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The rough surface patch model (RSPM) is a model for patchy hydrated surfaces defined with

distributions of available water which sustains microbial life. The two-dimensional patchy domain

representation helps to simplify complex soil structure and still captures not only aqueous phase

configuration but also nutrient transport and microbial activities.

A patch. A patch represents a certain area on the surface and is assumed to be a uniform

domain with several representative measures (i.e. homogeneous inside). Embracing the surface

pore size distribution and its scale invariance property, the roughness of each patch is defined

and can be rewritten as multi-scale percolation systems or pore-solid-fractal (PSF) model [1–3].

Roughness of each patch is characterised with a fractal dimension D for the pore-size distribution

and the surface porosity Φ. When the size distribution of surface pore volume follows a power-law

with a fractal dimension D (i.e. N(r) ∼ r−D), the probability that a point on the surface belongs

to an angular pore with size X in the interval [r, r + δr] can be written as

Pr[r ≤ X ≤ r + δr] = Φ

∫ r+δr

r
N (X)dX ∼ Φr−Dδr, (1)

where N (r) is the probability density function of surface pore size r

N (r) =
1

A
r−(D+1). (2)

A is the normalising constant of the distribution, A =
∫ rmax
rmin

N (r)dr. rmin and rmax are length-

scale cutoffs: rmin is set to be 10−7 m to represent the minimum size of physical elements on

the rough surface (related to the size of clay particle) and rmax is given 10−3 m indicating the

maximum size of elements. These cutoffs are necessary for the model not only to avoid the
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divergence problem but also to describe the rarity of the large-scale structure and the minimum

size of roughness scale. Eq. (1) shows the surface porosity, Φ, is the proportion of angular pores

on the smooth surface and the fractal dimension, D, indicates the relative effects of large-scale

pore structure.

The effective water film thickness and the degree of saturation. The aim of the new

model is to calculate representative measures to describe hydration status of soil rough surface,

such as effective water film thickness and saturation degree. Unlike usual approaches in fractal

models, this model includes corner effects of angular pores. In PSF model and Brooks-Corey

model, corner effects of pores are ignored in calculations of water retention properties [2, 4–6]. In

these models, each pore gets completely desaturated after the critical matric potential with an

assumption that shape of pores are spheres. It can be a reasonable approach to achieve water

retention property of bulk soils in terms of quantitative measures. In reality, however, pores

possess angular shapes rather than spheres. Angular shapes enable soil surface to hold substantial

amounts of water and it enhances the hydraulic connectivity at the low saturation [7, 8].

Let’s assume that we have a small surface domain with size αlp
2, which corresponds to a

patch in the model. lp is the length scale of the patch and α is the shape factor; for square patch,

α = 1; for triangular patch, α =
√
3
4 . This surface might be smooth or rough. A completely

smooth surface is a domain without any surface pores and roughness (i.e. Φ = 0). To build a

rough surface, we assume that there are two different states on the surface, angular voids (pores)

and smooth surface (solids). Starting with a completely smooth surface without any voids, we

build pore or solid sections in different sizes following a size distribution, N (r). The fractions

p, s, and f (where p+ s+ f = 1) of the total area correspond to the proportion of pores, solids,

and undetermined or fractal, respectively, by borrowing the concept of fractal sections in the

multi-scale percolation systems [1]. Here, we keep the state, undetermined or fractal, to include

sub-structures at all scales. The surface porosity can be calculated as Φ ≡ p
p+s in the continuum

limit without the lower cutoff (i.e. rmin → 0). Accordingly, the number density of pores and solids

of size r can be written

Np(r) = N0
p

p

f
N (r) ∼ ΦN (r), (3)

Ns(r) = N0
s

s

f
N (r) ∼ (1− Φ)N (r), (4)

where N0
p and N0

s are normalising constants. Here, we made an assumption that mass fractal

dimension and the pore fractal dimension are the same.

2



We obtain the amount of water held in a single pore with the size r from two distinctive

physical processes, 1) capillary water at corners obtained from the Young-Laplace equation, 2)

absorbed water on the surface due to van der Waals interactions. For a simple representation of

angular pore, we assume that a pore element with size r is a square pyramid with the height H

and the base r. For generalising the model, H can be another variable which can be a function

of r or constant in the model. The shape of pores can be also different kinds of polyhedrons,

such as cubes or tetrahedrons, or can be irregular. In our model, we simply choose a square

pyramid to reflect the real geometry of surface roughness and to simplify calculations. For solid

elements, it is assumed to be a completely smooth surface so only absorbed water film would exist

on the solid fraction. When a matric potential, ψm, is given as an environmental condition, the

radius of meniscus curvature would be Rµ(ψm) = − σ
ψm

where σ is surface tension of water. The

absorbed water film thickness would be hµ(ψm) =
(
Asvl
6πψm

)1/3
where Asvl is Hamaker constant.

The matric potential determines the critical pore size, rc(ψm) = 2(Rµ(ψm) + hµ(ψm)), to get

a pore desaturated. In other words, pores with size smaller than rc(ψm) would be saturated

and pores with sizes above the critical value would be desaturated, with some capillary water

remaining due to corner effects. For a pore with size r and height H, the amount of water which

is held by capillarity is

V(r, ψm) =

{
V(r, ψm)s = 1

3Hr
2 where r ≤ rc(ψm)

V(r, ψm)d = 1
3Hr

2Θr(r, ψm) where r ≥ rc(ψm)
, (5)

where Θr is the saturation degree of an individual pore with size r,

Θr(r, ψm) =
(rc
r

)3
+ 3(4− π)

(
Rµ
r

)2 (
1− rc

r

)
+ 6

(
hµ
r

)(
1− r2c

r2

)
. (6)

The expected value of the total amount of water in the domain can be calculated following the

probability distribution, Eq. (2),

V(ψm) =

∫ rmax

rmin

[pV(r, ψm) + shµr
2]N (r)dr. (7)

Expected surface area of the patch is

A =

∫ rmax

rmin

(p+ s)r2N (r)dr. (8)

The effective water film thickness of each patch can be simply defined as V(ψm)/A

weff(ψm) =
V(ψm)

A =

∫ rmax
rmin

[ΦV(r, ψm) + (1− Φ)hµr
2]r−(D+1)dr

∫ rmax
rmin

r2r−(D+1)dr
. (9)
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The expected saturation degree of a patch can be written

Θ(ψm) =

∫ rmax
rmin

[ΦV(r, ψm) + (1− Φ)hµr
2]r−(D+1)dr

∫ rmax
rmin

[Φ1
3r

2H(r) + (1− Φ)hµr2]r−(D+1)dr
. (10)

Eq. (9) and Eq. (10) show that the physical measures of the effective water film thickness and the

saturation degree of each patch can be calculated solely by values Φ and D. When we consider

the shape factor H(r) is the same as r, extra parameters are only cutoff values, rmin and rmax.

In this work, we only consider the physical property of rough surface and its water-holding

capacity. In the model, effects of surfactants (surface active agents) can be also included. The

main property of surfactants is to lower the surface tension or to increase the contact angles [9,10].

For instance, Surfactin from Bacillus subtilis is known to change the surface tension of water from

72mM.m-1 to around 27mM.m-1 [9]. In Figure A, effects of lowering surface tension on effective

film thickness and microbial swimming speed are given. In the figure, we fixed the contact angle

as 0◦.

Connectivity of within patch aqueous habitats. Notwithstanding the averaging associated

with patch description, we seek to retain certain physical traits for a patch without detailed

modelling of the patch roughness. Hence, the degree of aqueous habitat connectivity in a patch

is described based on accessible surface pores (represented as films of certain thickness) that

supports flagellated motility. The accessibility of an individual pore can be determined from the

effective water film thickness of individual pore, Heff(r, ψm). When it is larger than the size of

microbial cell, R ≡ 1µm, this pore is accessible for microorganisms

Heff(r, ψm) =
V(r, ψm)

r2
=

1

3
H(r)Θr(r, ψm) ≥ R. (11)

When H(r) = r, the critical pore size, rca, for the accessibility where Heff(r
c
a, ψm) = R, can be

exactly calculated from a positive root of the quadratic equation by rearranging the Eq. (11). The

probability of occupation of the aqueous habitat area, aH at ψm would be

p(ψm) =
aH
Ap

=

∫ rca(ψm)
3R pHeff(r, ψm)r2N (r)dr∫ rmax

rmin
(p+ s)Heff(r, ψm)r2N (r)dr

= Φ

∫ rca(ψm)
3R V(r, ψm)N (r)dr∫ rmax
rmin

V(r, ψm)N (r)dr
. (12)

Here, we used total accessible area of the patch, Ap, as the expected area in the patch. In addition,

when rca(ψm) < 3R, the numerator is assumed to be zero. We determine the local connectivity

ξ(ψm, ~r) of the patch at ~r by using the occupation probability of aqueous habitats p(ψm) and

the global percolation probability P (ψm) which is determined by the largest cluster of aqueous
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Figure A. Effects of lowering surface tension on effective water film thickness and

microbial swimming speed. We have compared the effect of surface tension on effective water

film thickness of the surface that affects microbial swimming velocity on a patch (D = 1.8 and

Φ = 0.4). The surface tension of water is σw = 72mM.m-1 and the changed surface tension under

the effect of surfactants is σs. Three different cases are given, σs = 0.2σw, 0.6σw, and σw. (A)

The effective water film thickness decreases when surface tension is lowered as a result of

surfactant production at a given matric potential. (B) Microbial swimming speed is also slower

when surfactants are produced by microorganisms.
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habitats at domain scale.

ξ(ψm, ~r) =

{
P (ψm) if p(ψm, ~r) > pc(~r)

p(ψm, ~r)P (ψm) elsewhere
,

where p(ψm, ~r) as statistically averaged occupation probability of aqueous region in a patch and

it is calculated as the expected value of the pore area where microbial motility is enabled. In

the present work, we consider the percolation processes on the self-affine surface that have been

analytically and numerically investigated [11–14]. Previous studies have shown that the percolation

threshold pc on self-affine surface is dependent on Hurst’s exponent H (roughness parameter)

and pc is a stochastic variable with a mean value (ensemble averaged) 〈pc〉(H) and a variance

σ(H) regardless of system sizes. The mean value of 〈pc〉(H) monotonically decreases with H such

that 〈pc〉(H = 0) = 0.5 and 〈pc〉(H = 1) = 0.386 [15]. Thus, we draw a certain local percolation

threshold value pc(~r) for each patch [12]. Eventually, these considerations are used to classify a

patch with respect to flagellated motility as “motile” when film thickness is sufficient for motion,

and the hydrated roughness is connected, otherwise a patch is declared “sessile” and not cell

motion is allowed until hydration conditions change.

Diffusion process on rough surface patch model In this section, we provide the method

for the numerical calculation to obtain the flux of the nutrient at each site and the time evolution

of the concentration field. According to Fick’s law, the flux can be obtained as

~J(~r, t) = −D(~r)∇C(~r, t), (13)

where ~J(~r, t) is the flux due to the gradient of nutrient concentration C(~r, t). D(~r) is the diffusion

coefficient at ~r. Macroscopically, the value would be determined based on the distribution of

roughness elements. However, in terms of nutrient transport in the model, we already include

spatial effects in the effective water film thickness, thus the diffusion coefficient at bulk water D0

is used for the calculation. The rate of the nutrient change at time t can be obtained from the

divergence theorem,

dN(~r, t)

dt
=

∫

V
∇ · ~J(~r, t)d~r, (14)

=

∫

A
~J(~r, t) · d~a, (15)

where V(~r) indicates the patch at position ~r and d~a is the surface area that the nutrient moves

in/out due to Fick’s law.
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Figure B. A schematic diagram of the flux to/from patch at the position ~r on the hexagonal

lattice.

In the numerical calculation, this integration has to be discretised. When the water film thickness

at the given patch at position ~r is given as w(~r), the cross section area that the nutrient moves

can be assigned as

~an̂ = ∆lw(~r)n̂, (16)

where n̂ is the normal vector of the cross section area and ∆l is a length of the edge and is

related to the size of a patch. In our numerical simulation, we use the hexagonal lattice. The

hexagonal lattice is better suited to describe microbial behaviour in a probabilistic model since all

the neighbours are at the same distance. Figure B shows a detailed schematic diagram of the

calculation for the flux of one element on the hexagonal lattice. The nearest neighbour vectors on

a hexagonal lattice are denoted as êi where i ∈ [1, · · · , 6]. For example, the flux ~J · êi denotes the

flux from the current patch to the nearest neighbour êi. When the effective water film thickness is

different to the neighbour, the minimum value of the film thicknesses of the adjacent pair would

determine the cross sectional area,

~aêi = ∆lmin [w(~r), w(~r + lpêi)] êi. (17)

Equation (15) as a discretised expression can be written as

∆N(~r, t)

∆t
=

6∑

i=1

~J · ~aêi . (18)
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This leads to the next time step,

N(t+ ∆t) = N(t)−∆N(t), (19)

C(t+ ∆t) =
N(t+ ∆t)

V
, (20)

where V is the volume of the given patch and the position vector ~r is rewritten with indices of the

lattice.

Microbial growth (metabolism). On the soil rough surface domain, microbial activity is

added by using individual based modelling (IBM) [16]. Microbial growth of an individual cell can

be written as

µ̃b =
db

dt
=

(
µmax min[{ C1

K1
s + C1

,
C2

K2
s + C2

, · · · }]−m
)
b,

µ̃ = µmax min[{ C1

K1
s + C1

,
C2

K2
s + C2

, · · · }]−m = µ−m, (21)

where b is the biomass of the cell and its net growth rate is denoted µ̃. The net growth rate

is comprised with two factors, anabolism and maintenance. Anabolism could be interpreted as

conversion of nutrient to cell biomass with the rate µ which is a function of nutrient concentrations,

Ci, and limited with the maximum specific growth rate µmax. Here, we used the min function

from separate Monod growth terms to indicate the growth rate controlled by limiting nutrients.

When the concentration of certain nutrient i satisfies the condition, Ci � Ki
s for any time, this

nutrient i does not restrict the growth rate of the microorganisms. Maintenance of a cell is simply

given with a constant maintenance rate m.

Microbial growth rate can be determined by their substrates that can be used for growth.

However, there are some substances that are toxic for cells so it inhibits their growth. For this

case, the Eq. (21) can be extended as

µ = µmax min[{ C1

K1
s + C1

,
C2

K2
s + C2

, · · · }] min[{ K1
I

K1
I + C1

,
K2
I

K2
I + C2

, · · · }], (22)

where Kj
I is the inhibition coefficient with respect to the nutrient j. When a species excretes

by-product of their growth with rate β, we reduce the growth rate of the sce

Cell division. Cell division process is considered in IBM. The descriptive Danachie model is

applied to estimate cell volume [17]. The cell volume of an agent is given as V = ρb with cell

density ρ. When the cell volume V becomes greater than the volume at division, V d,min, the cell

produces two identical daughter cells in juxtaposition and the biomass of each daughter cell is

given as a half of the biomass of their mother cell.
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Death. If an agent is under starvation condition (µ̃ < 0), the agent keeps shrinking and its

biomass decreases due to maintenance. The agent dies if its biomass falls below a minimum value,

ρV min. On death, biomass is converted back into substrate with a conversion rate 1/Y max.

Swimming speed. Bacterial flagella motility on a roughness network has been studied with

regard to physical properties of pore geometries [18,19]. In these studies, the roughness network

is modelled with nodes as reservoirs of nutrients and links as water channels between reservoirs.

Since the physical shape of a pore is included in the model, the movement of a microorganism and

its motility could embrace mechanical aspects of soil environment to microbes. The previous model

successfully obtains thresholds of motility and velocity of bacteria in the channel by applying self

propulsion, cell-wall interaction, and capillary pinning force

v(ψm) = v0
FM − Fλ(ψm)− Fc(ψm)

FM
, (23)

where v0 is the velocity of a cell in bulk water and ψm is the matric potential that controls the

effective water film thickness. FM , Fλ, Fc are self propulsion, cell-surface interaction, and capillary

pinning force, respectively. Self propulsion has the same value of viscous drag force so that the

velocity of the microbes can be constant in bulk water. Cell-surface interaction and capillary force

are functions of the effective water film thickness.

In the current work the rough surface is modelled by patches with macroscopic properties. All

the microscopic structure of pore spaces are averaged and represented as a macroscopic variable,

such as effective water film thickness and saturation degree for each patch. From the effective

water film thickness, we calculate the swimming speed of microorganisms by adopting Eq. (23).

The equation provides the maximum swimming speed of a cell under a certain hydration condition

or roughness of the surface. When the system becomes rougher or dryer, the maximum velocity of

microbes decreases.

Chemotactic Motion. For the flagellated bacteria such as E. coli, the motion can be described

as follows. A bacterium runs, moves forward linearly, with a constant velocity for a random length

of time called the “running time”. Then it tumbles for a random length of time, the “tumbling

time”, and chooses a new direction randomly and repeats the cycle. The average running time

is about 1 sec in the absence of chemotaxis at bulk water, the average tumbling time is about

one tenth of the running time, about 0.1 sec, and their distributions decay exponentially [20].

Essentially, the tumbling selects a new direction, but the direction is chosen randomly because the

size of bacteria is too small to detect the local gradient of attractants. However, the running length
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increases when the microbial cell runs in a favourable direction. In the absence of favourable

directions, the movement of microbes can be described as a random walker. On the other

hand, when the preference on direction exists due to chemotaxis, a biased random walk can be

considered [21]. Based on the experimental results and the theory of biased random walks, the

effect of chemical attractants on individual cell paths has been studied [22–24]. The mean run

time τ increases exponentially with the change in the number of receptor-attractant complexes

Nb [25]

τ = τ0 exp

(
σ
DNb

Dt

)
, (24)

where τ0 is the mean run time in the absence of a chemical attractant and σ is the change in the

mean run time of a bacterium per rate of change of bound receptors. This implies that the number

of bound receptors defines the chemotactic potential. This model is known as the “receptor”

model [26]. The total derivative of the number of bound receptors is

DNb

Dt
=
∂Nb

∂t
+ ~∇Nb. (25)

When we consider the case with only one attractant, a single homogeneous cell receptor density

at equilibrium can be written as a Monod type of interaction,

Nb =
NTC

Kd + C
, (26)

where C is the attractant concentration, Kd is the dissociation equilibrium constant, and NT is

the total number of cell receptors for the ligand. In this model, the attractant is simply a nutrient

that microorganisms consume and the kinetic equation is described as a law of mass action at

equilibrium (Monod equation). This implies that the dissociation constant Kd is assumed to be

the same as half concentration constant Ks. Then the spatial derivation can be rewritten as

~∇Nb = ~∇
(

NTC

Ks + C

)
=

NTKs

(Ks + C)2
~∇C. (27)

When we consider the trophic interaction with multiple nutrients, we have to consider the gradients

of all nutrients. To simplify movement, the specific growth rate would be considered instead of

concentrations of all the nutrients in the trophic interaction model. We assume that the microbial

organisms would direct themselves towards the higher growth rate, as a result of chemotaxis

towards necessary nutrients. Thus (27) can be further rewritten

~∇Nb =
NTKs

(Ks + C)2
~∇C ≈ NT

µmax

~∇µ, (28)
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where µ = µmax min
[

C1
K1

s+C1
, C2
K2

s+C2

]
. So far, we have two assumptions on chemotactic movement

:

(1) The chemotactic potential is defined by the number of bound receptors.

φc(V ) = Nb =
NTC

Kd + C
. (29)

(2) When the chemotaxis is towards several nutrients that make growth of the cell by consumptions,

the change of number of bound receptors can be interpreted with the expected specific growth

rate (i.e. receptor binding model and the consumption of nutrients are the same kinetics).

~∇φc(V ) = ~∇Nb = a~∇µ, (30)

where a is the proportional constant.

Employing a quasi steady-state hypothesis, one can ignore the time derivative of the number

of bound receptors. As a result, when the microbe runs towards the direction x̂, the mean run

time τx̂ would be

τx̂ = τ0 exp

(
σNT

µmax

~∇µ · x̂
)
. (31)

By combing with Alt’s governing equations in the biased random walk model [21], σ can be

described as

σ ≡ χ0

2NT v
, (32)

where v is the velocity of the microbe and χ0 is the chemotactic sensitivity. The reciprocal of the

mean run time can be assumed as a tumbling probability

pt:x̂ = p0 exp

(
− χ0

2vµmax

~∇µ · x̂
)
, (33)

where p0 is the normalisation constant. Eq. (33) describes the probability of tumbling when the

microbe runs to the direction x̂. After tumbling, the microbe runs in another direction x̂′. The

probability of the new direction is independent of the gradient of the apparent growth rate.

The model aims at up-scalability of microbial life at pore scale. Describing individual tumbling

in large scale is unrealistic in terms of computational time. Thus, to simplify all the processes, we

approach the distribution of microbial cells using a probability distribution with an assumption that

the mean displacement after a certain time is determined based on the running time distribution

towards each direction. In a hexagonal lattice as a discretised case, there are six neighbours. The

unit direction to each nearest neighbour can be written as êi where i ∈ {1, 2, · · · , 6} and ê7 is
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defined the origin, ê7 ≡ (0, 0). The probability to move towards the direction êi, pi(t), can be

determined as

pi(t) =
wie

(α~∇µ(t)·êi)
∑7

j=1wje
α~∇µ(t)·êj

, (34)

where α is the factor for the chemotactic motion,

α ≡ χ0

2µmaxv(ψm)
. (35)

In the expression, v(ψm) is the velocity of microbe at the given matric potential ψm. In Eq. (34),

the weight factor wi is determined by effective water film thickness di(ψm)

wi =
di(ψm)∑7
j=1 dj(ψm)

, (36)

where d7 is the water film thickness of the current patch where the cell is. We assume that the

flux of the nutrients from each neighbour will weigh the chemotactic movements. When the water

film thicknesses of some neighbours are thinner than the size of microbial cell, w < R, we modify

the weight factor as follows since the patch is physically non accessible for the cell

w′i =





di(ψm)∑7
j=1 dj(ψm)

if di ≥ R

0 if di < R(∑
k,dk<R dk(ψm)

)
+d7∑7

j=1 dj(ψm)
if i = 7

.

By applying this weight factor, one can make the staying probability unity when the cell is trapped

in the patch due to physical barriers. On the other hand, when the structure is homogeneous, the

weight factor would be cancelled out and the distribution follows only the chemotactic probability.

In addition, when the chemotactic sensitivity is very low, (i.e. α→ 0), the system becomes a pure

diffusion system without chemotaxis and the microbial cells move based on the distribution of

water.

Based on the probability towards each direction, the expected displacement can be calculated

〈 ~X(t)〉 =
6∑

i=1

v(ψ)∆t pi(t)êi. (37)

Here, we do not use a continuous integration since the population size of patch and the migration

rate between patch are our interest in the model. The expected displacement would be accumulated

until it exceeds the patch size lp with the tortuosity effect:
∣∣∣∣∣
n∑

k=1

~X(k∆t)

∣∣∣∣∣ > τ(ψm)lp, (38)
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where τ(ψm) is the tortuosity of the patch defined from roughness and connectivity. This criterion

is simply given as a step function of the staying probability and it forces the agent to move to

the neighbour patch if the displacement exceeds the patch length. This part can be changed

to a stochastic process by applying the probability to escape from the current patch, given as

p(t) = e−〈X(t)〉/lp . The probability to move to neighbouring patch i from the current patch is

determined as

T·→i =
Xtot

i

∑6
j=1Xtot

j
, (39)

where Xtot
i =

∑n
k=1 | ~Xi(k∆t)|. As a result, we divide the time to stay at a given patch based on

Eq. (38) and the population distribution to the neighbour patch based on Eq. (39). A diagram

for the numerical calculation is given in Figure C.
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