S1 Table

Notations	Parameters	Units	Values
r_{\min}	minimum size of roughness element	m	10-7
$r_{\rm max}$	maximum size of roughness element	m	$10^{-3,a}$
D	fractal dimension for pore size distribution	-	$Vary^b$
$\bar{\Phi}$	mean surface porosity	-	$\begin{array}{c} \mathrm{Vary^b}\\ \mathrm{Vary^b}\\ 5 \times 10^{-4} \end{array}$
l_p	size of a patch	m	5×10^{-4}

Table 1. Parameters for rough surface domain

Parameters used to generate roughness domain.

^a We have used 10^{-3} m for all simulations as the largest roughness domain except for the comparison with data of [1] to consider their sample size, 50×10^{-3} m.

^b Values of D and $\bar{\Phi}$ vary for different simulations and the values are chosen under considerations of experimental data to be compared (such as for Tuff rock (Fig. 3 in the main text), D = 1.4 and $\Phi = 0.1$ are used as a single patch and for sandy soil (Fig. 9 in the main text) D = 1.35 and $\bar{\Phi} = 0.4$ are used). Used values are given in the caption of each figure.

References

 Tokunaga TK, Wan J. Water film flow along fracture surfaces of porous rock. Water Resources Research. 1997;33(6):1287–1295.