S2 Table

Notation	Parameter	unit	value
$\mu_{\max}{}^i$	specific growth rate	hr^{-1}	Vary ^a
K_s^i	half-saturation constant	${ m mg.L^{-1}}$	Vary ^b
$Y_{\rm max}$	apparent yield	$g.g^{-1}$	0.44^{c}
α_m	ratio for maintenance rate	-	0.0129
$\bar{V_B}$	median cell volume	fl	0.4
$V_{\rm B,d}$	cell volume at division	fl	$2\bar{V_B}/1.433$
$V_{\rm min,d}$	minimal active cell volume	fl	$\bar{V_B}/5$
ρ	cell density (dry mass)	$fg.fl^{-1}$	290
R	size of microbial cells	$\mu { m m}$	1
D_0	nutrient diffusion coefficient	$\mathrm{mm}^{2}.\mathrm{hr}^{-1}$	2.4
v_0	cell velocity at bulk water	${ m mm.hr^{-1}}$	50.4
χ_0	chemotactic sensitivity	$\mathrm{mm}^{2}.\mathrm{hr}^{-1}$	180
β	by-product yield	$g.g^{-1}$	0.8

Table 2. Parameters for Individual Based Modelling (IBM)

Parameters used to simulate microorganisms. Most of parameters for individual cells are chosen from [1].

^a $\mu_{\text{max}} = 1.23$ hr⁻¹ is used for a single species and mutualistic trophic interaction. For the evaluation of microbial diversity, values are chosen uniformly spaced values in $\mathcal{U}[0.5\mu_{\text{max}}, 1.5\mu_{\text{max}}]$. ^b $K_s = 1.17$ mg.L⁻¹ is used for a single species. For the mutualistic trophic interaction, $K_{s,1} = K_{s,2} = K_{I,1} = 10^{-3}$ mg.L⁻¹ are used. For the evaluation of microbial diversity, values are logarithmically spaced values in $\mathcal{U}[10^{-2}K_s, K_s]$.

^c μ_{max} , K_s and Y_{max} for the Fig. 7A and Fig. 7C in the main text (Competitive trophic interaction) were used differently following the work of [2].

References

 Kreft JU, Booth G, Wimpenny JWT. BacSim, a simulator for individual-based modelling of bacterial colony growth. Microbiology. 1998;144(12):3275–3287. [2] Wang G, Or D. Trophic interactions induce spatial self-organization of microbial consortia on rough surfaces. Scientific Reports. 2014;4.