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K1 K2
SL1 2009 2 0.82 0.18
SL2 1985 1 0.34 0.66
SL3 1998 2 0.82 0.18
SL4 1975 4 0.00 1.00
SL5 1985 1 0.17 0.83
SL6 2005 3 0.83 0.17
SL7 NA 1 0.42 0.58
SL8 1971 4 0.00 1.00
SL9 2000 3 0.86 0.14
SL10 1955 4 0.00 1.00
SL11 1983 1 0.10 0.90
SL12 1990 3 1.00 0.00
SL13 NA 3 1.00 0.00
SL14 1991 3 0.97 0.03
SL15 1976 4 0.00 1.00
SL16 2003 3 1.00 0.00
SL17 1976 4 0.00 1.00
SL18 2000 3 1.00 0.00
SL20 1976 4 0.00 1.00
SL21 1952 4 0.00 1.00
SL22 1991 2 0.75 0.25
SL23 1996 3 1.00 0.00
SL24 1987 3 0.89 0.11
SL25 1979 4 0.09 0.91
SL26 2005 2 0.82 0.18
SL27 1994 1 0.72 0.28
SL28 1980 1 0.52 0.48
SL29 1979 4 0.07 0.93
SL30 2008 3 1.00 0.00
SL31 NA 1 0.43 0.57
SL32 2007 2 0.64 0.36
SL33 1967 4 0.00 1.00
SL34 2009 3 1.00 0.00
SL35 1977 4 0.16 0.84
SL36 1980 4 0.13 0.87
SL37 1973 4 0.00 1.00
SL38 1989 3 0.93 0.07
SL39 2001 3 1.00 0.00
SL40 1992 1 0.35 0.66
SL41 1996 3 1.00 0.00
SL42 1997 3 1.00 0.00
SL43 1985 1 0.32 0.68
SL44 1982 4 0.00 1.00
SL45 2002 2 0.82 0.18
SL46 1970 1 0.51 0.49
SL47 NA 1 0.55 0.45
SL48 1999 2 0.72 0.28
SL49 1989 1 0.44 0.56
SL50 1970 4 0.00 1.00

Bayesian clustering
Supplementary Table S1 List of tomato varieties used in the present study

Hierarchical
clusteringVariety Year of development



K1 K2
SL51 1971 4 0.01 0.99
SL52 1998 2 0.69 0.31
SL53 1981 4 0.11 0.89
SL54 2009 3 1.00 0.00
SL55 1980 1 0.58 0.42
SL56 1976 1 0.43 0.57
SL57 1984 1 0.38 0.62
SL58 NA 4 0.00 1.00
SL59 2009 2 0.85 0.16
SL60 NA 1 0.36 0.64
SL61 2009 2 0.85 0.15
SL62 1952 4 0.00 1.00
SL63 1980 4 0.06 0.94
SL64 1984 4 0.23 0.77
SL65 1983 1 0.41 0.59
SL66 NA 3 0.83 0.17
SL67 1993 2 0.79 0.21
SL68 2008 3 0.98 0.02
SL69 1973 4 0.02 0.98
SL70 2000 4 0.21 0.80
SL71 1981 4 0.09 0.91
SL72 NA 3 0.97 0.03
SL73 NA 1 0.50 0.50
SL74 2009 3 1.00 0.00
SL75 2009 3 1.00 0.00
SL76 2004 3 1.00 0.00
SL77 1982 1 0.36 0.64
SL79 1982 3 1.00 0.00
SL80 1994 3 1.00 0.00
SL81 1974 1 0.58 0.42
SL82 1981 1 0.42 0.58
SL83 1986 1 0.54 0.46
SL84 2007 2 0.74 0.26
SL85 1994 3 1.00 0.00
SL86 1999 2 0.60 0.40
SL87 2009 2 0.88 0.12
SL88 2000 2 0.64 0.36
SL89 1981 4 0.00 1.00
SL90 2008 3 0.97 0.03
SL91 1986 1 0.69 0.31
SL92 NA 2 0.60 0.40
SL93 2009 2 0.89 0.11
SL94 1997 2 0.75 0.25
SL95 1985 1 0.44 0.56
SL96 1981 1 0.30 0.70
SL102 NA 1 0.11 0.89
SL103 NA 4 0.00 1.00

Supplementary Table S1 (Continued)

Variety Year of development Hierarchical
clustering

Bayesian clustering



Effect −log10P θ Effect SD τ2 δ2 η2

AFW AX-95768470 9 4894274 51.94 0.01 -24.703 2.716 0.1 -17.74 1.69 2.22 222.98 0.03

1 -23.92 1.28 0.69 674.21 0.00

5 -28.50 1.03 0.31 1357.09 0.00

AFW AX-107553846 9 5015774 52.72 0.05 -14.161 3.503 0.0001 -9.23 2.18 17.95 2.46 21.86

0.001 -9.67 2.11 15.12 15.83 2.86

AMFW AX-107553846 9 5015774 52.72 0.07 -14.925 4.410 0.0001 -10.49 2.03 11.63 2.49 14.02

0.001 -10.97 1.96 9.82 15.95 1.84

0.01 -12.02 1.72 6.12 68.90 0.27

0.1 -13.03 1.40 3.41 223.93 0.05

1 -13.83 1.07 1.74 675.51 0.01

5 -13.70 0.89 1.23 1359.07 0.00

SSC AX-95816341 2 37533453 70.70 0.29 0.131 1.188 0.0001 0.15 0.03 9.77 2.26 12.95

0.001 0.17 0.03 7.51 14.61 1.54

SSC AX-107530294 5 626924 3.83 0.29 -0.085 0.467 0.0001 -0.24 0.03 3.81 2.26 5.04

SSC AX-95792472 9 2623609 34.38 0.07 -0.271 5.579 0.0001 -0.23 0.04 4.27 2.26 5.66

0.001 -0.23 0.04 4.29 14.61 0.88

0.01 -0.23 0.03 3.30 66.42 0.15

0.1 -0.25 0.03 1.69 222.49 0.02

1 -0.27 0.02 0.80 674.44 0.00

5 -0.27 0.02 0.51 1357.11 0.00

PCol AX-107528977 1 70228553 49.28 0.32 -0.124 3.009 0.1 -0.14 0.01 0.88 220.68 0.01

1 -0.13 0.01 0.53 670.25 0.00

5 -0.12 0.00 0.40 1352.94 0.00

PCol AX-95802300 1 71269940 51.30 0.58 -0.273 9.198 0.0001 -0.33 0.01 0.32 2.52 0.38

0.001 -0.33 0.01 0.30 15.87 0.06

0.01 -0.32 0.01 0.23 68.32 0.01

PCol AX-95782963 1 75814558 59.34 0.22 0.126 3.749 0.1 0.10 0.01 1.75 220.68 0.02

1 0.10 0.01 0.90 670.25 0.00

5 0.10 0.00 0.55 1352.94 0.00

SS AX-107526519 9 1937367 29.36 0.22 0.279 3.491 0.0001 0.20 0.04 6.28 2.56 7.36

0.001 0.20 0.04 6.01 16.30 1.11

PBF AX-107540607 4 62766820 133.53 0.32 -3.493 5.800 - - - - - -

PIF AX-107529487 1 85767014 132.77 0.10 2.085 2.195 1 1.72 0.18 3.12 674.13 0.01

5 1.63 0.15 2.39 1355.61 0.01

PIF AX-107526307 3 508999 9.97 0.14 3.443 4.285 0.0001 2.61 0.36 5.64 2.55 6.64

0.001 2.62 0.35 5.24 16.28 0.97

0.01 2.72 0.31 3.72 69.82 0.16

0.1 2.47 0.24 2.74 224.31 0.04

1 1.83 0.18 2.77 674.13 0.01

PIF AX-107532554 4 1786073 23.46 0.17 3.468 3.616 0.1 1.93 0.24 4.53 224.31 0.06

1 2.06 0.18 2.19 674.13 0.01

PIF AX-107544746 9 1874011 28.56 0.00 1.737 1.533 5 2.26 0.24 1.25 1355.61 0.00

PCF AX-95814346 2 46569227 131.42 0.20 -0.674 3.757 0.01 -0.40 0.05 4.84 68.39 0.21

PCF AX-95775213 3 8107799 51.09 0.15 -0.549 3.021 0.1 -0.31 0.05 5.03 222.17 0.07

1 -0.41 0.03 1.52 672.13 0.01

5 -0.45 0.03 0.81 1354.87 0.00

PCF AX-107545745 4 4722129 45.06 0.00 -0.458 2.900 1 -0.20 0.04 5.76 672.13 0.03

EBL

Supplementary Table S2 List of the significant associations detected by the genome-wide association study

Trait SNP ID Chr Position
(bp)

Position
(cM) r2

MLM



Effect −log10P θ Effect SD τ2 δ2 η2

PCF AX-95773156 5 63169277 119.67 0.14 -0.604 4.205 0.0001 -0.32 0.08 11.23 2.48 13.56

0.001 -0.34 0.08 9.65 15.80 1.83

0.01 -0.27 0.06 10.63 68.39 0.46

PCF AX-95789137 5 63705710 124.20 0.00 0.506 2.671 1 0.33 0.04 2.28 672.13 0.01

5 0.46 0.03 0.77 1354.87 0.00

PCF AX-105346901 7 58641570 42.46 0.02 0.544 3.092 0.1 0.32 0.05 4.64 222.17 0.06

LL AX-95774169 2 30666575 18.40 0.07 2.475 3.836 0.0001 1.34 0.36 22.20 2.58 25.81

0.001 1.47 0.35 17.09 16.27 3.14

0.01 1.75 0.32 9.30 69.69 0.40

0.1 1.61 0.24 6.42 224.41 0.09

1 2.07 0.21 2.78 675.58 0.01

5 2.09 0.17 1.79 1357.70 0.00

LL AX-107526715 2 46747730 132.16 0.19 -3.723 3.326 0.1 -2.15 0.29 3.61 224.41 0.05

LL AX-107530056 3 49391068 59.87 0.24 -3.514 3.198 0.1 -2.07 0.26 3.88 224.41 0.05

LW AX-107544905 1 80430590 100.56 0.09 3.277 2.512 1 2.28 0.18 1.57 674.51 0.01

5 2.78 0.15 0.72 1357.70 0.00

LW AX-95774169 2 30666575 18.40 0.03 3.834 2.247 0.1 1.61 0.24 6.03 223.47 0.08

1 1.90 0.17 2.24 674.51 0.01

5 1.93 0.14 1.49 1357.70 0.00

LW AX-107537130 2 31577517 22.85 0.08 3.020 2.324 1 1.79 0.18 2.52 674.51 0.01

5 1.54 0.15 2.31 1357.70 0.01

SW AX-107544905 1 80430590 100.56 0.02 0.852 1.709 1 0.50 0.06 4.28 675.17 0.02

5 0.73 0.05 1.42 1357.81 0.00

H1T AX-107541971 1 86566633 137.79 0.02 -4.788 2.095 5 -2.84 0.27 2.23 1356.42 0.00

NFlo AX-107552308 2 48487492 151.84 0.07 1.719 3.333 0.1 1.07 0.10 2.45 224.15 0.03

DTF AX-107529487 1 85767014 132.77 0.12 0.570 1.313 1 0.35 0.07 12.45 674.89 0.05

DTF AX-107530056 3 49391068 59.87 0.29 0.926 1.851 1 1.16 0.08 1.23 674.89 0.01

5 0.80 0.07 1.93 1357.28 0.00

DTF AX-105347391 6 36178958 45.78 0.00 0.651 1.735 1 0.47 0.10 7.11 674.89 0.03

NL1T AX-107528273 3 50678874 59.87 0.00 0.461 2.343 1 0.45 0.04 1.39 675.13 0.01

5 0.59 0.03 0.54 1357.45 0.00

NL1T AX-95814127 5 2899948 37.22 0.14 0.345 2.220 0.0001 0.23 0.07 17.89 2.61 20.55

MLM EBL

PF, percentage of fruit set; TFW, total fruit weight; AFW, average fruit weight; PMF, percentage of marketable fruits; TMFW, total marketable
fruit weight; AMFW, average marketable fruit weight; SSC, soluble solids content; PCol, pericarp color; SS, style scar; PBF, percentage of
blossom-end rot fruits; PIF, percentage of irregular shaped fruits; PCF, percentage of cracked fruits; PSF, percentage of small fruits; LL, leaf
length; LW, leaf width; SW, stem width; H1T, height to the first truss; NFlo, number of flowers; DTF, days to flowering; NL1T, number of leaves
under the first truss. See Table 1 for the details.

Supplementary Table S2 (Continued)

Trait SNP ID Chr Position
(bp) r2Position

(cM)



SL2.40ch Number of
candidate SNPs Q > 30

Number of
polymorphic reads
> 2

Number of reads
on the SNP site <
500

Number of SNPs
provided for 50K
SNP array

Number of SNPs
provided for the
genetic analysis

1 1,350,865 1,020,741 430,057 401,966 5,929 1,801
2 990,576 766,610 333,923 318,994 5,062 1,452
3 940,293 703,851 283,441 260,973 4,477 1,220
4 949,622 729,925 323,682 307,347 5,333 1,821
5 827,602 631,362 276,057 257,613 4,010 774
6 1,015,221 832,195 461,013 444,392 4,087 866
7 843,100 643,182 276,804 256,564 3,093 984
8 801,849 607,382 258,392 239,352 3,582 1,097
9 1,364,857 1,171,846 758,392 734,549 4,023 1,474

10 863,897 669,628 307,091 284,550 3,681 1,690
11 830,820 652,913 323,610 306,922 4,612 2,273
12 891,116 703,253 345,836 322,588 4,023 1,330

Total 11,669,818 9,132,888 4,378,298 4,135,810 51,912 16,782

Supplementary Table S3 Summary of the design of a single-nucleotide polymorphism (SNP) genotyping array



 
 

 
Supplementary Figure S1 Phenotypic distributions of the 96 tomato varieties used in the 

present study. PF, percentage of fruit set; TFW, total fruit weight; AFW, average fruit weight; 

PMF, percentage of marketable fruits; TMFW, total marketable fruit weight; AMFW, average 

marketable fruit weight; SSC, soluble solids content; PCol, pericarp colour; SS, style scar; PBF, 

percentage of blossom-end rot fruits; PIF, percentage of irregular-shaped fruits; PCF, 

percentage of cracked fruits; PSF, percentage of small fruits; LL, leaf length; LW, leaf width; 

SW, stem width; H1T, height to the first truss; NFlo, number of flowers; DTF, days to 

flowering; NL1T, number of leaves under the first truss. See Table 1 for details. 



 
 

 

Supplementary Figure S2 Changes in the genomic estimated breeding values (GEBVs) in the 

simulations of the recurrent genomic selection, specifically, distributions of the GEBVs of total 

fruit weight (TFW) and soluble solids content (SSC). Black circles and coloured crosses 

indicate the GEBVs of the 96 varieties and the simulated populations, respectively. G1 to G5 

indicate the progenies derived from one to five cycles of recurrent selection for which the 

breeding strategy is shown in Fig. 3. (a) Distribution of GEBVs of breeding population during 

recurrent genomic selection. (b) Distribution of GEBVs of inbred lines (ILs) derived from 

breeding population during recurrent genomic selection (Fig. 3b and Supplementary Fig. S2a).  



 
 

 
Supplementary Figure S3 Influence of the selection for total fruit yield and soluble solids 

content on other traits. Boxplots for the genomic estimated breeding values in the fifth 

generation of the simulated population (G5 in Fig. 3b and Supplementary Fig. S2a). ‘Var.’ and 

‘Sim.pop.’ at the bottom of each panel indicate the 96 varieties and the simulated population, 

respectively. Statistical analysis was performed using Welch’s t-test. PF, percentage of fruit set; 

AFW, average fruit weight; TMFW, total marketable fruit weight; SS, style scar; PBF, 

percentage of blossom-end rot fruits; PIF, percentage of irregular-shaped fruits; PCF, 

percentage of cracked fruits; PSF, percentage of small fruits; LL, leaf length; LW, leaf width; 

SW, stem width; NFlo, number of flowers. 

 

  



 
 

Supplementary Methods 

 

Single-nucleotide polymorphism (SNP) discovery and design of a SNP genotyping 

array 

DNA samples from the 96 tomato F1 varieties were sequenced on a HiSeq2000 

(Illumina, San Diego, CA, USA) lane using 100-base-pair end sequencing. A total of 

173 Gb sequences were obtained, which corresponds to a 1.90× depth for the genome of 

each variety (DDBJ Sequence Read Archive Submission DRA003755). Obtained reads 

were aligned against the tomato reference genome (Tomato Genome Consortium, 2012) 

(release SL2.40) by using CLC Genomic Workbench version 6.5 (CLC bio, a QIAGEN 

Company, Aarhus, Denmark). Repetitive sequences on the tomato reference genome 

were excluded based on the annotation dataset ITAG2.30. A total of 11,669,818 

putative SNP sites were discovered (Supplementary Table S3). The following criteria 

were used for the selection of SNPs: 

1. The average of quality value Q was > 30. Q is defined by 𝑄 =  −𝑙𝑜𝑔!" 𝑃 , where 

P is the probability of an incorrect base call. 

2. The number of reads that showed polymorphism against the reference genome was 

> 2. 

3. The number of reads obtained at the putative SNP site was < 500. 

Criteria 1 and 2 were used to exclude SNPs with low reliability. Criterion 3 

was used to avoid the selection of repetitive genomic regions that were undefined in 

ITAG2.30. By using these criteria, the number of candidate SNPs was narrowed down 

to 4,135,810 (Supplementary Table S3). The linkage map position (cM) of these SNPs 

was estimated by local polynomial regression fitting by using linkage map information 

from Shirasawa et al. (2010) as the predictors. According to the estimated linkage map 

position, the tomato genome was divided into 1-cM blocks, and an average 35 SNPs 

were selected from each block. The selected SNPs were evenly distributed on the 

tomato genome according to their linkage map positions. These procedures were 

important aspects of an objective analysis of linkage disequilibrium (LD) and breeding 

simulation. Specifically, because the tomato genome has a large pericentromeric region 

(Tomato Genome Consortium, 2012), selection of SNPs on the basis of physical 

positions or according to random selection will result in the selection of many SNPs on 

centromeric regions, which will affect the interpretation of the LD analysis and make it 



 
 

difficult to determine the recombination position in a simulation study. 

 A total of 51,912 SNPs were selected for analysis with the Axiom myDesign 

Genotyping Array (Affymetrix Co, Ltd., Santa Clara, CA, USA). In this genotyping 

assay, 35,247 SNPs were polymorphic in the varieties used in the present study. From 

these polymorphic SNPs, the SNPs with minor allele frequency < 0.05 and a rate of 

missing genotype > 0.05 were excluded. Finally, 16,782 SNPs were provided for further 

analysis (Fig. 1a, Supplementary Table S3). 

 

Regression methods 

MLM: This method assumes the following model (Yu et al., 2006): 

𝑦 =  𝑋𝛽 +  𝑍𝑔 +  𝜀    (2) 
where 𝑦 is a vector of phenotypes; 𝑋 is a matrix of fixed effects including the grand 

mean, SNPs, and other variables; 𝛽 is a vector of fixed effects; and 𝑍 is an incidence 

matrix mapping each observed phenotype to one individual. The variable 𝑔 models the 

genetic background of each line as a random effect with 𝑉𝑎𝑟 𝑔  =  𝐾𝜎!. 𝐾 is the 

kinship matrix inferred from the genotypes. The residual variance is 𝑉𝑎𝑟 𝜀  =  𝐼𝜎!. 

An additive kinship matrix was used as the covariance between the lines due to a 

polygenic effect. Six principal components (PCs) were included as fixed effects. We 

used function 'GWAS' in the R package rrBLUP (Endelman, 2011). 

 

RR: This method was examined by Meuwisssen et al. (2001), which assumes the model 

𝑦 =  1!𝜇 +  𝑾𝑞!
!

 +  𝑒    (3) 

where 1! is a vector of ones; 𝜇 is the mean; 𝑊 is a matrix that contains genotypes 

code as 0, 1, or 2; 𝑞! is the effect of each SNP; and 𝑒 is a vector of random normal 

deviates with variance 𝜎!!. The elements in W in each column j have an amount 2pj 

(where pj is the minor allele frequency of marker j) subtracted from the genotype code 

to achieve that the sum of coefficients in each column is zero. The SNP effects are 

treated as random and summed over all segments. The genetic variance explained by the 
SNP effects is given by 𝑾𝑾´𝜎!! and the residual variance is 𝐼𝜎!!, and the variance–

covariance matrix among observations is 𝑣𝑎𝑟(𝑦)  =  𝑾𝑾´𝜎!!  +  𝐼𝜎!!. The variance for 

each SNP can be assumed equal. Habier et al. (2007) showed that RR is equivalent to 

Genomic best linear unbiased prediction (gBLUP). In gBLUP, the model is given by 



 
 

𝑦 =  1!𝜇 +  𝒁𝑔 +  𝑒    (4) 

where 𝒁 is a design matrix allocating records to genetic values and 𝑔 is a vector of 
the additive genetic effects of markers. The variance of 𝑔 is 𝑮𝜎!! where 𝑮 is the 

genomic relationship matrix and 𝜎!!  is the genetic variance for this model. The 

variance of 𝑦 in this model is given by 𝒁𝑮𝒁´𝜎!!  +  𝐼𝜎!!. We used the R package 

rrBLUP version 4.2 (Endelman, 2011) to fit the RR-BLUP model. 

 

BL: In BL, the following linear model was used (Park & Casella, 2008): 

𝑦!  =  𝑥!"𝛽!  +  𝜀!

!

! ! !

    (5) 

where 𝑦! is a phenotypic value of individual i, 𝑥!" is a genotype of marker p of 

individual i, 𝛽! is a effect of marker p, and 𝜀! is a residual for the individual i with 

𝜀!  ~ 𝑁 0,𝜎!! . In BL, each regression parameter 𝛽!  is assumed to be normally 

distributed around zero with its own variance 𝜎!!, and the degree of shrinkage is 

locus-specific by the variance 𝜎!! across loci. According to Li and Sillanpää (2012) 

and Onogi et al. (2015), 𝛽! was assumed to follow  

𝛽! ~ 𝑁 0, 1 𝜏!!𝜏!!
    (6) 

where 𝜏!! determines the magnitude of shrinkage for 𝛽!, and 1/𝜏!! is the residual 
variance, respectively. Then, 𝜏!! was assumed to follow a prior distribution  

𝜏!! ~ 𝐼𝑛𝑣 −  𝐺 1, 𝜆
!
2     (7) 

where 𝐼𝑛𝑣 −  𝐺 indicates the inverse Gamma distribution and 𝜆! is a regularisation 
parameter that defines the distribution of 𝜏!!. The prior distribution of 𝜆! was  

𝜆! ~ 𝐺 1,𝜛      (8) 
where 𝜛 is the rate parameter. In BL, 𝜛 was the hyperparameter, and five values of 

𝜛  were tested: 0.001, 0.01, 0.1, 1, and 5. Parameters were estimated by using 

variational Bayesian approaches (VBA). A nested five-fold cross-validation (CV) was 

performed for each cycle of LOOCV (Table 3) to determine the optimal hyperparameter 

value that showed the least mean square error.  

 

EBL: EBL is the extension of BL that separates the regularisation parameter 𝜆! into a 



 
 

shrinkage factor for the overall model sparsity and a shrinkage factor for individual 

markers (Mutshinda & Sillanpää, 2010). This approach is intended to assign different 
magnitudes of shrinkage to individual marker effects. In EBL, a prior distribution of 𝜏!! 

was described as follows;  

𝜏!! ~ 𝐼𝑛𝑣 −  𝐺 1, 𝛿
!𝜂!!

2     (9) 

where 𝛿! is the shrinkage factor for all markers and 𝜂!! is the shrinkage factor unique 

to marker p. A prior distribution for 𝛿!  was 𝛿! ~ 𝐺 1, 1 , and for 𝜂!!  was 

𝜂!! ~ 𝐺 1,𝜃  where the rate parameter 𝜃 is the hyperparameter for EBL. Six values of 

𝜃 were tested: 0.0001, 0.001, 0.01, 0.1, 1, and 5. As was the case for BL, parameters 

were estimated by using VBA (Mutshinda & Sillanpää, 2010) and a nested five-fold CV 

was performed to determine the optimal hyperparameter. 

 

wBSR: A linear model for wBSR is 

𝑦!  =  𝛾!𝑥!"𝛽!

!

! ! !

 +  𝜀!     (10) 

where 𝛾! is the indicator variable that determines whether the marker effect is included 

in the regression model (𝛾!  =  1) or not (𝛾!  =  0) (Hayashi & Iwata, 2010). A prior 

distribution was  
𝛾! ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 𝜋     (11) 

If 𝛾!  =  1, 𝛽! was assumed to follow  

𝛽! ~ 𝑁 0,𝜎!!     (12) 
then the prior for 𝜎!! was 

𝜎!! ~ 𝜒!! 𝑣, 𝑆     (13) 

where 𝜒!! indicates a scaled inverse chi-square distribution, 𝑣 is a degree-of-freedom, 

and 𝑆 is a scale parameter. In this study, we used 1 for 𝑣 and 𝑆, thus 𝜋 was the only 

hyperparameter adjusted. Five values of 𝜋 were tested: 0.01, 0.1, 0.2, 0.5, and 1. 

Parameters were estimated by using VBA (Hayashi & Iwata, 2013) and a nested 

five-fold CV was performed to determine the optimal hyperparameter. 

 

Bayes C: In Bayes C, the general statistical model is the same as in BL and EBL, 

whereas the mechanism for the shrinkage of marker effects is similar to that of wBSR 



 
 

(Habier et al., 2011). The prior expression for 𝛽! in Bayes C was described as follows; 

𝛽!  =  0
~ 𝑁(0,𝜎!) 

𝑖𝑓 𝜌!  =  0
𝑖𝑓 𝜌!  =  1     (14) 

where 𝜌!  is the indicator variable that determines whether the marker effect is 

included in the regression model (𝜌!  =  1) or not (𝜌!  =  0), with the prior distribution  

𝜌!  =  𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 𝜋     (15) 

In BL, EBL, and wBSR, each SNP has its own variance, whereas all SNP effects have a 

common variance 𝜎! in Bayes C. A prior distribution of 𝜎! was described as follows: 

𝜎! ~ 𝜒!! 𝑣, 𝑆     (16) 
The sets of hyperparameters tested were the same as in wBSR. VBA (Carbonetto & 

Stephens, 2012) was used for the parameter estimations and a nested five-fold CV was 

performed to determine the optimal hyperparameter. 

 

RKHS: In linear regressions, phenotypes relate to marker genotype linearly. However, 

non-additive genetic effects, such as dominance and epistatic effects, render the 

relations non-linear. Kernel functions are often used to capture this non-additive 

relationship. The relationship model can be written as  
𝐾!"  =  𝐺!∙,𝐺!∙     (17) 

where the angle brackets denote the inner (or dot) product between genotype i and j. In 

RKHS, the following kernel was used: 

𝐾!"  =  𝑒𝑥𝑝 − 𝐷!" 𝜃 !     (18) 

where 

𝐷!"  =  1/4𝑀 (𝐺!"  −  𝐺!")!
!

! ! !

!/!

    (19) 

is the Euclidean distance between marker genotypes i and j, normalised to interval [0, 1]. 

𝑀 is the number of markers and the parameter 𝜃 is a scale parameter that influences 

how quickly the genetic covariance decays with distance. RKHS is equivalent to 

replacing the genomic relationship matrix 𝑮  with the Gaussian kernel matrix 𝑲 
where each element is based on 𝐾!". RKHS is described by Gianola et al. (2006), 

Gianola and van Kaam (2008), and de los Campos et al. (2009). RKHS was performed 

using the R package rrBLUP version 4.2 (Endelman, 2011) with the default setting. 



 
 

 

RF: RF is an ensemble learning method that uses a combination of decision trees, each 

generated from a subset of variables (markers in genomic prediction) selected by 

bootstrap (Breiman, 2001). RF avoids over-fitting by using stochastic perturbation 

(bootstrap) and averaging the outputs of the decision trees (Hastie et al., 2009). RF was 

performed using the R package randomForest versions 4.6-7. All parameters were set to 

their default values, that is, the number of variables tried at each split mtry = p/3, number 

of trees = 500, and minimum node size = 5. 

  



 
 

Supplementary Note 

 

Validity assessment of use of averaged phenotypic values over a range of years 

 The phenotypic values of agronomic traits are often subject to genotype by 

environment (G×E) effects, which often disturb genetic analyses such as a genome-wide 

association study (GWAS) or whole-genome prediction (WGP) model. In the present 

study, we used phenotypic values averaged over four years for GWAS (Fig. 2) and 

WGP (Table 3), which enabled us to ignore G×E effects. We chose this approach for 

two reasons: (i) because only one plant was grown for each variety, each year, it is 

difficult to analyse G×E effects using standard statistical methods, and (ii) under such 

conditions, the use of averaged values is the most conservative method. However, a 

validity assessment for the use of the averaged phenotypic value is needed in order to 

estimate the reliability of the result. 

 We performed the following analysis to estimate the G×E effects in the 

present study. The analysis was composed of four experiments (Supplementary Fig. S4). 

In each experiment, the phenotypic values from four years were divided into two 

groups: phenotypic values from one year as test data and phenotypic values from the 

other three years as training data. The phenotypic values from three years were 

averaged and used for construction of a WGP model. Then the genomic estimated 

breeding values (GEBVs) based on the WGP model were compared with the phenotypic 

values from the test data. GEBVs of each trait were calculated using the statistical 

method that showed the highest predictability in Table 3 of the main text. The accuracy 

of each WGP model for the test data was evaluated as a Pearson’s correlation 

coefficient between the phenotypic values and the GEBVs (Supplementary Fig. S4). 

Strong G×E effects would be revealed by the presence of low correlation coefficients. 

 

 

 

 

 

 

Supplementary Figure S4 Schematic representation of the analysis to assess the 

validity of using averaged phenotypic values over the years. 



 
 

 

 Most of the traits showed similar correlation coefficients across the four 

experiments (Supplementary Table S4). In particular, total fruit weight and soluble 

solids content, traits that were an important focus of the main text, showed high 

correlation coefficients for all experiments (Supplementary Table S4). This finding 

indicates that the G×E effect is small for these traits in the present study. 

Regarding traits categorized as 'physiological disorder of fruit’, such as 

percentage of blossom-end rot fruits, percentage of cracked fruits, and percentage of 

small fruits (Table 1), several experiments showed extremely low correlation 

coefficients (Supplementary Table S4). Because the trait physiological disorder of fruit 

is easily subjected to changes in environmental conditions compared with other traits, 

this result is reasonable. However, in the experiments that showed extremely low 

correlation coefficients, the frequency of occurrence of physiological disorder was 

extremely low in the test data. In other words, plant growth was stable and did not differ 

between years. Therefore, we concluded that the G×E effect in the present study was 

not strong and that it is reasonable to use the averaged phenotypic values over the years 

for GWAS and WGP. 

  



 
 

Supplementary Table S4 Validity assessment of use of averaged phenotypic values over the years 

Trait Experiment 1 Experiment 2 Experiment 3 Experiment 4 

Percentage of fruit set 0.372 0.325 0.048 0.119 

Total fruit weight 0.593 0.535 0.553 0.570 

Average fruit weight 0.407 0.568 0.543 0.532 

Percentage of marketable 

fruits 
0.013 0.461 0.284 0.323 

Total marketable fruit weight 0.403 0.474 0.390 0.505 

Average marketable fruit 

weight 
0.409 0.561 0.576 0.445 

Soluble solids content 0.632 0.663 0.787 0.705 

Style scar 0.453 0.439 0.526 0.432 

Percentage of blossom-end 

rot fruits 
0.444 -0.003 0.317 NA 

Percentage of 

irregular-shaped fruits 
0.517 0.402 0.389 0.383 

Percentage of cracked fruits 0.202 -0.034 NA*1 NA 

Percentage of small fruits -0.103 0.363 0.278 0.297 

Leaf length 0.297 0.552 0.322 NA 

Leaf width 0.419 0.200 0.347 NA 

Stem width 0.286 0.221 0.438 NA 

Height to the first truss 0.481 0.583 0.404 NA 

Number of flowers 0.304 0.187 0.444 0.325 

Days to flowering 0.289 0.272 NA 0.447 

Number of leaves under the 

first truss 
0.139 0.354 0.187 NA 

Values are Pearson’s correlation coefficients between phenotypic values from a year and genomic 

estimated breeding values (GEBVs) based on the other three years (Supplementary Fig. S4). 

NA, not analysed because phenotypic record for that year was not available. 

*1 Correlation coefficient of percentage of cracked fruits in experiment 3 was incalculable because a very 

small number of varieties showed a non-zero phenotype. 
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