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1. Supplementary Information S1 

 

1.1 Estimating bimanual synchronization model with the bGLS method 

 

The bGLS method provides a robust and efficient way to estimate the parameters of synchronization models1,2. The 

method is based on the standard generalized least squares approach3, modified to the specific structure of 

synchronization models2. We develop here a bimanual version of this method. 

We denote by 𝑂𝑡
𝑅 the subject response at time t.  We denote by 𝑂𝑡

𝑆 the reference stimulus at time t, that is either the 

metronome onsets (lead position) or the onsets of the adjacent partner to which the participant is synchronizing their 

movements. 

We denote by 𝑆𝑡,𝑅𝑡 and 𝐴𝑡 as the inter-stimulus ,inter-movement interval and asynchrony at time 𝑡: 𝑆𝑡  = 𝑂𝑡
𝑆  −

𝑂𝑡−1
𝑆 , 𝑅𝑡  = 𝑂𝑡

𝑅  − 𝑂𝑡−1
𝑅 , 𝐴𝑡  = 𝑂𝑡

𝑅  − 𝑂𝑡
𝑆 

The Vorberg and Wing model4, analyzed in Vorberg and Schulze 5, can be written in this notation as: 

(1) 𝑅𝑡+1   = (− 𝛼)𝐴𝑡  +   𝑡0 + 𝑇𝑡  +  𝑀𝑡 − 𝑀𝑡−1 

Where 𝑡0 is the base tempo, 𝑇𝑡 and 𝑀𝑡 are the timekeeper and motor variances respectively, and var(T) =

𝜎𝑇
2,  var(M) = 𝜎𝑀

2 . 

The model can be extended to bimanual movement, assuming that the timekeeper component is shared between 

hands, and that the motor variance of the two hands is uncorrelated. 

This can be written with the following equations: 

(2) 𝑅𝑡+1
𝐿 = (−𝛼)𝐴𝑡

𝐿 + 𝑡0 + 𝑇𝑡 + 𝑀𝑡
𝐿 − 𝑀𝑡−1

𝐿  

(3) 𝑅𝑡+1
𝑅 = (−𝛼)𝐴𝑡

𝑅 + 𝑡0 + 𝑇𝑡 + 𝑀𝑡
𝑅 − 𝑀𝑡−1

𝑅  

 

Where 𝑅𝑡+1
𝐿  and 𝑅𝑡+1

𝑅  are the next inter-response intervals of the left and right hand respectively; and 𝐴𝑡
𝐿 and 𝐴𝑡

𝑅 are 

the current asynchrony of the left and right hand (compared with the reference stimulus), respectively; 𝑀𝑡
𝐿, 𝑀𝑡

𝑅 and 

𝑇𝑡 are the left motor noise, the right motor noise, and the shared (central) timekeeper noise, respectively. 

Note that: 

(4) Var(𝑅𝑡+1
𝐿 + 𝛼𝐴𝑡

𝐿) = var(𝑅𝑡+1
𝑅 + 𝛼𝐴𝑡

𝑅) = 𝜎𝑇
2 + 2𝜎𝑀

2  

(5) Cov(𝑅𝑡+1
𝐿 + 𝛼𝐴𝑡

𝐿 , 𝑅𝑡+1
𝑅 + 𝛼𝐴𝑡

𝑅) = 𝜎𝑇
2 



The model's equation directly implies the following equation, obtained by averaging equations (2) and (3):  

(6) 
𝑅𝑡+1

𝐿 +𝑅𝑡+1
𝑅

2
= −𝛼

(𝐴𝑡
𝐿+𝐴𝑡

𝑅)

2
+ 𝑡0 + 𝑇𝑡 +

𝑀𝑡
𝐿+𝑀𝑡

𝑅

2
−

𝑀𝑡−1
𝐿 +𝑀𝑡−1

𝑅

2
 

Note that this equation has exactly the same structure as equation 1, but with averaged asynchrony and motor noise 

values.  

Without loss of generality we can assume that 𝐴𝑡
𝐿 , 𝐴𝑡

𝑅 , 𝑅𝑡
𝐿 and 𝑅𝑡

𝑅 have all zero mean. This can be always achieved 

by performing a pre-process where we reduce from each of the variables its empirical mean (for example: 𝐴𝑡
𝐿 →

 𝐴𝑡
𝐿 −

1

𝑁
∑ 𝐴𝑡

𝐿𝑁
𝑡=1 ). We can therefore directly apply the bGLS method by rewriting equation (6) in matrix notation: 

(7) 𝑦 = 𝐵𝑥 + 𝑍 

Where: 

𝑦 =

[
 
 
 
 

𝑅3
𝐿 + 𝑅3

𝑅

2
⋮

𝑅𝑁+1
𝐿 + 𝑅𝑁+1

𝑅

2 ]
 
 
 
 

, 𝑥 = −𝛼, 

  𝐵 =

[
 
 
 
 
𝐴2

𝐿 + 𝐴2
𝑅

2
⋮

𝐴𝑁
𝐿 + 𝐴𝑁

𝑅

2 ]
 
 
 
 

, 𝑍 =

[
 
 
 
 𝑇2 +

𝑀2
𝐿 + 𝑀2

𝑅

2
−

𝑀1
𝐿 + 𝑀1

𝑅

2
⋮

𝑇𝑁 +
𝑀𝑁

𝐿 + 𝑀𝑁
𝑅

2
−

𝑀𝑁−1
𝐿 + 𝑀𝑁−1

𝑅

2 ]
 
 
 
 

 

The covariance matrix of Z is given by: 

(8) Σ = COV(𝑍) =

[
 
 
 
 
 
 𝜎𝑇

2 + 𝜎𝑀
2 −𝜎𝑀

2

2

−𝜎𝑀
2

2
⋱

0 0
⋱ 0

0 ⋱
0 0

⋱
−𝜎𝑀

2

2

−𝜎𝑀
2

2
𝜎𝑇

2 + 𝜎𝑀
2
]
 
 
 
 
 
 

 

Assuming we know 𝜎𝑀
2  and 𝜎𝑇

2, then the maximal likelihood estimator of 𝑥 = −𝛼  is given by the GLS solution 

(Aitken 1935): 

(9) 𝑥estimated = (𝐵𝑇Σ−1𝐵)−1(𝐵𝑇Σ−1𝑦) 

If 𝛼 is known than we can directly estimate 𝜎𝑀
2  and 𝜎𝑇

2 from equations (4) and (5). 



Since in our case both alpha and the motor noises (𝜎𝑀
2  and 𝜎𝑇

2) are unknown, we can use the following iterative 

bGLS algorithm (similar to Jacoby and colleagues 1section 2.3.1). As explained in Jacoby and colleagues 1,2, it is 

important to further constrain the motor variance to the range 0 < 𝜎𝑀
2  < 𝜎𝑇

2, otherwise the resulting estimate may 

be unreliable. Note that this assumption is empirically justified (see Wing6). 

 

1.2 Algorithm 1 

 

 Input: the vector y, and B 

 niter a constant that determines the number of iterations. 

Output: the estimated parameters(�̅�, �̅�𝑇 , �̅�𝑀) 

 Start by setting Σ1 = 𝐼 (the N by N identity matrix). 

 Iterate the following equations niter times: 

(i) Compute: 𝛼𝑛 = −(𝐵𝑇 𝛴𝑛
−1 𝐵)−1(𝐵𝑇 𝛴 𝑛

−1)𝑦 

(ii) Compute: 𝑑𝑡
𝐿,𝑛 = 𝑅𝑡+1

𝐿 + 𝛼𝐴𝑡
𝐿, 𝑑𝑡

𝑅,𝑛 = 𝑅𝑡+1
𝑅 + 𝛼𝐴𝑡

𝑅 .  

(iii) Compute: 𝑣𝑛 =
1

2𝑁
∑ [𝑑𝑡

𝑅,𝑛𝑑𝑡
𝑅,𝑛 + 𝑑𝑡

𝐿,𝑛𝑑𝑡
𝐿,𝑛]𝑁

𝑡=1  

(iv) Compute: 𝑤𝑛 =
1

𝑁
∑ 𝑑𝑡

𝐿,𝑛𝑑𝑡
𝑅,𝑛𝑁

𝑡=1  

(v) Estimate: (𝜎𝑀
𝑛)2 =

𝑣𝑛−𝑤𝑛

2
 

(vi) Estimate: (𝜎𝑇
𝑛)2 = 𝑣𝑛 − 2(𝜎𝑀

𝑛)2 

 

(vii) Adjust (𝜎𝑀
𝑛)2 by decreasing it so that: 

0 < (𝜎𝑀
𝑛)2 < (𝜎𝑇

𝑛)2. 

(viii) Compute: Σ𝑛+1 = [(𝜎𝑇
𝑛)2 + (𝜎𝑀

𝑛 )2]𝐼 + [
−𝜎𝑀

𝑛

2
]Δ, When I is the N by N identity matrix and Δ is a N 

by N matrix with one on the two secondary diagonals and 0 elsewhere. 

 The output is (�̅�, �̅�𝑇 , �̅�𝑀) = (𝛼𝑛, 𝜎𝑇
𝑛, 𝜎𝑀

𝑛) computed at the last iteration niter. 

Figure S1 shows simulation results that demonstrate that the method provides an unbiased estimate. We simulate 

1000 iterations of the model for alpha=0.1,0.2,…,0.9,1 and for  𝜎𝑇
2 = 100, 𝜎𝑀

2 = 25. For each simulated dataset, 

we estimated the parameters using algorithm 1. The figure shows the mean estimates and standard errors (thick 



line) compared with the true value (dashed line). The x-axis is the simulated alpha, and the y-axis is the estimated 

parameter. We can clearly see that the estimates are unbiased, and the estimation error is comparable with the uni-

manual version (see Jacoby and colleagues 1,2). 

 

Figure S1.1 

Simulation results of parameter estimation using algorthim 1. In these simulations, we scanned multiple values of 

alpha, while 𝑠𝑒𝑡𝑡𝑖𝑛𝑔 𝜎𝑇
2 = 100 and  𝜎𝑀

2 = 25. For each alpha we computed 1000 iterations of the simulation and 

estimated alpha (top figure, thick black line), the timekeeper variance (middle figure, thick black line), and the 

motor variance (bottom figure, thick black line). In each graph the ideal estimates were plotted as the dashed line. 



For example, in the top diagram the dashed line is defined by the equation “estimated 𝛼 = true 𝛼”. Error bars 

represent standard error of the estimates. 

 

1.3 Integrator model 

 

The integrator role in this experiment is an interesting case study of the recently developed research on ensemble 

synchronization (see review in Keller 7). An ensemble version of the bGLS approach was also suggested in Jacoby 

and colleagues 1,2. The extension of this model to the bimanual case analyzed above is relatively straightforward: 

(10) 𝑅𝑡+1
𝐿 = (−𝛼1)𝐴𝑡

1,𝐿 + (−𝛼2)𝐴𝑡
2,𝐿 + 𝑡0 + 𝑇𝑡 + 𝑀𝑡

𝐿 − 𝑀𝑡−1
𝐿  

(11) 𝑅𝑡+1
𝑅 = (−𝛼1)𝐴𝑡

1,𝑅 + (−𝛼2)𝐴𝑡
2,𝑅 + 𝑡0 + 𝑇𝑡 + 𝑀𝑡

𝑅 − 𝑀𝑡−1
𝑅  

 

Where 𝛼1 and 𝛼2 are the phase correction constants that relate to each of the integrator reference stimuli, namely, 

to each of the subjects that the integrator should integrate; 𝐴𝑡
1,𝐿

 and 𝐴𝑡
2,𝐿

 are the asynchronies of the integrator left 

hand with respect to the two possible partners; 𝐴𝑡
1,𝑅

 and 𝐴𝑡
2,𝑅

 are the asynchronies of the right hand with respect to 

the two partners. 

If we modify the previous algorithm by defining: 

(12) 𝐵 =

[
 
 
 
 
𝐴2

1,𝐿+𝐴2
1,𝑅

2

⋮
𝐴𝑁

1,𝐿+𝐴𝑁
1,𝑅

2

𝐴2
2,𝐿+𝐴2

2,𝑅

2

⋮
𝐴𝑁

2,𝐿+𝐴𝑁
2,𝑅

2 ]
 
 
 
 

, 𝑥 = [
−𝛼1

−𝛼2
]  

We can use the same algorithm to compute the integrator variables replacing step (ii) in the algorithm with the 

following definition, without further change in the algorithm. 

(13) 𝑑𝑡
𝐿,𝑛 = 𝑅𝑡+1

𝐿 + 𝛼1𝐴𝑡
1,𝐿 + 𝛼2𝐴𝑡

2,𝐿
, 𝑑𝑡

𝑅,𝑛 = 𝑅𝑡+1
𝑅 + 𝛼1𝐴𝑡

1,𝑅 + 𝛼2𝐴𝑡
2,𝑅

 

While this method also provides reliable estimates, we did not include them here as they are almost identical to 

those with one subject and to the multiple person case study analyzed in Jacoby, et al.1,2. 

 

 

 



2. Supplementary Information S2 

 

2.1 Comparison of bGLS motor variance estimates with an alternative method 

The bounded general least squares (bGLS) approach was recently introduced by Jacoby and colleagues1,2 to provide 

a highly flexible method for estimating the parameters of the linear phase correction model of sensorimotor 

synchronisation. We have taken the opportunity to use our data from this study to compare one of the parameters 

(motor variance) generated by the bGLS model to that estimated by an alternative method7.  

For the alternative motor variance estimate we exploited the availability of bimanual arm movement data and used 

the covariance between the inter-movement intervals (IMIs) of the left and right arms. Below, we give a brief 

overview of the methods and the results.   

 

Calculating Motor Variance 

Using the linear phase correction model5,4, we can define the left arm intervals by:  

(14) 𝑅𝑡+1
𝐿 = 𝑇𝑡 + 𝑀𝑡

𝐿 − 𝑀𝑡−1
𝐿  

 

Where 𝑅𝑡+1
𝐿  is the observed left arm IMI, 𝑇𝑡 is the common Timekeeper interval and 𝑀𝑡

𝐿, 𝑀𝑡−1
𝐿

1 are the left arm 

motor delays, respectively (see previous section).  

Note that in this version we ignore the phase correction in the model of Supplementary Information S1. 

Similarly:  

(15) 𝑅𝑡+1
𝐿 = 𝑇𝑡 + 𝑀𝑡

𝐿 − 𝑀𝑡−1
𝐿  

 

Where, 𝑅𝑡+1
𝐿 = is the observed right arm IMI, and 𝑀𝑡

𝐿 ,𝑀𝑡−1
𝐿  are the left arm motor delays, respectively. 

From this, we can infer that the asymptotic variance of the intervals can be defined as:  

(16) 𝜎𝐿
2 = 𝜎𝑇

2 + 2𝜎
𝑀𝐿
2   and,  

(17) 𝜎𝑅
2 = 𝜎𝑇

2 + 2𝜎
𝑀𝑅
2  

where 𝜎𝐿
2, 𝜎𝑅

2 are the measured variances of the left/right IMIs, 𝜎𝑇
2 is the timekeeper variance and 𝜎

𝑀𝐿
2   , 𝜎

𝑀𝑅
2  are 

the left/right motor variances, respectively.  

From Vorberg & Hambuch’s methods7, we can estimate the timekeeper variance from the covariance between 

the left and right intervals. Therefore, we can then estimate the corresponding left/right motor variances as:  



(18) 𝜎
𝑀𝐿
2 =

1

2
(𝜎𝐿

2 − 𝑐𝑜𝑣(𝑅𝐿, 𝑅𝑅)) 

Similarly: 

(19) 𝜎
𝑀𝑅
2 =

1

2
(𝜎𝑅

2 − 𝑐𝑜𝑣(𝑅𝐿, 𝑅𝑅)) 

 

Results: Motor Variance 

For motor variance, we found that while the bimanual estimation method gave higher estimates than the bGLS 

method for both fast and slow tempos, the difference was not significant (F(1,10)=4.55, p=.059; Fig. S2.1a). In 

addition, we found a significant correlation between all estimates (across all participants, conditions and positions) 

(r =.334, p=.020; Fig. S2.1b). These small differences result from the inclusion of the phase correction gain 

parameter in the estimates in the bGLS method. 

(a).                                   (b).  

    

 

 

 

 

 

 

 

 

 

Figure S2.1. (a) Mean motor variance estimation for fast and slow tempo, using the bimanual estimation method 

versus bGLS. Error bars represent standard error of the mean. (b). Individual motor variance estimates plotted 

using bGLS versus bimanual estimation methods. Dashed line shows least squares line of best fit.  
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3. Supplementary Information S3 
 

3.1 Randomised permutation of positions 
 

Participants were assigned to their positions by means of a randomised permutation, so that each participant was 

not synchronising to the same person at all times. However, given the limitations of the six positions available, 

some participants were synchronising to the same lead (cue) up to two or three times (Table S3.1). 

 

Table S3.1. The table shows the position allocation (role) for each participant for each round. The numbers in the 

table refer to a specific participant. For example, ‘1’ stands for participant 1 who in round one was allocated the 

role of the Lead and in round two the role of the integrator, and so forth. Participants performed six trials in each 

round (position).  

 

 

 

 

 

 

 

3.2 Test for practice effect across positions 

 

A repeated measures ANOVA was conducted for the variability of asynchrony and inter-movement-intervals (IMI), 

to test whether participants’ performance improved across their positions. For both, the variability of IMI for fast 

tempo (F(5,25)=0.980, p>.05) and slow tempo (F(5,25)=1.801, p>.05; Fig. S3.1), no differences across positions 

were observed. Similarly, no differences were found for the variability of asynchrony for fast tempo (F(5,25)=0.084, 

p>.05) and slow tempo (F(5,25)=0.636, p>.05). Therefore, the experience of previous positions did not benefit the 

performance of a current position.  



 

 

 

 

 

 

 

 

 

 

Figure S3.1. Mean variabilities of IMIs for each participant’s first up to their last (position number six) position 

are presented, for slow tempo only. Each line represents one participant.  

 

 

4. Supplementary Information S4 
 

4.1 Mean alpha correction gains relative to all positions 

 

We compared the mean alpha correction gain between adjacent position (e.g. LD position had the 

metronome as a cue) and all other positions (LF1, LF2, RF1, and RF2). As Figure S4.1 illustrates, the 

highest gain is always the adjacent position. Although we don’t get zero gains for other positions due to 

the high levels of correlation within the group, all other gains are consistently lower. Note, we have left 

out the integrator as this position had two cues.  
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Figure S4.1. Mean alpha gains relative to each other position for each role (e.g. RF1). The bold number and label 

shows the valid cue position (adjacent cue), and larger gains are highlighted with a darker green.   
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