Supplementary Information

Structural Insights into the Quaternary Catalytic Mechanism of Hexameric Human Quinolinate Phosphoribosyltransferase, a Key Enzyme in *de novo* NAD Biosynthesis

Hyung-Seop Youn^{1,2}, Tae Gyun Kim^{1,2}, Mun-Kyoung Kim¹, Gil Bu Kang¹, Jung Youn Kang^{1,2}, Jung-Gyu Lee^{1,2}, Jun Yop An^{1,2}, Kyoung Ryoung Park^{1,2}, Youngjin Lee^{1,2}, Young Jun Im³, Jun Hyuck Lee^{4,5} & Soo Hyun Eom^{1,2,6,*}

¹School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, South Korea. ²Steitz Center for Structural Biology, Gwangju Institute of Science and Technology, Gwangju 500-712, South Korea. ³College of Pharmacy, Chonnam National University, Gwangju 500-757, South Korea. ⁴Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 406-840, South Korea. ⁵Department of Polar Sciences, Korea University of Science and Technology, Incheon 406-840, South Korea. ⁶Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 500-712, South Korea.

*Corresponding author. E-mail address: eom@gist.ac.kr

Supplementary Results

Supplementary Figure S1. Reaction catalyzed by QPRT.

Supplementary Figure S2. Hexameric or dimeric biological units of QPRTs from human and other eukaryotes (*Sus scrofa*, *Ss*; *Saccharomyces cerevisiae*, *Sc*). The two- and three-fold axes of the hexamer are indicated as arrows and triangle, respectively. Active sites in *Hs*QPRT are indicated as dashed circles.

Supplementary Figure S3. Structural comparison of NAMN complexes of human (green) and porcine (purple) QPRTs in the NAMN binding site (a) and dimer-dimer interface (b). The movements are shown as two-sided arrows.

Supplementary Figure S4. Multiple sequence alignment of HsQPRT homologs. Conserved residues are indicated as white letters in the black and gray background. The blue cylinders and yellow arrows represent α -helices and strands of human enzyme, respectively. The black lines indicate loops. The accession number and database of aligned sequences are indicated in parentheses: *Homo sapiens* QPRT, Human (Uniprot code Q15274); *Pan troglodytes* QPRT, Chimp (Uniprot code K7ACA5); *Sus scrofa* QPRT, porcine (PDB code 4I9A); *Bos taurus* QPRT, Bovine (NCBI code AAI02551); *Rattus norvegicus* QPRT, Rat (NCBI code AAH88177); *Xenopus laevis* QPRT, Xenopus (Uniprot code Q6AZR1); *Saccharomyces cerevisiae* QPRT, Yeast (PDB code 3C2E); *Helicobacter pylori* QPRT, Hp (PDB code 2B7N); *Mycobacterium tuberculosis* QPRT, Mt (PDB code 1QPO); *Salmonella typhimurium* QPRT, St (Uniprot code P30012); *Thermus thermophilus* QPRT, Tt (PDB code 1X10); *Escherichia coli* QPRT, Ec (Uniprot code P30011). Blue boxes indicate residues of loop L and loop O involved in intermolecular interactions among MoIA-MoIF. The red box indicates the N-terminal helix α 1. Residues involved in the active site are indicated as dots in the upper side. Regions involved in the dimer-dimer interface of *Hs*QPRT are shaded in purple.

Supplementary Figure S5. Structural comparison of helix $\alpha 1$ of *Hs*QPRT-open (blue), *Hs*QPRT-QA (brown) and *Hs*QPRT-NAMN (green). Helix $\alpha 1$ are shown as cartoon diagrams.

Supplementary Figure S6. Relatively compared size exclusion chromatographic profiles of wild-type of *Sc*QPRT (blue) and its mutant (N $\Delta 10^{Sc}$, red). Blue and red peaks approximately correspond to a hexamer and dimer, similar to wild-type *Hs*QPRT and its mutant N $\Delta 12$, respectively.

Supplementary Figure S7. Surface representations of QA binding pockets between *Hs*QPRTopen (a) and *Sc*QPRT-apo (b). Positive and negative surface charges of the protein are coloured in blue and red, respectively. The QA molecule (brown stick) is extracted from the *Hs*QPRT-QA structure. Expected directions of QA access are shown as dashed arrows.

Supplementary Figure S8. Hill plot of QA binding to *Hs*QPRT derived from the ITC data.

Supplementary Figure S9. (a) ITC profile for the binding of phthalic acid (500 μ M) to *Hs*QPRT (30 μ M) with N (stoichiometry) = 1.0, *K*_d = ~5.2 μ M, Δ H = ~2.4 kcal/mol and Δ S = ~33 cal/mol. (b) Hill plot derived from the ITC data.

Supplementary Figure S10. (a) ITC profile for the binding of PRPP (2 mM) to *Hs*QPRT (20 μ M). (b) ITC profile for the binding of PRPP (2 mM) to *Hs*QPRT (20 μ M) under saturated phthalic acid (200 μ M) with N (stoichiometry) = 1.0, *K*_d = ~124 μ M, Δ H = ~-6.7 kcal/mol and Δ S = ~-4.8 cal/mol. (c) Hill plot derived from the ITC data.

Supplementary Figure S11. (a) ITC profile for the binding of phthalic acid (800 μ M) to *Hs*QPRT (30 μ M) under saturated PRPP (300 μ M) with N (stoichiometry) = 1.0, *K*_d = ~33 μ M, Δ H = ~-1.8 kcal/mol and Δ S = ~14.2 cal/mol. (b) Hill plot derived from the ITC data.

Supplementary Figure S12. The electron density corresponds to loop L (a) and loop O (b) of MolA of *Hs*QPRT-open contoured at 1.0σ .

Supplementary Figure S13. Simulated-annealing composite omit map of QA (a) and NAMN (b) molecules. The electron density was contoured at 1.0 σ . Hydrogen bonds are indicated as dashed lines.