Chung 

et al., 2015; Chung et al., 2013). These priors ensure that parameter estimates are always 

positive, yielding slightly more conservative error estimates and model predictions.  

Following Chung et al.’s default distribution choice, we applied Wishart priors to the 2 x 

2 Σ matrices summarizing intercept and slope adjustments, and Gamma priors for variance 

parameters summarizing slope or intercept adjustments. These priors are implemented in Chung 

et al.’s accompanying blme R package, and applied to our models. We performed a large number 

of model fits for a variety of analyses (e.g.: HER2+ vs. HER2-, luminal vs. basal, essentiality 

with changing expression, etc…) with or without the priors, to confirm that prediction results are 

very similar in magnitude and significance. 

 

Measurement weights 

Measurement variance trends and precision weights 

σ 2
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As do other high-throughput measurement assays, our data and those from Project 

Achilles show prominent and systematic measurement variance trends. In our case, replicate 

measurement variance increases as mean replicate measurement intensity decreases and as time 

increases. The overall shape of the mean-variance relationship is highly platform-dependent. 

Accounting for systematic variance trends is more consequential to model prediction 

performance than underlying distributional assumptions (Law et al., 2014). As a recent example, 

Law et al. used a linear model approach assuming Gaussian distributions, but taking into account 

systematic variance trends, to model RNAseq differential expression, and demonstrated 

prediction performance as good if not better than the most popular published models based on 

Negative Binomial count-specific distributions. This finding is consistent with mixed-effect 

model simulation results (Jacqmin-Gadda et al., 2007), which show that data with unequal 

variances substantially reduce parameter confidence interval coverage from the nominal 95%. 

However, even severe deviations from Gaussian distributional assumptions led to little reduction 

in confidence interval coverage. In short, linear model prediction performance tends to be robust 

to deviations from Gaussian distributional assumptions, but not to the presence of systematic 

measurement variance trends. 

To address this issue, we use precision, or inverse-variance, weights for measurements. 

The small number of replicates at each time-point results in imprecise variance estimates when 

triplicate measurements from each hairpin are considered in isolation. As this issue occurs 

frequently in high throughput assays, an established solution (see Law et al. for a recent 

example) is to model replicate measurement variance as a smooth function of the mean 

measurement intensity. Thus, hairpins with similar mean intensities are assumed to have similar 

variances. 
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We estimate a separate measurement mean-variance function for each cell line and time-

point pair. This function is obtained by applying local regression to the scatter plot of replicate 

means vs. variances using the R locfit (Loader, 2013) package. Replicate hairpin measurements 

are then assigned a precision weight equal to the inverse of their smoothed variance. To avoid 

extremely large weights, smoothed variance is set to a minimum of 0.01. These weights, and the 

associated measurements, are then used to perform weighted regression. Although, by default, a 

separate function is estimated for each cell line and time-point combination, the siMEM R 

package allows user-defined sample groupings, thus allowing flexibility for different replication 

designs. 

 

Fast dropout trends and signal/noise weights 

Previously, we highlighted the issue of “fast dropout” hairpins, particularly among those 

targeting general essential genes (Marcotte et al., 2012). In such cases, the trend for a hairpin 

tends to sharply decrease between the first and second time-points, and flattens between the 

second and third. Such plots are non-linear, even in the log-scale. 

We mitigated this issue in a data-driven manner, using biological control features 

available on the Gene Modulation Array Platform (Ketela et al., 2011) used to evaluate our 

pooled screens. The GMAP platform probes a large number of human and mouse RNAi 

Consortium hairpins (Moffat et al., 2006; Root et al., 2006). Because our pooled screens were 

performed on human cells, measurements for the mouse hairpin pool provide a large number of 

potential negative controls, allowing us to quantify the probability that a particular human 

measurement is signal or noise, given its intensity. We used Bayes’ rule to estimate the 

signal/noise probability as a function of measurement intensity, specifically:  
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with x being measurement intensity, S=1 and S=0 representing signal and noise states, 

respectively, and assumed to be equally probable a priori (  and  set to 0.5). 

We used arrays from the initial time-points (T0) of our assays, before substantial dropout occurs, 

thus ensuring that the signal and noise distributions were not confounded by decreases in human 

measurements occurring at later time-points. Mouse and human measurements were first 

averaged among T0 replicates of each cell line, before being merged across cell lines. Thus, a 

single signal/noise vs. intensity function was estimated for all cell lines. This function was 

sigmoidal, with high (>10) measurement intensities assigned probabilities ~1, whereas low (<7) 

intensities had probabilities ~0.2 (see data file accompanying the siMEM R package).  

Next, we weighted measurements from later time-points in each h- and c-specific dropout 

time-course according to the signal/noise probability of measurements at the previous time-point. 

For example, if measurements at T1 had a signal/noise probability of 0.2 (mean intensity of ~7 or 

lower), T2 measurements were assigned a weight of 0.2. T0 measurements were assigned 

weights of 1. For fast dropout hairpins, T1 measurements tend to be low, and T2 measurements 

are correspondingly assigned much less weight in the model fitting. This approach helps to 

mitigate the systematic non-linearity observed with fast dropout hairpins. 

Because the signal/noise function is calculated using measurements available on the 

GMAP platform, this weighting is study-specific. However, when considered as a heuristic to 

mitigate “fast dropout” trend non-linearity, the approach is applicable to other short time-course 

dropout studies with a user-defined sigmoidal or other function that can be used to penalize later, 

low-intensity time-points. In exploratory analyses to gauge the relative importance of precision 

Pr(S =1| x)= Pr(x | S =1)Pr(S =1)
Pr(x | S =1)Pr(S =1)+ Pr(x | S = 0)Pr(S = 0)

Pr(S =1) Pr(S = 0 )
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and signal/noise weights, inclusion of precision weights alone produced model improvements an 

order of magnitude greater than signal/noise weights alone. 

 

Hairpin- and cell line-specific weights 

Assigning weights to individual measurements also enables hairpin- and/or cell line- 

specific weighting. The associated measurements are assigned a weight proportional to the total 

weight assigned to all cell lines or hairpins in the gene-level analysis. We use hairpin weights to 

filter hairpins whose initial (T0) measurements are close to, or below the noise threshold for, the 

platform. For our screens, we assign a weight of 0 to any hairpin whose mean T0 measurement 

intensity across all screens is < 8.5 (log2 scale). This cutoff was selected based on the 

signal/noise function described above. For example, eight hairpins target HER2 in our dataset, 

but only four of these are used in the analysis after the low T0 filter. This approach avoids flat 

trends resulting from measurements starting at T0 and continuing (at later time-points) within the 

noise range of the measurement platform. After applying this filter, approximately 9,000 hairpins 

are excluded from analysis. For analyses using the Achilles dataset, we assign a 0 weight to all 

hairpins with a mean measurement intensity below 5 (log2 scale) in the universal sample 

replicates. 

Another potential application of hairpin weights is to incorporate measures of on-target 

hairpin activity, such as the ATARIS C-score (Shao et al., 2013). Measurements associated with 

each hairpin can be weighed according to the hairpin C-score, with higher C-scores indicating 

greater likelihood of on-target activity. In several analyses incorporating ATARIS C-scores, both 

for our data and the Achilles dataset, we noted further improvement in predictions beyond those 

presented in Results. However, approximately half the genes in our assay do not have assigned 
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C-scores (as a result of not having any ATARIS solutions). Of the remainder, more than a 

thousand genes have two or more ATARIS solutions, with one C-score per solution. Further 

work is necessary to address these issues, so we have not incorporated C-scores into the analyses 

presented here.  

Nevertheless, our approach correctly identifies many known breast cancer vulnerabilities, 

and predicts novel ones that subsequently can be confirmed by validation experiments (see 

Results). Our analysis suggests that the direct analysis of assay measurements, rather than 

measurement-derived summary scores, is most consequential for improving prediction 

performance, with hairpin on-target activity weights providing potentially important, but not 

prediction-critical, information. 

 

Rescaling and combining weights 

In a model excluding all measurement weights described above, each measurement has a 

weight of 1, and the sum of weights applied to the measurements is equal to the number of 

measurements. Increasing the total weight applied to the measurements also results in smaller p-

values. For example, assigning a weight of 10 to each measurement produces predictions with 

much smaller p-values than the same measurements analyzed with a weight of 1. Consequently, 

significance predictions can be inflated if weighting strategies greatly increase the total weight of 

the measurements. This potential problem is particularly relevant for precision weights where, in 

most instances, variances associated with measurements at “high” intensities (10 or above on a 

log2 scale) are far smaller than 1, resulting in correspondingly larger weights. Additionally, the 

bulk of measurements associated with any gene are high. Applied as is, the total precision 

weights for the measurements are much greater than the number of measurements, which 
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sometimes can result in a dramatic increase in the predicted significance. To counter this 

problem, we rescaled each precision weight using a constant, so that the sum of all precision 

weights for a gene was equal to the number of measurements (once zero-weighted measurements 

were excluded).  

When multiple weights (precision, signal/noise, hairpin or cell line) were associated with 

the same measurement, they were multiplied (after rescaling) to obtain a combined weight, and 

again rescaled to sum to the total number of measurements. This produced the final weight 

applied to each measurement in the analysis. All analyses of our data used precision and 

signal/noise weights. Analyses of the Achilles dataset use precision weights. Hairpin binary 0/1 

weights were also used, but only to omit measurements for hairpins with low T0 (our study) or 

universal sample (Achilles) intensities. 

 

Relative Dropout Rate 

In general, genes that are more essential tend to be associated with larger differences 

between conditions. In other words, the magnitudes of β1 and βD are correlated. Ranking 

significant analysis predictions by the magnitude of βD will thus tend to favor generally essential 

genes, even if the magnitude of βD is small relative to β1. To mitigate this issue, we formulated a 

complementary measure of effect size that considers the magnitude of the difference (βD) relative 

to the magnitude of the baseline trend (β1) 

 Relative Dropout  Rate = sign( βD )
max(|β1 |, |β1 +βD |)

min(|β1 |, |β1 +βD |)+ median( β1 )
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The median value of the genome-wide distribution of β1, which is reliably modestly negative, is 

added to the denominator to moderate unusually large ratios. The Relative Dropout Rate is 

restricted to categorical analyses. 

 

Performance assessment 

Alternative structures for model random effects 

To evaluate the impact of our model design on prediction performance, we considered a 

range of alternative model random effect structures (Fig. S2B). We distinguish between model 

structures that are “simpler” or “more complex” variants of the siMEM structure (S6, Fig. S2B) 

and those that are “different.” A model is simpler if it can be transformed to S6 by adding a 

random intercept or slope for a variable, or by adding a variable to the nesting structure (cell 

line). More complex models can be transformed to S6 by removing a variable (replicate) from 

the variable nesting structure. We consider a simpler model with comparable prediction 

performance to be preferable.  

Models S9 and S10 use a different nested or crossed approach to relate hairpin and cell 

line variables (Fig. S2A-B). Model S9 (hairpin nested in cell line) assumes that hairpin 

adjustments depend on the cell line. This structure can be a good design choice if cell line 

characteristics are of primary importance for modeling measurements, while hairpin 

characteristics are secondary. A biological example would be cell lines that are generally more 

susceptible to shRNA-mediated knockdown, regardless of hairpin details. Model S10 assumes 

that the hairpin and cell line adjustments are independent of each other, and that each contributes 

separately to explaining measurements. 
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By contrast, siMEM structure S6 can work best if the observed cell line trend mostly 

depends on the specific hairpin (e.g., if a hairpin is ineffective). In that case, the dropout trend 

will be flat, regardless of the cell line in which measurements are made. Alternately, a potent on-

target hairpin will tend to have larger dropout trend. Thus, the measurements from any cell line 

would be explained primarily by an overall hairpin intercept/trend, with a secondary cell line 

adjustment included to reduce differences between the overall hairpin trend and cell line-specific 

measurements.  

We evaluated model performance by three criteria: model fit, prediction of known 

positives, and prediction in a random class analysis. 

 

Alternative model fits 

 Akaike’s Information Criterion, or AIC (Akaike, 1976), quantifies how well a model 

represents measurements. An AIC value is produced for each gene-specific model in an analysis. 

We assessed alternative model fits by using ~15,000 separate sets of measurements arising from 

the same assay and sharing underlying characteristics. The difference in per-gene AIC values 

(ΔAIC=AICS6-AICalternative) indicates whether the alternative model is better (positive difference) 

or worse (negative) than S6. A ΔAIC of -10 or lower is strong evidence in favor of S6. As 

illustrated by the HER2+ analysis, S6 greatly outperformed simpler or different alternatives (Fig. 

S2G, S2H). The more complex alternatives S7 and S8 have ΔAIC distributions centered at 0, 

indicating no overall improvement resulting from additional model complexity (Fig. S2G). Ten 

alternative models were fit for each gene-specific set of measurements; in almost all cases, S6 

was the simplest model that produces the best AIC values.  
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Although the HER2+ analysis is discussed in detail as a representative case, ΔAIC 

distributions were very similar in other analyses and using other data, including our previously 

published set of 72 breast, pancreatic and ovarian cancer screens (Marcotte et al., 2012). This 

remained true when the classes are biologically meaningful (e.g., subtype/tissue essentials) or 

when class assignments were randomized per gene (discussed below). We also performed an 

analogous assessment of alternatives for the model used to analyze the Achilles data. In all cases, 

the “cell line nested in hairpin” structure was much better as assessed by AIC (data not shown). 

 

Prediction of known positives 

 We examined HER2+-dependent DE predictions because of their obvious biological and 

clinical relevance and because the subject has been extensively studied, providing us with a 

substantial number of literature-backed genes with which to test our predictions (Table S2C). 

Furthermore, while the large differences between luminal and basal breast subtypes (or tissues) 

make predictions easier, the differences are (relatively) less pronounced for classifications such 

as HER2+ vs. HER2-. For example, we predict about 2,000 differences (at FDR < 0.1) between 

breast basal and luminal lines, and comparable numbers for pairwise tissue comparisons (except 

basal vs. ovarian, Fig. S3C), but only a few hundred HER2+-specific vulnerabilities in breast 

cancer (Table S3B). 

 As seen in Fig S2E, the overall number of predictions drops 50-fold between structures 

S1 and S6, before increasing for S7 and S8. There was a concordant improvement in ranking for 

HER2+-associated genes from S1 to S5, with S5 to S8 producing comparable rankings. In short, 

up to a certain point, additional model structures eliminated many spurious predictions, while 

known positives rose to the top of the p-value rankings. The rankings were comparable from S5 
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to S8, but S6 produced the fewest overall predictions. These trends mirror the previously 

discussed improvement in AIC (Fig. S2G, S2H), indicating that the best model structure 

according to AIC also produces the best DE predictions in a biologically meaningful analysis.  

Structures S9 and S10 performed worse, each predicting few significant genes, and 

failing to predict most of the known positives. Know positives also had worse p-value rankings 

with these models, regardless of significance (Fig. S2F). As discussed below, the small number 

of significant predictions with these model structures might be due to their overly conservative 

predictions. 

 

Predictions using data with randomly assigned classes 

 Finally, we evaluated the prediction performance of alternative models (Fig. S2B) when 

cell lines were randomly assigned to two classes. Randomization was separate for each gene. In 

the example below, cell lines were classified in the same numbers as the HER2+/- classes (62/77 

in one class, 15/77 in another). These results are representative of additional analyses performed 

with different class ratios. To mitigate the potential confounding effects of subtypes, the random 

class assignment was performed separately for cell lines of each Neve subtype (basal A, basal B, 

HER2+, luminal) before being combined. Thus, a similar proportion of cell lines from each 

subtype were randomly assigned to each class.  

The randomized data were analyzed using each model, and the resulting p-values were 

compared to the Uniform(0,1) distribution using quantile-quantile Plots (Fig. S2D). A line below 

the diagonal indicates a p-value distribution skewed towards small values, whereas a line above 

the diagonal indicates enrichment for larger values.  
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Models S1-S4 produced a substantial enrichment for small p-values (Fig. S2D), 

consistent with the lower AIC values (Fig. S2G) and the large number of predictions in the 

HER2+ analysis (Fig. S2E). Models S7 and S8 were closer to the Uniform, but performed no 

better than S6 on this analysis, and might thus be unnecessarily complex. By contrast, models S9 

and S10 produced a dearth of small p-values. Their predictions might be excessively 

conservative, again consistent with the worse model fits (Fig. S2H) and prediction of known 

positives (Fig. S2F). The results from models S5 and S6 were closest to the Uniform distribution 

(Fig. S2D). However, considered in conjunction with its better model fits (Fig S2G) and 

prediction of known positives (Fig S2E), S6 represents the best combination of model structure, 

complexity and prediction performance.  

A similar analysis, applied to our previously published set of 72 screens (Marcotte et al. 

2012), yielded comparable results. Finally, an analogous comparison of end-point model 

alternatives, using the Achilles data with randomized classes, showed that the “cell line nested in 

hairpin” structure, with random intercepts for each variable, produced the best results (data not 

shown). 

 

Comparison to Parallel Mixed Model 

Recently, Ramo et al. (Ramo et al., 2014) published Parallel Mixed Model (PMM), a 

hierarchical linear modeling algorithm to quantify kinome-wide siRNA screens assessing the 

impact of different pathogens on cells. Their approach has some similarity to siMEM, most 

prominently the application of hierarchical models to si/shRNA data, and allowing weights for 

different siRNAs according to quality measures of on-target effect. However, key differences in 
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model assumptions and structure make PMM inapplicable to the genome-scale shRNA screens 

referenced in this manuscript.  

 Although the data modeled by PMM contains multiple siRNAs targeting each gene, each 

siRNA is measured once per screen, and the model does not account for systematic effects due to 

different siRNAs. Furthermore, all screens modeled by PMM are performed in the same cell line. 

The model does not account for screens performed across highly genetically heterogeneous cell 

lines, as is the case for our data or that of project Achilles. As we have shown, modeling these 

systematic reagent (si/shRNA) and cell line effects is key to making credible predictions in 

published genome-scale screens, and siMEM adjusts for both these factors (Figure 2, S2). 

 Furthermore, the PMM model assumes that each pathogen induces a global difference in 

cell essentiality profile. The observed difference in each gene’s essentiality is modeled as a 

combination of the global pathogen-associated essentiality difference and a gene-specific 

essentiality difference. The pathogen variable modeled by PMM is analogous to a genomic 

variable, such as HER2 status or subtype, modeled in our context. The PMM structure that 

estimates a global pathogen (or genomic variable) effect is suited to situations where we expect 

to see thousands of differences between two classes of screens, for example when predicting 

thousands of significant differences between two cancer types. However, this modeling 

assumption may not be well suited to the vast majority of class comparisons examined in this 

manuscript, or those of interest to researchers, which involve at most a few dozen or hundred 

significant differences, and where the vast majority of genes in the genome are reasonably 

expected to have similar essentiality between comparison classes. Comparisons in which we 

expect to see many differences between classes are very much the exception to the rule. Finally, 
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PMM does not model measurement heteroscedasticity, and is restricted to single time-point 

experimental designs. 

In conclusion, although PMM’s model structure and assumptions are not well-suited to 

the genome-scale screens referenced in this manuscript, it does provide an example of the 

general strategy of quantifying loss of function screens using hierarchical linear models. 

  

R implementation and computational details 

The blme (Dorie, 2014) v1.0.1 and lme4 (Bates et al., 2014a; Bates et al., 2014b) v1.0.5 

packages were used to fit all described linear mixed-effect models. Mean-variance function 

estimation was implemented by using local polynomial regression fits from the locfit 1.5-9.1 

package. To reduce analysis time, doMC 1.3.1 was used to parallelize computations on a user-

specified number of processor cores. Given the complex structure of our assay and pooled screen 

data in general, a Bioconductor (Gentleman et al., 2004) ExpressionSet structure was used to 

consolidate and link measurements, hairpin/gene annotations, and cell-line/replicate/time-point 

annotations. To facilitate community use, the siMEM R package used to generate many of our 

analyses is available, along with detailed instructions and sample workflows, from A.S.. Unless 

otherwise noted, all plots were generated using the R ggplot2 (Wickham, 2009) v0.9.3. 
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Additional Methods 

Screen data processing and normalization 

 Pooled screens were performed in triplicate, and infected cells were allowed to proliferate 

under standard growth conditions. Timepoints were taken for gDNA isolation and subsequent 

hybridizations depended on the population doubling; typically Passage 0 (P0), P2-3, and P5-6 

were used to determine dropout (see (Marcotte et al., 2012).)  

The T0 measurements for the EFM19, HCC1954, HCC38 screens were omitted for 

technical reasons. T0 measurements, regardless of cell line, represent the initial abundance of 

shRNAs before cell line-specific selection effects, leading to highly correlated T0 measurements 

across cell lines. Our analyses showed a median correlation of 0.92 between pairs of T0 arrays 

from different cell lines, compared to correlations of 0.94-0.97 for replicate arrays within a cell 

line, a median correlation of 0.79 between T1 arrays of different cell lines and median 

correlation of 0.68 between T2 arrays from different cell lines. Based on this similarity, we used 

to T0 measurements of the MCF7 screen to provide T0 measurements for the HCC1954 and 

HCC38 screens, and T0 measurements from the SW527 screen to provide initial measurements 

for the EFM19 screen. 

As in our earlier screens, triplicate arrays for each time-point of each screen were 

normalized separately by using Cyclic Loess (Dudoit et al., 2002) to mitigate technical artifacts. 

In the course of our subsequent analyses, we observed that summarizing screen data using linear 

models sometimes produced highly skewed predictions (visible as extremely lop-sided volcano 

plots). This problem was coupled with a global shift of the βD distribution mode away from 0. 

Although the shift was modest for hairpin-level analyses, its impact was amplified at the gene 
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level, because each gene is targeted by multiple shifted hairpins. Consequently, many genes 

targeted by these hairpins would be deemed erroneously significant. 

In our previous analyses, replicates were normalized within a time-point, without 

considering potential distortions across the time-points of a short time-series. Given the ubiquity 

of measurement artifacts in high-throughput assays, there is no guarantee that a theoretically flat 

hairpin trend will produce assay measurements showing a flat time-course. Although we 

previously made GARP scores comparable across cell lines using Z-normalization, a different 

approach is needed to mitigate this issue for measurements.  

For these reasons, we performed an additional Quantile Normalization (Bolstad et al., 

2003), including all arrays for a given time-point, irrespective of cell line. Performing this 

additional normalization within each time-point diminished the issue of global shifts across time-

points, and centered the mode of the βD distribution at 0, in the process removing erroneously 

significant predictions. We also Quantile-Normalized Achilles replicate-level array data before 

analysis. 

 

Update of gene annotations for 78K screen 

In order to update gene ID and symbol annotations, genes were first matched to the latest 

available list of Entrez gene IDs using the Bioconductor AnnotationDbi package (Pages et al., 

2014). Genes with existing IDs had their symbols and descriptions updated. Genes without 

matching IDs were matched using Refseq IDs and canonical symbols. If a match was found, 

associated information (Entrez gene Id, symbol, description) was updated. Genes that did not 

match using these criteria were manually examined using the NCBI gene website and matched if 
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possible. Remaining genes, typically no longer existing, were removed from the dataset. The 

updated annotations contained 77,156 hairpins mapped to 15,709 genes. 

 

SNP arrays and copy number analysis 

Genomic DNA (750 ng) from each line and control normal female DNA (Biochain Lot # 

B502039) were amplified by using the Illumina Infinium Genotyping multi-use kit. Amplified 

DNA was fragmented, precipitated, and one third was hybridized to Human Omni-Quad 

Beadchips, incubated at 48°C for 18 hrs, washed and stained as per the manufacturer’s protocol, 

and analyzed on an iScan (Illumina). Data files were quantified in GenomeStudio Version 

2010.2 (Illumina) using Omni-Quad Multiuse_H manifest (Released April 2011), containing data 

from GenomeBuild 37, Hg19. All samples passed staining, extension, target removal, 

hybidization (independent controls) stringency metrics, non-polymorphic control, and non-

specific binding (sample-dependent) controls.  

SNP array data were segmented by Circular Binary Segmentation, or CBS (Olshen et al., 

2004), using the Bioconductor DNAcopy package (Seshan and Olshen, 2014), with 10,000 

permutations, alpha 0.001, and undoing of segment splits less than 1.5 standard deviations apart. 

CBS segments were mapped to genes using the Bioconductor CNTools package (Zhang, 2014), 

with the same gene start-end coordinates used to map the RNAseq reads. Gene-level copy gains 

and losses were defined by Log-R Ratio (LRR) cutoffs of +/- 0.2 respectively. We performed a 

per-gene LRR comparison for cell lines profiled in-house and by the Cancer Cell Line 

Encyclopedia (CCLE (Barretina et al., 2012)) using Affymetrix SNP arrays. This analysis 

showed that gene-level LRR values were highly linearly correlated, with in-house LRRs equal to 



	
   24	
  

approximately 0.37 times CCLE LRRs. Thus, our gain/loss cutoffs of +/- 0.2 are comparable to 

CCLE cutoffs of +/- 0.5.  

 

Correlation of cell line and tumor CNA profiles 

 TCGA breast level 3 segmented copy number data were obtained for 1,021 tumor 

samples and mapped to genes, as described above. For cell lines and tumors, total LRR for each 

gene was then obtained by summing gene LRRs across samples. Although it is tempting to 

quantify similarity of tumor and cell line CNA profiles by using a Pearson correlation 

incorporating all genes, the strong association between LRR values for genomically proximal 

genes invalidates the required data independence assumptions, as can be seen by the very 

obvious paths and curve patterns on the tumor vs. cell line LRR scatterplot. Instead, we used a 

sampling approach, randomly selecting one gene from each chromosome and correlating the 

resulting 22 tumor/cell line pairs of LRR values. This exercise was repeated 1,000 times, 

yielding the strongly positive distribution of correlation coefficients with a peak around 0.7 (Fig 

S1A). 

 

RNAseq 

RNA (1 ug) from each sample was reverse transcribed into cDNA by using the Illumina 

TruSeq Stranded mRNA kit. Libraries were sized on an Agilent Bioanalyzer, and their 

concentrations were validated by qPCR. Six different libraries were normalized to 10nM and 

pooled, 13pM of pooled libraries were loaded onto an Illumina cBot for cluster generation, and 

the flow cell was subjected to 50-cycles of paired-end sequencing on an Illumina HiSeq 2000. 

Genomic alignment was performed with STAR  (v2.3.0) (Dobin et al., 2013), using  default 
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parameters, except that –out SAMstrandField was set to intronMotif. The median number of 

reads/sample was 45M (min. 18M, max 160M). Reads (average 47M/cell line) were aligned to 

the NCBI Build 37 reference human genome, using Gencode V19 transcript models. The median 

percentage of aligned reads was 97% (min 93%, max 98%). Gene expression levels were 

estimated with Cufflinks (v.2.2.1) (Trapnell et al. 2010), using default parameters and the 

Gencode V19 GTF file. All resulting cufflinks output files were merged using a bespoke script 

written in R (v.3.0.3). 

 

Targeted sequencing 

DNA for 126 genes (1.264Mbp) mutated >3% frequency in breast or ovarian carcinoma 

was captured using Agilent SureSelect XT. For target capture, 750ng of a library generated from 

DNA (3ug) from each sample was hybridized for 24hrs (Agilent Custom Design 059771). 

Enriched libraries were sized, and concentrations were validated as above. Libraries from 41 and 

42 cell lines, respectively, were normalized to 10nM and pooled, and 9 nmoles of each pool was 

loaded onto an Illumina cBot for cluster generation, and subjected to 100 paired-end sequencing 

cycles on an Illumina HighSeq 2000. FASTQ files were generated using Illumina CASAVA 

(v1.8.2) software. Sample quality was assessed by using the FASTQC v. 0.10.1 software 

package. Reads were aligned to the hg19 Human reference genome using BWA-MEM (v0.7.7), 

with an average read-depth of 430/site. Alignment quality was assessed using BAMQC (v2014-

030-21), followed by marking of duplicates (Picard v0.1.19), indel realignment, base quality 

score recalibration and variant calling using HaplotypeCaller (GATK v3.0.0, dbSNP v138). 

Variants were filtered to a minimum depth of 10 and a quality by depth (QD) of 2. All variants 

were annotated by using Annovar (v2013-08) with its default set of databases, with inclusion of 
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the COSMIC (v68) and Clinvar (v2013-11-05) databases. These files were converted into HTML 

for ease of viewing and analysis. To find variants of interest, we created custom scripts in PERL 

that filter all annotated variant files for changes that affect coding regions. Variants were filtered 

to include only those found to have matches in COSMIC or Clinvar (designated “pathogenic”) 

and to have a minor allele frequency of 0.2. 

 

miRNA analysis 

Expression of miRNAs was assessed by using the nCounter® Human V2 miRNA Assay 

Kit (Cat# GXA-MIR2-48). Assays (200 ng total RNA) followed the standard protocol, which 

enables multiplexed direct digital counting of miRNAs. Sample preparation involved 

multiplexed annealing of specific tags (miRtags) to target miRNAs, ligation, and enzymatic 

purification to remove unligated tags. For hybridizations, 5 µL of each miRNA multiplex assay 

were mixed with 20 µL NanoString nCounter reporter probe mix and 5 µL capture probe mix (30 

µL total volume), and then incubated at 65°C for 18-24 hrs. Post-hybridization samples were run 

on the nCounter analysis system, images were processed and barcode counts were tabulated in 

comma separated value (CSV) format. 

Data were received in three batches, and normalized using the positive control method 

and the six positive controls provided in the kit. Exploratory clustering of the data revealed 

prominent batch effects, which were corrected using ComBat (Johnson et al., 2007). Subsequent 

clustering revealed no visible batch-effects. 

 

Cell line subtyping 

Intrinsic (PAM50) 
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Three signatures for centroid-based classification of breast cancer into intrinsic subtypes 

(Hu et al., 2006; Parker et al., 2009; Sorlie et al., 2003) were obtained from Supplementary 

Materials published by Wiegelt (Weigelt et al., 2010). Expression of each gene in the classifier 

was median-centered across cell lines prior to classification. For each of the three signatures, 

Pearson correlation was used to match each cell line to an intrinsic subtype, defined as the 

subtype with the highest associated correlation coefficient. If all subtypes had a correlation of 

less than 0.1, the cell line was not classified. A majority vote among the three classifiers was 

used to assign a consensus intrinsic subtype to each cell line. In the few cases where each 

signature predicted a different subtype, the PAM50 classification was used.  

 

Neve (luminal/basal A/basal B) subtypes 

Neve et al. derived signatures that classify breast cancer cell lines into luminal, basal A 

and basal B subtypes (Neve et al., 2006). These signatures consist of 305 unique Affymetrix 

U133plus2 probe sets mapping to 240 unique genes. To classify our cell lines using these 

signatures, we initially extracted expression values for 230 genes overlapping with the signature, 

and, following the Neve methodology, we subjected the expression data to hierarchical clustering 

by using average linkage and the Pearson correlation distance metric. Although this approach 

clearly identified luminal and basal lines, it failed to cleanly subdivide the basal cluster into basal 

A and B classes.  

Instead, we found that three-component NMF (Lee and Seung, 1999; Lee and Seung, 

2001) clustering of the top 10% (or the top 5% or 20%) of genes with highest expression 

variance clearly separated cell lines of known subtype into luminal, basal A and basal B clusters. 

Therefore, we used NMF clustering to assign the remaining cell lines. For the subtype analyses 
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presented in Figure 3D-3E, and given the distinct underlying biology, high HER2 expression 

(see below) was used to further distinguish “HER2+” cell lines among the luminal group. Note 

that “HER2+” was not part of the original Neve classification. 

 

Receptor high/low expression status 

We used the R mixtools package (Benaglia et al., 2009) to fit two-component Gaussian 

mixture (not mixed-effect) models to classify ERBB2 (HER2), ESR1 (ER), PGR (PR), and AR 

(AR) expression into high and low classes. AR, ESR1 and PGR were not expressed above the 

noise level (FPKM > 0.1) in a substantial fraction of cases. These values are clearly non-

Gaussian, and a large number of cell lines assigned the same (log-) FPKM value would lead to 

distorted Gaussian model fits. We therefore defined cell lines with a noise-level expression value 

as having a low receptor status, and omitted these samples from the mixture model fitting for that 

receptor. 

 

Assignment of receptor (HER2/ESR1/PGR) status 

After determining receptor high/low expression, samples with high HER2 were assigned 

to the HER2+ subtype. Of the remaining samples, those with high ESR1 or PGR were assigned 

to the ER subtype. The remaining samples were classified as triple negative (TNBC). 

 

Claudin-low subtyping 

Following the classification approach of Prat (Prat et al., 2010), expression data were 

extracted for the 1920 “intrinsic” gene list published by Parker (Parker et al., 2009). In total, 

1677 genes matching the intrinsic list by symbol were included. This list was filtered further to 
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remove non-expressed genes, and the result was hierarchically clustered by Pearson correlation. 

The clusters were examined to identify the sub-tree containing previously identified claudin-low 

cell lines. Other cell lines in the same sub-tree were then defined as claudin-low. 

 

Lehmann TNBC classification  

The Lehmann TNBC subtype (Lehmann et al., 2011) was assigned by using the 

TNBCType web server (Chen et al., 2012) on the 44 cell lines identified as TNBC by the 

aforementioned three-receptor classification. 

 

Curtis integrative subyping 

The integrative subtype signatures (Curtis et al., 2012) comprise 10 class-specific 

centroids, each with values for 715 expression and 39 copy number Illumina array probes. These 

probes were mapped to genes using the accompanying annotations, resulting in 607 unique genes 

for expression, and 39 for copy number. We extracted the corresponding per-gene expression 

(log-FPKM) and copy number (LRR) values from our data. Because two data types were 

included in the same centroid, gene-specific expression or copy number data were median-

centered and rescaled using the standard deviation across samples. In cases where multiple 

Illumina probes for the same gene were included in the published signature, per-gene values 

from our data were duplicated, so that each Illumina probe for the same gene was assigned the 

same values across our cell lines. Cell line values were then compared to the published centroids 

by using Pearson correlation, and the integrative cluster was defined as the centroid yielding the 

highest correlation coefficient. Copy number LRR data were not available for 3 of our cell lines 

(HCC1395, SUM229, ZR7530). As copy number probes accounted for only 5% of all Integrative 
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cluster probes, we assigned subtypes to these lines using only the expression portion of the 

signature. 

 

Subtype DE analyses 

 For each of the subtypes described above, all cell lines were dichotomized to one specific 

class (e.g., luminal) or another, and siMEM analyses were performed. For the Lehmann TNBC 

subtypes, siMEM analyses were restricted to the set of 44 TNBC cell lines. Genes were removed 

from these analyses if they were only expressed above noise levels (defined as FPKM > 0.1) in < 

5 cell lines. Our aim was to remove genes showing substantial dropout differences despite not 

being expressed, which strongly suggests off-target effects. This filtering does not apply to the 

expression vs. essentiality analysis (detailed below). Expression filtering also was not performed 

for analyses where the overall number of predictions is of primary interest, such as the pairwise 

tissue comparison overview (Fig S3C). 

 

Expression vs. essentiality analysis 

Genes expressed above noise levels (FPKM > 0.1) in less than 20% (15/77) cell lines 

were excluded from this analysis, as were those whose expression varies little across cell lines 

(expression standard deviation < 0.5). Per-gene expression log-FPKM values were median-

centered prior to siMEM analysis.  

 

Copy gain- and loss-associated DE analyses 

We first dichotomized the per-gene copy number results into gain (or loss) and other 

classes. A gene was analyzed provided a minimum of 3 cell lines fell into the gain (or loss) 
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category. Each gene was then analyzed using siMEM to determine whether its essentiality is 

significantly associated with copy status. 

 

Comparing copy loss DE predictions to CYCLOPS and STOP/GO genes 

To determine whether our predictions agreed with previously identified CYCLOPS genes 

(Nijhawan et al., 2012), we obtained the list of 6,084 genes examined in the original report, and 

matched them to genes in our copy loss vs. essentiality analysis. This comparison resulted in a 

4,293 gene overlap. Following the CYCLOPS analysis, we used a more permissive FDR < 0.25 

significance threshold, and required that a gene become more essential in samples with copy 

loss. From the overlapping gene list, we predicted 114 significant genes. Forty-nine (49) are 

predicted CYCLOPS genes, with 11 of these genes predicted as significant in both analyses 

(Fisher’s Exact Test p = 3.6 x 10-8, odds ratio=11.6; 95% CI 5.2-24). 

We also obtained the published list of STOP/GO genes (Solimini et al., 2012). Matching 

these genes, identified by symbol, to our data resulted in 1,058 STOP and 682 GO genes. Using 

a cutoff of FDR < 0.25 to identify significant genes, we found that 23/1,058 STOP genes were 

significantly more essential in copy loss lines, whereas 62/682 GO genes satisfied the same 

criterion, resulting in a GO/STOP odds ratio of 4.5 (GO/STOP = (62/620) / (23/1035)). 

We applied a sampling with replacement bootstrap approach (Efron and Tibshirani, 1994) 

to determine the significance and 95% confidence interval for the odds ratio. We separately 

sampled with replacement from the 1,058 STOP genes and 682 GO genes, tabulated the number 

of significant genes in each sample, and calculated the resulting odds ratio. This process was 

repeated 100,000 times, producing a corresponding number of bootstrap odds ratios. The 

logarithms of these ratios were calculated, and the resulting distribution of log-ratios was verified 
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to be symmetric and centered at log(4.5). To determine whether the observed GO/STOP ratio is 

significantly > 1 (i.e., log-ratio > 0), the number of bootstrap log-ratios smaller or equal to 0 was 

counted, resulting in a bootstrap p-value < 0.00001. The 95% confidence interval for the 

observed ratio of 4.5 was obtained by using the 2.5th and 97.5th percentiles of the bootstrap log-

ratio distribution, and converted to the exponential to obtain the equivalent interval for the ratio.  

 

METABRIC and ISAR region trans-DE analyses 

Breast CNA regions associated with expression changes in trans were identified from the 

METABRIC dataset (Curtis et al., 2012). Using genomic coordinates provided for these regions, 

genes were assigned to each by testing for at least partial coordinate overlap. The LRR values of 

each gene of a region were then averaged to obtain a single LRR per region (per cell line). The 

region-specific LRR value was discretized, with cutoffs of +/- 0.2 indicating gains and losses, 

respectively. Intermediate values were considered copy-neutral. 

We then performed DE analyses for each METABRIC region, examining essentiality 

changes associated with copy gains and losses (each vs. copy-neutral). A minimum of three cell 

lines with gains or losses was required for each analysis. The above analysis was repeated for the 

83 regions of focal gain identified by the ISAR algorithm (Sanchez-Garcia et al., 2014). Plots 

illustrating the top METABRIC region DE predictions were produced using CIRCOS software 

v0.67 (Krzywinski et al., 2009). 

 

Testing expression changes for trans-DE genes 

Our goal was to test the extent to which expression and essentiality changes co-occur in 

gain vs. normal, and separately, in the copy loss vs. normal, trans-DE analyses. For each of the 
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two analyses, we extracted the list of differentially essential genes (FDR < 0.1) for every Curtis 

region, and checked differential expression between copy gain and normal (or copy loss and 

normal) using a Wilcoxon RankSum test. Once this test was performed for all genes from all 

regions, p-values were FDR-adjusted, and the number of genes with expression FDR < 0.1 were 

counted. 

From a total of 1,450 genes differentially essential in the METABRIC copy gain vs. 

normal analysis (for any region), 32 genes with siMEM FDR < 0.1 also showed differential 

expression FDR < 0.1. To assess the overlap significance, we determined how many genes met 

the FDR < 0.1 threshold for each region-specific analysis. To this end, we randomly picked an 

identical number of genes from that analysis, and tested whether those genes were differentially 

expressed at FDR < 0.1 using the Wilcoxon test. This process was repeated 1,000 times. The 

observation of 32 genes was statistically significant (permutation p=0.003; mean expected by 

chance 14.5). However, this resulted in only ~2-fold enrichment above random background, and 

only accounted for ~2% of all DE genes. Thus, regardless of statistical significance, co-occurring 

changes in expression and essentiality arose only in a small fraction of trans-DE genes. 

For copy loss vs. normal analysis, 1,108 genes were found to be differentially essential, 

with 29 genes both differentially essential and expressed (permutation p < 0.001, mean expected 

by chance 11.1). 

 

Tissue-specific DE 

Our previously published ovarian (N=15) and pancreatic (N=28) cancer screens were 

used in conjunction with the complete set of breast screens in the current study to perform all 

pairwise DE analyses between breast luminal, breast basal, ovarian and pancreatic lines. As 
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previously noted, for these analyses, results were not filtered to remove mostly non-expressed 

genes. We choose to include these in our totals because differentially essential, but non-

expressed, hairpins, though “off target,” are still targeting some gene in the genome. Therefore, 

including these hairpins in the analysis increases power. 

 

Comparisons to drug sensitivity data 

 We obtained the per cell line –log10IC50 values for 90 drugs previously profiled on breast 

cancer lines (Daemen et al., 2013). For each drug, the negative –log10IC50 values for cell lines 

also profiled in the present study were split into quartiles, with cell lines in the first and fourth 

representing drug-resistant and -sensitive lines, respectively. Cell lines with –log10IC50 values in 

the second and third quartiles were excluded from the analysis of each drug. In a few cases, 

identical –log10IC50 values are assigned to >25% of cell lines, and all lines with identical values 

were included in the analysis. 

 Sensitive vs. resistant DE analyses were performed for each drug, followed by GSEA as 

described above. GSEA results were parsed to obtain the list of all significant pathways for each 

of the 90 analyses. To group and explore pathway similarity between drugs, pathway –

log10(FDR) significance values were hierarchically clustered using Ward’s method and 

correlation distance metric. The 50% of pathways with lowest –log10(FDR) variances across the 

drug analyses were removed prior to clustering.  

 

Subtype-specific pathway and network analyses 

Enriched pathways were computed with g:Profiler (Reimand et al., 2011) for the subtype-

specific analyses (Fig. 3D), using biological processes from Gene Ontology and pathways from 
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KEGG and Reactome. For the protein-protein interaction (PPI) analysis (Fig. 3E), the human PPI 

network was retrieved from BioGRID version 3.2.114 (Chatr-Aryamontri et al., 2015), and 

filtered to extract physical PPIs. Results were visualized using Cytoscape with the Enrichment 

Map plugin (Merico et al., 2010). Node size corresponds to the number of interactions (node 

degree). 

 

GSEA analysis and enrichment map visualization 

 Prior to gene set analysis, all genes in DE analyses were ranked using the equation:  

 

This score highly ranks genes whose essentiality increases significantly in the condition of 

interest, while those with decreasing essentiality occupy the lowest ranks. GSEA (Mootha et al., 

2003; Subramanian et al., 2005) command-line software (v2.2) was used in pre-ranked analysis 

mode, with 1000 permutations, exclusion of small (<15) and large (>500) gene sets, and a 

weighted scoring scheme. Gene sets were from v5.0 of MSigDB (Subramanian et al., 2005). All 

gene sets from the Chemical and Genetic Perturbations, Canonical Pathways and GO MSigDB 

categories were included in our analysis. 

Enrichment map visualizations for GSEA analysis results were generated using 

Cytoscape (Shannon et al., 2003) v3.2 with the Enrichment Map (Merico et al., 2010) plugin, 

using default filters for GSEA analysis results: p-value < 0.005, FDR < 0.05, edges are shown 

between gene set nodes if the two gene sets have an overlap metric of 0.5 or greater. 

 

DGIdb 

scoregene = −sign(magnitudegene )*log10(P − valuegene )
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The Drug Gene Interaction Database (DGIdb) (Griffith et al., 2013) was used to define 

lists of “druggable” targets in the GPCR, Growth Factor, Histone Modification, Hormone 

Activity, Ion Channel, Kinase, Methyl Transferase, Phospholipase, Surface and Transporter 

categories. For the Surface category, a bespoke Java program (available from K.R.B. upon 

request) was used to query Ensembl and extract the number of transmembrane and extra-cellular 

domains for each gene. Surface genes were those with at least one of each domain. For genes in 

each druggable category, the subset with a DGIdb-annotated drug interaction was also extracted. 

 

Immunoblots 

Transfected cells were lysed in RIPA buffer (10 mM Na phosphate [pH 7.0], 150 mM 

NaCl, 1.0% NP-40, 0.1% SDS, 1.0% Na deoxycholate, 10 mM NaF, 2 mM EDTA, 

supplemented with a protease inhibitor cocktail), and incubated on ice for 20 minutes. Lysates 

were clarified by centrifugation for 15 minutes at maximum speed (14,000 rpm) at 4°C in a 

tabletop centrifuge (Eppendorf 5424 R), resolved by SDS-PAGE, and transferred onto PVDF 

membranes. The following antibodies were used for blotting, all at concentrations recommended 

by their manufacturer: BRD4 (Bethyl), ERK2 (Santa Cruz), cleaved Capsapse-3 (Cell Signaling), 

p21 (Cell Signaling), HA (Covance), MYC (Cell Signaling), and PARP1 (Cell Signaling). 

Infrared fluorescent-conjugated secondary antibodies (at their manufacturer-recommended 

concentrations), and the Odyssey infrared imaging system (LI-COR biotechnology, NE) were 

used for detection. 

 

Flow cytometry 
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For Annexin V/SYTOX blue experiments, cells were resuspended in 1X Annexin V 

binding buffer (BD), supplemented with 2% serum, Annexin V-PE (1/300), and SYTOX blue. 

Cells were incubated for 20 minutes in the dark, and then analyzed on an LSR II Flow Cytometer 

(Becton-Dickson, Mountain View, CA). Data were analyzed with FlowJo software (TreeStar, 

Ashland, OR). For cell cycle analysis, 1x106 cells were fixed for 1 hour at 4°C with 70% ethanol, 

and washed once with ice-cold 1xPBS. Cell pellets were digested with RNase A (0.5mg/ml) for 

one hour, after which 10ul of a 1mg/ml PI solution were added to the cell suspension. Stained 

cells were analyzed by flow cytometry, as above. 

 

qRT-PCR 

Cells (30-50,000) were seeded on 24-well plates, and 24 hours later, were transfected 

with Dharmacon SMARTPOOL siRNAs (10nM) using Lipofectamine RNAimax (Life 

Technologies). Media were changed the following day, and cells were allowed to proliferate for 

24 hours before lysis in RLT buffer (Qiagen mRNeasy kit). RNA was isolated following the 

manufacturer’s instructions, quantified by Nanodrop, reverse-transcribed by using the 

Superscript First-Strand synthesis kit (Life Technologies), and quantified by using SYBR green 

(Life Technologies) on a CFX96 (Bio-Rad). 
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