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Table S1: Modularity Coactivation

Community Density |E.| V2|
0 0.122457 2486 202
1 0.311761 4167 164
2 0.321541 4090 160
3 0.342825 2131 112
Table S2: Modularity Resting state
Community Density |Ec| Vel
0 0.154097 3545 215
1 0.109951 1674 175
2 0.489336 5323 148
3 0.671313 3323 100




Table S3: Surprise Coactivation

Community Density |E.| Vel
0 0.491261 3626 122
1 0.482883 2948 111
2 0.553282 1298 69
3 0.388811 834 66
4 0.573077 447 40
5 0.458128 186 29
6 0.442029 122 24
7 0.394737 75 20
8 0.452632 86 20
9 0.397661 68 19
10 0.415205 71 19
11 0.379085 58 18
12 0.541667 65 16

Table S4: Surprise Resting State

Community Density |E.| Ve
0 0.653183 4586 119
1 0.755375 3162 92
2 0.543101 2224 91
3 0.495277 367 39
4 0.560317 353 36
5 0.616756 346 34
6 0.513228 194 28
7 0.525362 145 24
8 0.601307 92 18
9 0.454545 30 12
10 0.583333 21 9
11 0.678571 19 8
12 0.607143 17 8




Table S5: Abbreviation of brain regions.

Region Abbreviation
ACG Anterior Cingulate Gyrus
CAL Calcarine
CAU Caudate
CUN Cuneus
DCG Median cingulate and paracingulate gyri
FFG Fusiform Gyrs
HES Heschl Gyrus
HIP Hippocampus
IFGoperc Inferior Frontal Gyrus, opercular part
IFGtriang Inferior Frontal Gyrus, triangular part
INS Insula
10G Inferior Occipital Gyrus
IPL Inferior Parietal Gyrus
ITG Inferior Temporal Gyrus
LING Lingual Gyrus
MFG Middle Frontal Gyrus
MOG Middle Occipital Gyrus
MTG Middle Temporal Gyrus
ORBinf Inferior Frontal Gyrus, orbital part
ORBmid Middle Frontal Gyrus, orbital part
ORBsup Superior Frontal Gyrus, orbital part
ORBsupmed Superior Frontal Gyrus, medial orbital
PAL Globus Pallidum
PCG Posterior cingulate Gyrus
PCL Paracentra Lobule
PCUN Precuneus
PHG Parahippocampal Gyrus
PoCG Postcentral Gyrus
PreCG Precentral Gyrus
PUT Putamen
REC Rectus
ROL Rolandic Operculum
SFG Superior Frontal Gyrus
SFGmed Superior Frontal Gyrus, medial part
SMA Supplementary Motor Area
SMG Supramarginal Gyrus
SOG Superior Occipital Gyrus
SPG Superior Parietal Gyrus
STG Superior Temporal Gyrus
THA Thalamus
TPOmid Temporal Pole, Middle temporal Gyrus
TPOsup Temporal Pole, Superior temporal Gyrus




Algorithm 1: Pseudocode of the Surprise maximization algorithm.

Faaso(Q)

1 S« 00> Initialize Surprise to 0

2 D+ 0> Initialize disjoint set forest

3 for each vertex v in V[G]

4 do MAKE-SET(V)

5 E' < SORT-JACCARD(E) 1> Sort edges in decreasing order by Jaccard index
6 for each edge(u,v) € E’, > Taken in decreasing order by Jaccard index

7 do if FIND-SET(u) # FIND-SET(v)

8 then if SURPRISE(G, D U {(u,v)}) > S

9 D+ DU {(u,v)}
10 UNION(U,V) I> Merge the communities u and v belong
11 S = SURPRISE(G, D) > Update current Surprise

12 return D

MAKE-SET(x)
1 plx]+ =z
2 ranklz] + 0

LINK(z, y)

1 if rank[z] > rankly]

2 then ply] + =

3 else plx] <y

4 if rank[z] = rank[y]

5 then rankly] + rank[y] + 1

UNION(z, y)
1 LINK(FIND-SET(z),FIND-SET(y))

FIND-SET(z)

1 if = # p[x]

2 then plz] < FIND-SET(p[z])
3 return px]

SURPRISE(G, D)

me < 0 > Number of intracluster edges

pe < 0> Number of intracluster pairs of vertices

m < |E[G]| > Number of edges

D (lV[QG”) > Number of pairs of vertices

for each g in CONNECTED-COMPONENTS-SUBGRAPHS(D, G)
do mg < me + | Eg]|

pe + pe + (Vi

m p_E P—Pg'
8 return —log,, [ > (1)((pn)z—z)>
i=m¢ P
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Table S6: Normalized Mutual Information between partitions of the coactivation
network with Newman’s Modularity, Infomap, Reichardt and Bornholdt and
Surprise. We used the Fagso algorithm for Surprise maximization, the igraph
implementation of Infomap, the Brain Connectivity Toolbox implementation for
RB (community_-louvain.m function) and modularity_und.m for Modularity.
For each method the best solution over 100 repetitions was used to calculate
NMI.

Coactivation
NMI Modularity Surprise Infomap RB y=1.75
Modularity 1.00 0.61 0.56 0.61
Surprise 0.61 1.00 0.54 0.62
Infomap 0.56 0.54 1.00 0.59
RB~y=1.75 0.59 0.61 0.59 1.00

Table S7: Normalized Mutual Information between partitions of the Resting
state network with Newman’s Modularity, Infomap, Reichardt and Bornholdt
and Surprise. We used the Fagso algorithm for Surprise maximization, the
igraph implementation of Infomap, the Brain Connectivity Toolbox imple-
mentation for RB (community_louvain.m function) and modularity_und.m for
Modularity. For each method the best solution over 100 repetitions was used to
calculate NMI.

Resting State

NMI Modularity Surprise Infomap RB y=1.75
Modularity 1.00 0.52 0.70 0.66
Surprise 0.52 1.00 0.53 0.58
Infomap 0.70 0.53 1.00 0.68
RB v=1.75 0.66 0.58 0.68 1.00
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Figure S1: Percolation analysis for the coactivation matrix (A) and resting state
matrix (B).



Resting state
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Figure S2: Different Resting State networks were generated varying the bina-
rization threshold in a range that changed the number of edges up to the 15th
quantile of the edge weight distribution. This corresponds to threshold ranges
of 0.015-0.03 for the co-activation network, and 0.60-0.62 for the resting state
network. The resulting networks were partitioned by Susrprise maximization.
The value of Surprise, the Normalized Mutual Information between the result-
ing optimal partitions, the number of edges and the number of communities are

reported in panel A, B, C and D, respectively.
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Figure S3: Different coactivation networks were generated varying the bina-
rization threshold in a range that changed the number of edges up to the 15th
quantile of the edge weight distribution. This corresponds to threshold ranges
of 0.015-0.03 for the co-activation network, and 0.60-62 for the resting state
network. The resulting networks were partitioned by Susrprise maximization.
The value of Surprise, the Normalized Mutual Information between the result-
ing optimal partitions, the number of edges and the number of communities are

reported in panel A, B, C and D, respectively.



Resting State Coactivation

Figure S4: Partitions obtained with multiresolution Modularity (Reichardt and
Bornholdt method) for a value of the resolution parameter v = 1.75 for the
coactivation and resting state networks. Increasing the resolution parameter
improves detection of smaller modules, but breaks up larger ones, thus resulting
in relatively homogenous size distributions.
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Figure S5: Assessment of the effects of experimental error on the community
structure of the resting state network. Ten different graphs were generated by
adding noise to the off-diagonal elements of the adjacency matrix prior to the
binarization procedure. The amplitude of noise was chosen to randomly perturb
10% of the edges after binarization. Surprise maximization was applied to the
resulting graphs. In the left panel, we report the Normalized Mutual Informa-
tion (NMI) between the optimal partitions of each of the ten perturbed networks
and that of the original resting state network. The number of communities re-
trieved by FAGSO in each of the perturbed networks is reported in the right
panel. The graphs show that the partitions of the “noisy” graphs are consistent
and similar to those of the unperturbed network, with NMI scores close to 1
and almost constant numbers of communities. These results demonstrate that
Surprise maximization can retrieve the network’s community structure even in
the presence of substantial noise in the data.
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