
Supplementary Material

Main article: Breaking sarcomeres by in vitro exercise, by Zacharias Orfanos, Markus P.

O. Gödderz, Ekaterina Soroka, Tobias Gödderz, Anastasia Rumyantseva, Peter F. M. van der

Ven, Thomas J. Hawke and Dieter O. Fürst

Supplementary Figures

Supplementary Figure S1. Schematic representation of the two EPS protocols used in this

study. Red lines indicate single 20 msec twitches, whereas the filled bar in the damage

protocol represents continuous stimulation (by a sequence of a very fast succession of 20

msec twitches at 15 Hz) for the indicated time. After the 20 seconds represented here the

programs are repeated.

Supplementary Figure S2. Description of imaging analysis for lesion area calculation. The -

actinin channel was mathematically subtracted from the filamin C channel, to minimise the Z-

disc signal and focus only on the lesions. The resulting image was manually “thresholded”, and

the area of lesions calculated digitally. The area of the cell in the image was manually marked

and digitally calculated. The two measurements yield the percentage of the cell area in the

image occupied by lesions.

Supplementary Figure S3. Lesion formation observed by live cell imaging of primary mouse

myoblasts expressing FLNc-EGFP. Cells were periodically photographed during damaging

EPS. Note that the Z-discs begin to widen before streaming is seen at 40 mins after application.

(Scale bar = 10 m)

Supplementary Method

Program for subtracting the -actinin channel image from the FlnC channel image

For the lesion area quantification described in the main Methods, we subtracted the -actinin

channel image from the FlnC channel image. The majority of the Z-disc signal was eliminated

in the resulting image, permitting an easier subsequent application of the intensity threshold

mask on the remaining lesion areas for quantification. This subtraction works well manually

in both ImageJ and Photoshop, however in order to process images in batch, we wrote a

program. The program further optimized the images for subtraction by adjusting the intensity

of the -actinin channel image before subtraction, bringing both images to a similar average

intensity. This was done to avoid artefacts that could result from this subtraction, as a

consequence of the unavoidable overall differences in intensity between the different channels

during acquisition.

In the program, the background image B (-actinin channel) is subtracted from the foreground

image A (FlnC channel) as follows: the luminance of the background image is scaled by a

factor f. This factor is chosen so that it minimizes the average difference in luminance of

pixels at the same coordinate. More precisely: Let I be the set of coordinates of both images—

assuming they both have the same resolution—and let (ai)i∈I and (bi)i∈I be the luminance

values of pixels in A and B, respectively. Then f satisfies:

 minf∈R 
i∈I

 |ai−fbi|.

The new image C results by subtracting the luminance-adjusted fB from A, pixel-wise:

 ci:=max{0,ai−fbi} ()∀i∈I

This procedure is invariant under the exposure of B—as long as it is not under- or

overexposed—which makes it useful for reproducible results. The minimum of linear

distances (rather than quadratic, for example) in the definition of f was chosen because it

reduces over-compensation due to significantly brighter parts in A—the parts that should be

revealed.

Source Code follows on next page.

import Codec.Picture

import Codec.Picture.Types

import Control.Monad

import Control.Parallel.Strategies

import Data.Either.Combinators

import Data.List

import Debug.Trace

import System.Environment

import System.FilePath

import System.FilePath.Glob

import System.Exit

import qualified System.Info

type DefPixel = Pixel16

type DefImage = Image DefPixel

createDefImage = ImageY16

-- Missing:

-- CMYK8, CMYK16, YCbCr8, F, RGBF

toDefImage :: DynamicImage -> DefImage

toDefImage (ImageY16 img) = img

toDefImage (ImageY8 img) = pixelMap promotePixel img

toDefImage (ImageYA8 img) = pixelMap (promotePixel . dropTransparency)

img

toDefImage (ImageYA16 img) = pixelMap dropTransparency img

toDefImage (ImageRGB8 img) = pixelMap (promotePixel . compLuma) img

toDefImage (ImageRGBA8 img) = pixelMap (promotePixel . compLuma .

dropTransparency) img

toDefImage (ImageRGB16 img) = pixelMap compLuma img

toDefImage (ImageRGBA16 img) = pixelMap (compLuma . dropTransparency) img

toDefImage _ = error "Unhandled image type"

-- Override some computeLuma instances for more efficiency: Rationals are

slow.

genericRbgLuma r g b = floor $ 0.3 * fromIntegral r +

 0.59 * fromIntegral g +

 0.11 * fromIntegral b

class MyLuminizable a where

 compLuma :: a -> PixelBaseComponent a

instance MyLuminizable PixelRGB16 where

 compLuma (PixelRGB16 r g b) = genericRbgLuma r g b

instance MyLuminizable PixelRGBA8 where

 compLuma (PixelRGBA8 r g b _) = genericRbgLuma r g b

instance MyLuminizable PixelRGB8 where

 compLuma (PixelRGB8 r g b) = genericRbgLuma r g b

halveList list = (fsts, snds)

 where

 half = length list `div` 2

 fsts = take half list

 snds = drop half list

makePairs :: [a] -> Either String [(a, a)]

makePairs xs = if even (length xs)

 then Right $ uncurry zip $ halveList xs

 else Left "Odd number of arguments."

errExit :: String -> IO a

errExit err = usage >> putStrLn err >> exitFailure

orAbort :: Either String a -> IO a

orAbort (Left err) = errExit err

orAbort (Right x) = return x

usage :: IO ()

usage = do

 progName <- getProgName

 putStrLn $ progName ++ " foreground1 [foreground2 ...] background1

[background2 ...]"

readImages :: [String] -> IO (Either String [DefImage])

readImages = liftM sequence . mapM (liftM (mapRight toDefImage) .

readImage)

totalBrightness :: DefImage -> Integer

totalBrightness img = sum [fromIntegral (brightnessAt img x y)

 | x <- [0..width-1]

 , y <- [0..height-1]

]

 where width = imageWidth img

 height = imageHeight img

subtractImage :: (DefImage, DefImage) -> Either String DefImage

subtractImage (img1, img2) =

 let maxFac = fromIntegral (totalBrightness img1) / fromIntegral

(totalBrightness img2)

 fac = optimize (linearCost img1 img2) 0 maxFac

 width = imageWidth img1

 width2 = imageWidth img2

 height = imageHeight img1

 height2 = imageHeight img2

 in if width == width2 && height == height2

 then Right $ generateImage (newPixies fac img1 img2) width height

 else Left "Image Dimensions don't match."

--cm :: Monad m => (a -> m [b]) -> [a] -> m [b]

--cm f xs = liftM concat $ map f xs

concatMapM f = liftM concat . mapM f

parallelList = withStrategy (parList rdeepseq)

main = do

 filePaths <- if "mingw" `isPrefixOf` System.Info.os

 then getArgs >>= concatMapM namesMatching

 else getArgs

 images <- readImages filePaths

 imagePairs <- orAbort $ images >>= makePairs

 when (null imagePairs) (errExit "No arguments given.")

 resultImages <- orAbort $ sequence $ parallelList $ map subtractImage

imagePairs

 let newNames = map (flip replaceExtension ".out.png") filePaths

 mapM (uncurry savePngImage)

 (zip newNames

 (map createDefImage resultImages)

)

sub :: Pixel16 -> Pixel16 -> Pixel16

sub p1 p2 = if p1 >= p2 then p1 - p2 else 0

mult :: Float -> DefPixel -> DefPixel

mult f p = m p

 where m = round . (f*) . fromIntegral

newPixies :: Float -> DefImage -> DefImage -> Int -> Int -> DefPixel

newPixies fac img1 img2 x y = rv

 where p1 = pixelAt img1 x y

 p2 = pixelAt img2 x y

 rv = p1 `sub` (fac `mult` p2)

brightnessAt :: DefImage -> Int -> Int -> Int

brightnessAt img x y = fromIntegral (pixelAt img x y)

quadraticCost img1 img2 f = sum $ map square $

 [fromIntegral (brightnessAt img1 x y)

 - f * fromIntegral (brightnessAt img2 x y)

 | x <- [0..width-1]

 , y <- [0..height-1]

]

 where width = imageWidth img1

 height = imageHeight img1

 square x = x * x

linearCost img1 img2 f = sum $ map abs $

 [fromIntegral (brightnessAt img1 x y)

 - f * fromIntegral (brightnessAt img2 x y)

 | x <- [0..width-1]

 , y <- [0..height-1]

]

 where width = imageWidth img1

 height = imageHeight img1

optimize :: (Float -> Float) -> Float -> Float -> Float

optimize cost lo hi = optimize' cost lo hi (cost lo, cost mid, cost hi)

 where mid = (lo + hi) / 2

-- Precision of optimize/optimize' (x-wise)

eps = 0.02

optimize' :: (Float -> Float) -> Float -> Float -> (Float, Float, Float) ->

Float

optimize' _ lo hi _ | hi - lo < eps = (lo + hi) / 2

optimize' cost lo hi (ylo, ymid, yhi) =

 let xs = map (\i -> lo+i*(hi-lo)/4) [0..4]

 ys = [ylo, cost (xs !! 1), ymid, cost (xs !! 3), yhi]

 maxY = minimum ys

 maxI = head $ filter ((maxY ==) . (ys !!)) [0..4]

 loI = max 0 (maxI - 1)

 hiI = min 4 (maxI + 1)

 in optimize' cost (xs !! loI) (xs !! hiI) (ys !! loI, ys !! (loI + 1),

ys !! hiI)

opt' :: (Float -> Float) -> Float -> Float -> Float

opt' cost lo hi =

 let n = 20

 xs = map (\i -> lo+i*(hi-lo)/fromIntegral n) [0 .. fromIntegral n]

 ys = map cost xs

 maxY = minimum ys

 maxI = head $ filter ((maxY ==) . (ys !!)) [0..n]

 in trace (concatMap ((++"\n").show)$ zip xs ys)

 $ xs !! maxI

