Supporting Information

Water as an agent for the morphology modification of metal oxala te materials on the nanoscale: from sheets to rods

Minog Kim,¹ YooJin Kim,² Won Jong Kwon³ and Sungho Yoon,^{1,*}

Contents

I. Zinc oxalate (ZnC₂O₄) precursors

- A. Experimental information
- B. X-ray structure of $[Zn(C_2O_4)(EG)]$ compound (1)
- C. FT-IR spectra of the synthesized-samples
- D. TGA-DTA analysis of nanosheet-shaped [Zn(C₂O₄)(EG)] complex
- E. HR-TEM images of nanosheet-shaped [Zn(C₂O₄)(EG)] complex
- F. AFM analysis of nanorod-shaped [Zn(C₂O₄)(OH₂)₂] complex
- G. TGA-DTA analysis of nanorod-shaped $[Zn(C_2O_4)(EG)_x(OH_2)_v)]$ complex
- H. TGA-DTA analysis of nanorod-shaped [Zn(C₂O₄)(OH₂)₂] complex
- I. The corresponding geometric structure of nanorod-shaped $[Zn(C_2O_4)(OH_2)_2]$ complex
- J. Change of Zn-O distance, hydrogen bond distance and hydrogen bond angle

II. Cobalt oxalate (CoC₂O₄) precursors

- K. Experimental information
- L. SEM, XRD and TGA analyses of $[Co(C_2O_4)(EG)]$ complex and FT-IR spectra of the synthesized-samples
- M. SEM, XRD, HR-TEM, FTT and TGA analyses of nanorod-shaped $[Co(C_2O_4)(EG)_x(OH_2)_y]$ and nanorod-shaped $[Co(C_2O_4)(OH_2)_2]$

III. ZnO and Co₃O₄

- N. SEM, HR-TEM, FTT images and XRD graphs of the prepared-ZnO samples
- O. SEM, HR-TEM, FTT images and XRD graphs of the prepared-Co₃O₄

A. Experimental information

Materials

Oxalic acid (Aldrich, \geq 99.0%), zinc sulfate heptahydrate (Aldrich, \geq 99.0%) and cobalt sulfate heptahydrate (Aldrich, \geq 99.0%) were dehydrated at 200°C under vacuum overnight. Anhydrous ethylene glycol (Aldrich, 99.8%) and anhydrous tetrahydrofuran (Aldrich, \geq 99.9%) were used as received without further purification. Water was distilled twice. Molecular sieves (3 Å, Aldrich) were washed with acetone and vacuum-dried at 200°C before use. Ethanol (Daejung, 94%) was used.

Synthesis of nanosheet-shaped [Zn(C₂O₄)(EG)] complex (1)

Oxalic acid (1.00 mmol, $H_2C_2O_4$) was dissolved in ethylene glycol (15 mL), followed by the addition of zinc sulfate (1.00 mmol, ZnSO₄) and ca. 0.70 g 3Å molecular sieves. After stirring for 2 h, the white precipitate was washed with 33 mL of anhydrous tetrahydrofuran (THF) and isolated by centrifugation for 3 times (\leq 0.48 mmol of water). The obtained powder was dried in a vacuum oven at 60 °C overnight.

* Anhydrous THF was used in the consideration of the tough nature that azeotropic mixture is hard to be separated from water, even though the same phenomenon was observed upon using anhydrous ethanol. As a result of the study, it was observed that solvents with water excluded as much as possible, such as anhydrous methanol, anhydrous ethanol, and anhydrous THF, bring the same result.

Synthesis of nanorod-shaped [Zn(C₂O₄)(EG)_x(OH₂)_y] complex

Oxalic acid (1.00 mmol, $H_2C_2O_4$) was dissolved in ethylene glycol (15 mL), followed by the addition of zinc sulfate (1.00 mmol, ZnSO₄) and ca. 0.70 g 3Å molecular sieves. After stirring for 2 h, the white precipitate was washed with 33 mL of ethanol (94%) and isolated by for 3 times (\leq 260 mmol of water). The obtained powder was dried in a vacuum oven at 60 °C overnight.

Synthesis of nanorod-shaped [Zn(C₂O₄)(OH₂)₂] complex

Oxalic acid (1.00 mmol, $H_2C_2O_4$) was dissolved in ethylene glycol (15 mL), followed by the addition of zinc sulfate (1.00 mmol, ZnSO₄) and ca. 0.70 g 3Å molecular sieves. After stirring for 2 h, the

white precipitate was washed with 33 mL of ethanol (94%) and isolated by centrifugation for 4 times (\leq 350 mmol of water). The obtained powder was dried in a vacuum oven at 60 °C overnight.

Synthesis of porous ZnO structures

The as-prepared zinc oxalate structures were annealed in air at 500 $^{\circ}$ C for 2 h at a heating rate of 2 $^{\circ}$ C/min for converting to the porous ZnO structures.

Characterization

The morphologies of the as-prepared products were characterized by field emission scanning electron microscopy (a Hitachi FE-SEM S-4800). The Fourier transform-infrared (FT-IR) spectra were measured on JASCO FT/IR 460 PLUS using the KBr pellet method at room temperature. Thermogravimetric analysis/differential thermal analysis (TGA/DTA) was performed on TA instruments STA-1500 under N₂ gas (100mL/min) from room temperature to 600 $^{\circ}$ C at a heating rate of 10 $^{\circ}$ C/min. The thickness of nanorod-shaped [Zn(C₂O₄)(OH₂)₂] was determined by atomic force microscopy (AFM) (Seiko instrument model SPA 400) operated in non-contact mode (Si Cantilever). High-resolution transmission electron microscopy (HRTEM) images were taken on JEOL JEM-2100F. The nanosheet-shaped [Zn(C₂O₄)(EG)] powder particles were dispersed in THF (99%), dropped on an ultrathin holey carbon support film, and then dried in air. The rod-shaped [Zn(C₂O₄)(OH₂)₂] powder particles were ultrasonically dispersed in ethanol, dropped on a copper grid and then dried in air. Crystal structures of the as-prepared products were characterized by powder X-ray diffraction (XRD) on a Bruker D8 Focus X-ray powder diffractometer using CuK α radiation. BET surface area and N₂ adsorption–desorption measurements were conducted at 77 K using an automated gas sorption system (Belsorp II mini, BEL Japan,Inc.,).

B. X-ray structure of [Zn(C₂O₄)(EG)] compound (1)

Fig. S1 Illustrated-structures of **1** having nanosheet shape (white: hydrogen, gray: carbon, red: oxygen, and blue: zinc): (a) single unit of $[Zn(C_2O_4)(EG)]$, (b) *bc* plane (green-colored lines: H-bonding interactions) and (c) *ab* plane.

Fig. S2 FT-IR spectra of (a) nanosheet-shaped $[Zn(C_2O_4)(EG)]$ complex, (b) nanorod-shaped $[Zn(C_2O_4)(EG)_x(OH_2)_y]$ complex and (c) nanorod-shaped $[Zn(C_2O_4)(OH_2)_2]$.

D. TGA-DTA analysis of nanosheet-shaped [Zn(C₂O₄)(EG)] complex

Tomporature (°C)	Endothermic neals $\binom{\alpha}{C}$	Weight loss		Assainmont
Temperature (C)	Endothernine peak (C)	Theoretical (%)	Observed (%)	Assginnent
200~299	265	28.81	27.75	EG
345~440	403	33.42	32.19	CO, CO_2
		37.77	40.06	ZnO

Fig. S3 TGA-DTA analysis of nanosheet-shaped $[Zn(C_2O_4)(EG)]$ complex (Black: TGA, Blue: DTA).

E. HR-TEM images of nanosheet-shaped [Zn(C₂O₄)(EG)] complex

Fig. S4 High-resolution transmission electron microscopy (HRTEM) images of stacked several thin sheets consisting of $[Zn(C_2O_4)(EG)]$.

F. AFM analysis of nanorod-shaped [Zn(C₂O₄)(OH₂)₂] complex

Fig. S5 Atomic-force microscopy (AFM) image and thickness profiles of nanorod-shaped $[Zn(C_2O_4)(OH_2)_2]$ indicate that the average thickness is about 30 nm.

G. TGA-DTA analysis of nanorod-shaped [Zn(C₂O₄)(EG)_x(OH₂)_y)] complex

Temperature (°C)	Endothermic peak ($^{\circ}$ C)	Weight loss Observed (%)	Assginment
94~184	152	5.85	(OH ₂) _y
184~291	246	19.68	(EG) _x
340~426	401	34.07	CO, CO_2
		40.39	ZnO

Fig. S6 TGA-DTA analysis of nanorod-shaped $[Zn(C_2O_4)(EG)_x(OH_2)_y)]$ complex (Black: TGA, Blue: DTA).

H. TGA-DTA analysis of nanorod-shaped [Zn(C₂O₄)(OH₂)₂] complex

Tommonotumo (°C)	Endothermic neals $(^{\circ}C)$	Weight loss		Assainmont
Temperature (C)	Endothermic peak (C)	Theoretical (%)	Observed (%)	Assginnent
93~207	156	19.02	17.02	2(OH ₂)
363~442	401	38.02	36.29	CO, CO_2
		42.96	42.49	ZnO

Fig. S7 TGA-DTA analysis of nanorod-shaped $[Zn(C_2O_4)(OH_2)_2]$ complex (Black: TGA, Blue: DTA).

I. The corresponding geometric structure of nanorod-shaped [Zn(C₂O₄)(OH₂)₂] complex

Fig. S8 (a) The geometric structure of $[Zn(C_2O_4)(OH_2)_2]$ corresponding with TEM image (Fig. 2f), (b) one repeating-unit of $[Zn(C_2O_4)(OH_2)_2]$; red line indicates the (021) face, and (c) when viewed from the black arrow direction of (b), two different $[Zn(C_2O_4)(OH_2)_2]$ chain interact with each other by H-bond.

	$[Zn(C_2O_4)(EG)]^a$	$\left[\operatorname{Zn}(\operatorname{C_2O_4})(\operatorname{OH_2})_2\right]^{\mathrm{b}}$
Unit cell	Orthorhombic	Monoclinic
Zn-O (Å)	2.066(4)	2.118
0-H0 ⁱ (Å)	1.88(2)	2.008
О-Н····О ^і (°)	170(7)	157.01
O-H····O ⁱⁱ (Å)	1.91(2)	2.085
O-H····O ⁱⁱ (°)	169(6)	158.78

J. Change of Zn-O distance, hydrogen bond distance and hydrogen bond angle

^a Data adapted from reference [S1], ^b Modified from reference [S2]

Table S1Zn-O distance, hydrogen bond distances and the hydrogen bond angles caused by changeof unit cell structure from orthorhombic to monoclinic.

K. Experimental information

Synthesis of nanosheet-shaped [Co(C₂O₄)(EG)] complex

Oxalic acid (1.00 mmol, $H_2C_2O_4$) was dissolved in ethylene glycol (15 mL), followed by the addition of cobalt sulfate (1.00 mmol, $CoSO_4$) and ca. 0.70 g 3Å molecular sieves. After stirring for 2 h, the white precipitate was washed with 33 mL of anhydrous tetrahydrofuran (THF) and isolated by centrifugation for 3 times (≤ 0.48 mmol of water). The obtained powder was dried in a vacuum oven at 60 °C overnight.

* Anhydrous THF was used in the consideration of the tough nature that azeotropic mixture is hard to be separated from water, even though the same phenomenon was observed upon using anhydrous ethanol. As a result of the study, it was observed that solvents with water excluded as much as possible, such as anhydrous methanol, anhydrous ethanol, and anhydrous THF, bring the same result.

Synthesis of nanorod-shaped [Co(C₂O₄)(EG)_x(OH₂)_y] complex

Oxalic acid (1.00 mmol, $H_2C_2O_4$) was dissolved in ethylene glycol (15 mL), followed by the addition of cobalt sulfate (1.00 mmol, $CoSO_4$) and ca. 0.70 g 3Å molecular sieves. After stirring for 2 h, the white precipitate was washed with 33 mL of ethanol (94%) and isolated by for 3 times (\leq 260 mmol of water). The obtained powder was dried in a vacuum oven at 60 °C overnight.

Synthesis of nanorod-shaped [Co(C₂O₄)(OH₂)₂] complex

Oxalic acid (1.00 mmol, $H_2C_2O_4$) was dissolved in ethylene glycol (15 mL), followed by the addition of cobalt sulfate (1.00 mmol, $CoSO_4$) and ca. 0.70 g 3Å molecular sieves. After stirring for 2 h, the white precipitate was washed with 33 mL of ethanol (94%) and isolated by centrifugation for 4 times (\leq 350 mmol of water). The obtained powder was dried in a vacuum oven at 60 °C overnight.

Synthesis of porous Co₃O₄ structures

The as-prepared cobalt oxalate structures were annealed in air at 500 $^{\circ}$ C for 2 h at a heating rate of 2 $^{\circ}$ C/min for converting to the porous Co₃O₄ structures.

L. SEM, XRD and TGA analyses of $[{\rm Co}({\rm C_2O_4})({\rm EG})]$ complex and FT-IR spectra of the synthesized-samples

Fig. S9 SEM images of nanosheet-shaped $[Co(C_2O_4)(EG)]$ complex.

Fig. S10 XRD patterns of (a) nanosheet-shaped $[Zn(C_2O_4)(EG)]$, (b) single crystal $[Zn(C_2O_4)(EG)]$, and (c) nanosheet-shaped $[Co(C_2O_4)(EG)]$: the synthesized- $[Co(C_2O_4)(EG)]$ has the same XRD pattern as the synthesized- $[Zn(C_2O_4)(EG)]$ and the different intensities are attributed to different crystal size [S3].

Fig. S11 FT-IR spectra of (a) nanosheet-shaped $[Co(C_2O_4)(EG)]$ complex, (b) nanorod-shaped $[Co(C_2O_4)(EG)_x(OH_2)_y]$ complex, and (c) nanorod-shaped $[Co(C_2O_4)(OH_2)_2]$ complex.

Tomore another (°C)	Weigh	Assainmont		
Temperature (C)	Theoretical (%)	Observed (%)	Assginnent	
~328	29.70	30.20	EG	
328~360	38.40	38.43	Co_3O_4	

Fig. S12 TGA-DTA analysis of nanosheet-shaped $[Co(C_2O_4)(EG)]$ complex (Black: TGA, Blue: DTA).

M. SEM, XRD, HR-TEM, FTT and TGA analyses of nanorod-shaped $[Co(C_2O_4)(EG)_x(OH_2)_y]$ and nanorod-shaped $[Co(C_2O_4)(OH_2)_2]$

Fig. S13 SEM images of nanorod-shaped $[Co(C_2O_4)(EG)_x(OH_2)_y]$ and $[Co(C_2O_4)(OH_2)_2]$ complex.

Fig. S14 XRD patterns of (a) nanosheet-shaped $[Co(C_2O_4)(EG)]$, (b) nanorod-shaped $[Co(C_2O_4)(EG)_x(OH_2)_y]$, and the well-known $[Co(C_2O_4)(OH_2)_2]$ (JCPDS 25-0250): Blue lines indicate $[Co(C_2O_4)(EG)]$ complex and Red lines indicate $[Co(C_2O_4)(OH_2)_2]$ complex. **Fig. S13** indicates that adding OH₂ to $[Co(C_2O_4)(EG)]$ renders the ligands, EG, switched to OH₂.

Temperature $(^{\circ}C)$	Endothermic peak (°C)	Weight loss Observed (%)	Assginment	Ratio
125 ~ 215	183	4.85	OH ₂	1
237 ~ 306	271	22.58	EG	1.35
		39.67	Co_3O_4	-

Fig. S15 TGA-DTA analysis of nanorod-shaped $[Co(C_2O_4)(EG)_x(OH_2)_y]$ complex (Black: TGA, Blue: DTA).

Temperature	Endothermic peak (°C)	Weight loss		Assainment
(°C)		Theoretical (%)	Observed (%)	Assgimment
143 ~ 231	180	19.69	18.64	OH ₂
		43.87	44.32	Co_3O_4

Fig. S16 TGA-DTA analysis of nanorod-shaped $[Co(C_2O_4)(OH_2)_2]$ complex (Black: TGA, Blue: DTA).

Fig. S17 (a) TEM, (b) HR-TEM, (b, inset) FTT images of nanosheet-shaped $[Co(C_2O_4)(EG)]$, and (c) the $[Co(C_2O_4](EG)]$ molecular structure is overlaid on the image's (043) surface obtained by HR-TEM (white : hydrogen, grey : carbon, red : oxygen, and purple : cobalt). The structure consisting the surface is interacted by the H-bond between EG and Oxalate in the same way as $[Zn(C_2O_4)(EG)]$.

Fig. S18 (a) TEM, (b) HR-TEM, (b, inset) FTT images and (c) (144) face's molecular structure of nanorod-shaped $[Co(C_2O_4)(OH_2)_2]$ (grey : carbon, red : oxygen, purple : cobalt, and hydrogen atoms are omitted for clarity). The structure consisting the surface is interacted by the H-bond between OH₂ and Oxalate in the same way as $[Zn(C_2O_4)(OH_2)_2]$.

N. SEM, HR-TEM, FTT images and XRD graphs of the prepared-ZnO samples

Fig. S19 (a and b) SEM images, (c and d) TEM, HR-TEM and FTT-TEM images of nanosheetshaped ZnO from $[Zn(C_2O_4)(EG)]$ precursor, (e and f) SEM images, (g and h) TEM, HR-TEM and FTT-TEM images of nanorod-shaped ZnO from $[Zn(C_2O_4)(OH_2)_2]$ precursor, and (i) XRD patterns of ZnO samples; (a') nanosheet-shaped ZnO from $[Zn(C_2O_4)(EG)]$ precursor, (b') nanorod-shaped ZnO from $[Zn(C_2O_4)(OH_2)_2]$ precursor and JCPDS No. 36-1451 of ZnO.

Fig. S20 (a and b) SEM images, (c and d) TEM, HR-TEM and FTT-TEM images of nanosheetshaped Co_3O_4 from $[Co(C_2O_4)(EG)]$ precursor, (e and f) SEM images, (g and h) TEM, HR-TEM and FTT-TEM images of nanorod-shaped Co_3O_4 from $[Co(C_2O_4)(OH_2)_2]$ precursor, and (i) XRD patterns of Co_3O_4 samples; (a') nanosheet-shaped Co_3O_4 from $[Co(C_2O_4)(EG)]$ precursor, (b') nanorod-shaped Co_3O_4 from $[Co(C_2O_4)(OH_2)_2]$ precursor and JCPDS No. 43-1003 of Co_3O_4 .

P. BET analysis of the prepared-metal oxide samples

Fig. S21 N_2 adsorption-desorption isotherms of samples (a) nanosheet-shaped ZnO and nanorod-shaped ZnO, and (b) nanosheet-shaped Co_3O_4 and nanorod-shaped Co_3O_4 .

References:

[S1] Tan, Z.-D., Tan, F.-J., Tan, B. & Zhang, C.-M. catena-Poly[(ethanediol- $\kappa^2 O, O'$)zinc]- υ -oxalato- $\kappa^4 O^1, O^2: O^1, O^2$]. *Acta Cryst.* **E68**, m868 (2012).

[S2] Giester, G. Syntheses and crystal structures of $Co_3(C_2O_4)(SeO_3)_2$ and $Zn(C_2O_4)\cdot 2H_2O$. Z. *Kristallogr* **212**, 720-723 (1997).

[S3] Inoue, M. & Hirasawa, I. The relationship between crystal morphology and XRD peak intensity on CaSO₄·2H₂O. J. Cryst. Growth. 380, 169-175 (2013).