Supplementary Information

Ca²⁺ dynamics in oocytes from naturally-aged mice

Jenna Haverfield^{1,2}, Shoma Nakagawa¹, Daniel Love³, Elina Tsichlaki⁴, Michail Nomikos³, F. Anthony Lai³, Karl Swann³, Greg FitzHarris^{1,2,4,*}

¹Centre Recherche Centre Hospitalier Université de Montréal, Montreal, Québec, Canada, H2X 0A9.

²Department of Obstetrics and Gynaecology, University of Montreal, Montreal, Québec, Canada, H3T 1J4.

³Institute of Molecular and Experimental Medicine, Cardiff University School of Medicine, Heath Park, UK, CF14 4XN.

⁴Department of Cell and Developmental Biology, University College London, London, UK, WC1E 6BT.

*Correspondence should be addressed to: greg.fitzharris@umontreal.ca

Supplementary Fig S1: lonomycin-releasable Ca²⁺ store content is maintained with age. a) Individual Ca²⁺ response curves in MII eggs from young and naturally-aged mice after treatment with ionomycin (2 μ M). b) Area under the curve analysis of the ionomycin response in young (n=11, 275.0 ± 49.9) and aged (n=5, 262.3 ± 69.45) eggs, revealing no age-related differences in Ca²⁺ content (P=0.68). Data are mean ± SEM. All eggs were collected from MF1 mice (young at 2 months, aged at ~18 months), analysed using Fura2-AM. Data represents two independent experiments with young and aged eggs imaged contemporaneously.