SUPPLEMENTARY FIGURES

Exploration of nucleosome positioning patterns in transcription factor function

Kazumitsu Maehara¹ and Yasuyuki Ohkawa¹*

¹Department of Advanced Medical Initiatives, JST-CREST, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan.

*To whom correspondence should be addressed. Tel: +81-92-642-6216; Fax: +81-92-642-6099; Email: yohkawa@epigenetics.med.kyushu-u.ac.jp

Figure S1 | Nucleosome density estimates.

(a) Schematic depiction of the work flow for average nucleosome density estimation. First, chromatin is fixed and digested by MNase to obtain mono-nucleosome sized DNA fragments. The samples are deproteinized, deep sequenced and the DNA mapped onto the reference genome. Next, the nucleosome detection frequency is averaged at all defined anchor points (e.g. TSSs, TFBSs). Finally, NP is predicted by the smoothed density profile of the nucleosomes.

(b) DNA fragment size of the ChIP-Seq (RNAP2-S5ph) samples. DNA fragments of mononucleosome size (164 ± 12 bp; mean \pm standard deviation) were obtained.

(c) Mapped sequence reads around the *Eef1a1* gene locus. An example of mapped deep sequence reads of fixed MNase-Seq at the *Eef1a1* locus is shown. The blue/red boxes indicate the forward/reverse stranded mapped reads, respectively, on the mouse genome. (d) Nucleosome densities around TSSs determined by Asp et al. using Mnase-digested input control DNA from ChIP-Seq analysis of C2C12 cells. Myotube and myoblast replicates (thin pink/grey lines) are shown together. Each average density is shown as bold red/black lines. (e) Nucleosome densities around the CTCF binding site. Comparisons of NP estimates using a simple count of the fragment mid-point (grey), fragments pile-up (dotted), or smoothed fragment mid-point by a Gaussian kernel (solid). TFBS data were obtained from the ENCODE project. (f) DNA fragments of non-fix samples were of mono-nucleosome size (154 \pm 11 bp).

 AP1_01
 AP1_C
 AP1_Q2
 AP1_Q4
 AP1_Q6
 AP1EJQ2

 AP4_01
 AP4_Q5
 AP4_Q6
 AREB6_01
 AREB6_02
 AREB6_03

 ATF_01
 ATF6_01
 BACH1_01
 BACH2_01
 BRACH_01
 BRACH_01

 ATF_01
 ATF6_01
 CDPCR3_01
 CDPCR3HD_01
 CEBP_02
 CEBP_C
AML1_01 AHR_01 AHRARNT_02 M AP2_Q6 AP2ALPHA_01 and may while we where AREB6_04 ARNT_01 ARNT_02 white aconfigurase CDP_02 CDPCR1_01 CDPCR3_01 CEBP_C CARTI 01 CDPCR3HD_01 CEBP 01 CEBP Q2 ~ht CHOP_01 CHX10_01 CMYB_01 COMPL01 COMPL01 COUP_01 CP2 01 M CETS1P54_01 4 CEBPB_01 CEBPB_02 CEBPA 01 war hours ramply an marth of marting any has something and with an and and madipan mohila CREBP1_01 CREL_01 E2F_01 CREB 02 CREB Q2 CREB_Q4 CREBP1_Q2 CREBP1CJUN_01 CREB_01 E2F 02 MAM South of the of WM WW horniphos marchar way was and WAR AN 6Anno wohilors EN1_01 E47 E47_02 EGR1_01 EGR2_01 EGR3_01 ELK1_01 ELK1_02 E2F_03 E4BP4 01 walnut Maron EVII_06 mphone MM Wir -AA Ma ER_Q6 EVI1_01 EVI1_05 FAC1_0 FOXD3_01 FOXJ2_01 myth لمهير soly -th man FOX04_01 F0X04_02 FOXO3_01 FOXJ2_02 FOXO1_02 FREAC2_01 FREAC3_01 FREAC4_01 FREAC7_01 1h AT -J.L M the 4 W GATA_C GATA1 03 GATA1 04 GATA1 05 GATA3 01 GATA1 01 GATA2 01 GATA6 01 Contraction GFI1 01 GATA1 02 - walling sonthing mangar Anthon Ambow nala 1. nhà HFH1_01 HFH3_01 HLF 01 GR Q6 GRE C HAND1E47_01 HEN1_01 HEN1 02 HMX1_01 HNF1 01 we wanty 1 ty man M man 15F2_01 the HNF3B_01 HOXA3_01 HNF1_C HNF4_01_B HOX13_01 HSF1_01 IK1 01 ANAMA And por way and male 2010 Marca apotinos samptorepe anolimac whith LUNI_01 IK2_01 IK3_01 IRF1_01 IRF2_01 IRF7_01 ISRE_01 LHX3_01 LMO2COM_01 LMO2COM_02 - All LM02COM_01 wh sym. Myma mpho MEIS1AHOXA9_01 MEF2_03 MEF2_04 LYF1_01 MAX_01 MAZR_01 MEF2_01 MEF2_02 MIF1_01 MRF2_01 MSX1_01 MYOD_G6 MYOGNEL_01 MZFL_01 whith MYCMAX_03 MRIF2_01 MSX1_01 MYB_06 MYCMAX_01 MYCMAX_02 MYCMAX_03 million with me south was NFY_01 NFY_C NFY_OF NFAT_06 NFE2_01 NFKAPPAB_01 NFKAPPAB50_01 NFKAPPAB65_01 NFKB_C NFKB_Q6 NGFIC 01 NKX22_01 NKX25 01 NKX3A 01 NKX61_01 NMYC 01 NKX25_02 AN ANY my way when we want when so when we man phon W/ NRF2_01 OCT_C OCT1_01 OCT1 03 OCT1_04 OCT1_05 OCT1_06 OCT1_07 man malitan molifico o 11 where were the man ~hh why P33.02 PAX2.01 PAX2.02 PAX3.01 P53_01 P300_01 OCT1_Q6 PAX4_01 PAX4_02 white POU6F1_01 POU3F2_02 PAX6_01 PBX1_C PAX4_03 PAX5_01 ran many Muma and f mas RORA2_01 14 RREB1_01 YA PARG_02 REXT 01 ROAZ 0 PARG 03 wyphan proved management according to according on June W SPZ1_01 SOX9_B1 SREBP1_01 RSRFC4 01 S8 01 SEF1_C SP1_01 SREBP1 02 SOX5 01 Mm M. STAT_01 warden andflow h SRY_02 SRY_01 2 STAT_01 STATI_01 STATI_03 STAT3_01 STAT3_02 SRF C SRF 01 SRF Q6 ţ Mho AMAMAG ~~~ STAT5B 01 STAT6_02 TATA C STAT4_01 STAT5A 01 STAT5A 02 TAL1ALPHAE47_01 TAL1BETAE47_01 TAL1BETAITF2_01 TATA 01 STAT4_01 STAT5A_01 STAT5A_02 STAT5B_01 STAT5B_02 TAL1ALPHAE47_01 TAL1BETAE47_01 TALCBETAE47_01 TALCBETAE47_01 TALCBETAE47_01 TALCBETAE47_01 TAL1BETAE47_01 TAL1BETAE47_01 TAL1BETAE47_01 TAL1BETAE47_01 TALCBETAE47_01 T 11 USF_C maplin

4

Figure S2 | PANDs of 258 TRANSFAC *cis*-regulatory elements.

PANDs of +/-500 bp from the *cis*-regulatory element center of 258 types of TFBS. Coordinate axes are omitted to show only the shapes of the PANDs. Black and brown lines indicate myoblast and myotube PANDs, respectively. The labels highlighted in blue indicate nuclear receptors.

Figure S3 | Similar NP patterns were extracted from different data set of mouse C2C12 cells

(a) The top five PCs reached a ~80% cumulative contribution rate. The x-axis is the number of PCs used and the y-axis is the cumulative contribution rate. The orange line is our MNase-Seq data and the green line is from the data of Asp et al. The dotted lines indicate five PCs (vertical) and the contribution rate of 0.8 (horizontal).

(b) The similarity between PCs was measured by dot product between PC vectors from our data (PC1-5) and the data of Asp et al. (PC1'-5'). Each height of a vertical bar labelled PC1-5 indicates the sum of squared values of dot product (max: 1.0) between PC1 vs. PC1'-5', PC2 vs. PC1'-5' and so on.

Figure S4 | Reproducibility of five PCs

The reproducibility of the five NP patterns using replicates of MNase-seq data is shown as series of stacked bar plots. The different colours of the stacked bars represent the reconstruction ratio (max=0.2) of PC1-5 from bottom to top. The reconstruction ratio was calculated by applying the inter-product of the five PCs and each reproduced PC1-5. The replicates were for C2C12 cells under growth (four replicates) (prefix "G"; middle part of the bars) and differentiation (four replicates) conditions (prefix "D"; left part) and Asp. data (with "SRR" prefix). G_R128, D_128 were used in main results and G-fix was also used in Figure 1b.

Figure S5 | DNA sequence bias makes pseudo signal peak in MNase-Seq data

(a) The observed ratio of each nucleotide around the PPARA motif in the mouse genome. The x-axis indicates relative position from the PPARA motif center, ranging from -15 to +15 bp. The y-axis indicates proportion of observed nucleotides. The colour of the area indicates each nucleotide (G: yellow, C: orange, T: purple, A: green). The position of the highly biased AAA sequence that has high MNase digestion preference is marked at the top in red.

(b) The A/T digestion bias produces the spiky artifact seen in the MNase-Seq data. The MNase-Seq data of the C2C12 myoblast state was used for this example. The x-axis indicates relative position from the PPARA motif. To compare signals that have different scales, the y-axis is shown as centerd and scaled (mean=0, s.d.=1) signal intensities/frequency of the nucleotide frequency of C/G. The black and red lines are the +82 or -82 bp-shifted C/G sequence frequency. The shift was the requirement for estimating nucleosome center. The highest MNase-Seq signal spikes appeared just between the shifted high C/G biased point (AAA).

Figure S6 | PC1 is a critical component to predict gene expression

The scatterplots of PC scores and the scaled and centerd average gene expression values are shown. The x-axis of first box (top-left) indicates predicted expression level by PCR, and the others indicate PC scores of each PC. The y-axis is the scaled and centerd gene expression level. The density of the points is represented by colours, from grey (lowest), through blue, red, orange to yellow (highest).

Figure S7 | Ideal NP pattern for gene expression consists of PC1 and PC5

The weights of five the PCs contained in the ideal NP pattern for gene expression derived by ridge regression analysis are shown. The height of bars (y-axis) indicates the dot product calculated between five PCs and each ideal NP pattern of λ . The bottom labels indicate the λ values used for each ridge regression model. The bars in each λ are in the order PC1-5 (black-grey).