Supplementary information

Msp40 effector of root-knot nematode manipulates plant immunity to facilitate parasitism

Junhai Niu^{1, 2#}, Pei Liu^{1#}, Qian Liu¹, Changlong Chen¹, Quanxin Guo¹, Junmei Yin^{2,}, Guangsui Yang², Heng Jian^{1*}

 Department of Plant Pathology and Key Laboratory of Plant Pathology of Ministry of Agriculture, China Agricultural University, Beijing 100193, China
Tropical Crops Genetic Resources Institute, CATAS / Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Danzhou, Hainan

571737, China

#: Both authors contributed equally.

*: Corresponding author

Prof. Heng Jian

Department of Plant Pathology, China Agricultural University, Beijing 100193, P. R.

China

Phone and Fax: 86-10-62731102

E-mail: <u>hengjian@cau.edu.cn</u>

Supplemental Table S1.

The platforms about nematodes genome and transcripts used for *Msp40* homologies screening.

Species	Types	Blast server links
M. incognita	Root-knot nematode	http://meloidogyne.toulouse.inra.fr/blast/blast.html
M. hapla	Root-knot nematode	http://www.pngg.org/cbnp/index.php?option=com_wrapper&Itemid=8
M. floridensis	Root-knot nematode	http://nematodes.org/genomes/meloidogyne_floridensis/
G. rostochiensis	Potato cyst nematodes	http://nematode.net/NN3_frontpage.cgi?navbar_selection=speciestable
		&subnav_selection=Globodera_rostochiensis
G. pallida	Potato cyst nematode	http://www.sanger.ac.uk/cgi-bin/blast/submitblast/g_pallida
H. glycines	Soybean cyst nematode	http://nematode.net/NN3_frontpage.cgi?navbar_selection=speciestable
		&subnav_selection=Heterodera_glycines
B. xylophilus	Pine wood nematode	http://www.genedb.org/blast/submitblast/GeneDB_Bxylophilus
C. elegans	Free-living nematode	http://www.wormbase.org/tools/blast_blat
Other nematode species		http://blast.ncbi.nlm.nih.gov/Blast.cgi

Supplemental Table S2. Overview of the reference and target genes used in this

Genes	Primers	Primer sequences (5'–3')	Length	Usage	
Msp40	Msp40 cds F	GGTCATTCTTATAACTAAAAACCTTCAAAC	1150bp	Full length cDNA and DNA	
(AY422833)	Msp40 cds R	AATTACGAGAAACACGGATGAATAGAT		cloning	
	M40 qRT-F1	gcaaagaatcatgtaatggggatactg 244b		qRT-PCR	
	M40 qRT-R1	TGAGCACAATCAGAAATCATAGTCGGT			
	M40 Sb F	CCATTATTGCTTTGCTTACCCTT 857bp		Southern blotting	
	M40 Sb R	GCACAATCAGAAATCATAGTCGGTT			
	M40 F1 KpnI	CGG <u>GGTACC</u> ATGGAGGAGGAGGATAAGGAAG 945bp		Subcellular localization	
	M40F2 KpnI	CGG <u>GGTACC</u> ATGGAGGAGGAGATAAGGGAGA	882bp		
M40 R1 XbaI		TGC <u>TCTAGA</u> AGCAGCAGCTGCTGCAAGT			
Msp40 P1S		AAGATGCTGAGAGTGCAGAGGAG 356bp		in situ hybridization	
	MSP40 P1A	CTTGTCATCTTCCTCCTTTTTATCC			
	M40-NcoI	TTG <u>CCATGG</u> ATGGAGGAGGATAAGGAAGACAT 948bp		Host expression	
	M40-BstE II	TTT <u>GGTGACC</u> TTAAGCAGCAGCTGCTG			
	TS1-BglII	CCAGATCTAAGATGCTGAGAGTGCAGAGGAG	354bp	In vivo RNAi 1	
	TS1-EcoRI	CCGAATTC CTTGTCATCTTCCTCCTTTTTATCC	_		
	TS1- SalI	CC <u>CTGCAGGTCGAC</u> CTTGTCATCTTCC			
	TS1-BamHI-BstE II	AATT <u>GGATCCGGTGACC</u> AAGATGCTGAGAGTGC			
	TS2 -BgIII TTG <u>AGATCT</u> CATGTAATGGGGATACTGC		292bp	In vivo RNAi 2	
	TS2- EcoRI	TTG <u>GAATTC</u> AGCTGCTGCAAGTCTCTT			
	TS2 -SalI	AAGTCGACAGCTGCTGCAAGTCTCTT	_		
	TS2-BamHI-BstEII	CGC <u>GGATCCGGTTACC</u> CATGTAATGGGGATACTGC	_		
Msp40_SmaI		TAT <u>CCCGGG</u> ATGGAGGAGGATAAGGGAG 882bp 5		Suppression of PCD	
	Msp40_SalI	CTAGTCGACTTAAGCAGCAGCTGCTGCA	_		
a -Tublin	Mi Tub qRT-F	AAAAGAGGCTGAGGGTTGTGATTG	206bp	qRT-PCR (Control)	
(CK983765)	Mi Tub qRT-R	GAACAGAAAGAGTTGCGTTGTAGGG			
CHAS intron	CHAS F	CGTTITATCTTAATTGGCTCTTC 1312br		RT-PCR	
(EU049859)	CHAS R	CCTGCAAATTGACCAAAAAAG			
FRK1	FRK1 qRT_F	TGCAGCGCAAGGACTAGAG	108bp	qRT-PCR	
(AT2G19190)	FRK1 qRT_R	ATCTTCGCTTGGAGCTTCTC			
PAD4	PAD4 qRT_F	GCCGCTTTCACCGCACTTTGG	102bp	qRT-PCR	
(AT3G5243)	PAD4 qRT_R	GAGAGATTGGTTTCCGAGCAGAGG			
WRKY29	WRKY29 qRT_F	ATCCAACGGATCAAGAGCTG 12		qRT-PCR	
(AT4G23550)	WRKY29 qRT_R	GCGTCCGACAACAGATTCTC	_		
WRKY33	WRKY33 qRT_F	GCTGCTATTGCTGGTCACTCC	201bp	qRT-PCR	
(AT2G38470)	WRKY33 qRT_R	GGTCTCCTCGTTTGGTTCTTCC		-	
<i>CYP81F2</i> CYP81F2 qRT_F		GTGAAAGCACTAGGCGAAGC	183bp	qRT-PCR	
(At5g57220)	CYP81F2 qRT_R	ATCCGTTCCAGCTAGCATCA			
UBP22	UBP22 qRT_F	GCCAAAGCTGTGGAGAAAAG	159bp	qRT-PCR (control)	
(AT5G10790)	UBP22 qRT_R	TGTTTAGGCGGAACGGATAC	7		

study. (The underlined regions represent cleavages sites of restriction enzymes.)

Supplemental Fig S1. Alignment analysis for *Msp40* **homologies.** (A) Genomic structure of the *Msp40* homologies in five *Meloidogyne* species, exons are represented by black boxes and introns by a line. (B) Phylogenetic tree constructed by the neighborjoining method, based on the derivated Msp40-like proteins from five *Meloidogyne* species. The three Msp40-based clades corresponding to the divergence for reproduction modes and cytogenetical karyotypes among the tested species. "#", data referenced from the previous description mainly (Castagnone-Sereno, 2006), *M. floridensis* belongs to diploid with only one karyotype (2n=36) (David et al., 2013), and other *Meloidogyne* species contained diverse chromosome numbers and aneuploid. The triploid and tetraploid were putative karyotypes.

В		Identity	Reproduction Modes	Karyotypes #		
		%		Diploid	Triploid	Tetraploid
	95	Ma 94.97		35-38	45-48, 50-56	
	59	. Mj 94.67	Mitotic parthenogenesis	41-48		
	Ĺmi	. <mark>Mi</mark> 100	100	30-39	40-48	
	4	Mf 88.61	Meiotic parthenogenesis	36		
		.Mh 51.37	Amphimixis and /or meiotic parthenogenesis	26-36 30-37	42-48	56, 68
	0.4 0.3 0.2 0.1 0).0		1.		E.

Supplemental Fig S2. Subcellular localization of MiMsp40 in plant cells. *MiMsp40* cDNA with and without signal peptide-coding sequence were fused to the joined GFP reporter gene respectively, and expressed in onion epidermal cells by particle bombardment. GFP fluorescence is mainly localized in the cytoplasm and the nucleus for both constructs.

Supplemental Fig S3. Effect of plant host-derived RNAi of *MiMsp40* **on** *M. incognita* **infection.** (A) Root galls development of control (WT) and transgenic lines (TS1, TS2) of two different *MiMsp40* dsRNA cassette (TS1 RNAi and TS2 RNAi). (B) RT-PCR of the single-stranded CHAS intron of *MiMsp40* dsRNA hairpins confirmed the expression of TS1 and TS2 RNAi constructs in independent transgenic *Arabidopsis* lines.

Α

В

