Supplementary information

Novel terpenes generated by heterologous expression of bacterial terpene synthase genes in an engineered *Streptomyces* host.

Yuuki Yamada¹, Shiho Arima², Tohru Nagamitsu², Kohei Johmoto³, Hidehiro Uekusa³, Tadashi Eguchi³, Kazuo Shin'ya⁴, David E. Cane⁵ and Haruo Ikeda^{1§}

 ¹Kitasato Institute for Life Sciences, Kitasato University, Kitasato, Sagamihara, Kanagawa 252-0373, Japan, ²School of Pharmacy, Kitasato University, Shirokane, Minato-ku, Tokyo 108-8641 Japan,
³Department of Chemistry and Materials Science, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8551, Japan, ⁴National Institute of Advanced Industrial Science and Technology, Aomi, Koto-ku, Tokyo 135-0064, Japan, and ⁵Department of Chemistry, Box H, Brown University, Providence, RI 02912-9108, USA.

§ To whom correspondence should be addressed.

Figure S1. GC-MS of an *n*-hexane extract of *S. avermitilis* SUKA22 carrying $sclav_p0765$ (A) and EI-MS fragmentation od each peak (B). Three peaks, 3, 5, and 10 correspond to isoelisabethatriene B (3), hydropyerene (1) and hydropyrenol (2), respectively. A peak 2 is isoelisabethatriene.

Figure S2. GC-MS of an *n*-hexane extract of *S. avermitilis* SUKA22 carrying *sclav_p1169* (A) and EI-MS fragmentation of each peak (B). Four peaks (in blue), 1, 2, 4, and 7 correspond to prenyl- β -elemene (6), prenylgermacrene (7), clavulatriene A (4) and clavulatriene B (5), respectively. Two peaks 3 and 5 are prenylgermacrene and lobophytumin C,

Figure S3. GC-MS of an *n*-hexane extract of *S*. *avermitilis* SUKA22 carrying *sclav_p1407* (A) and EI-MS fragmentation of each peak (B). A peak 1 corresponds to isohirsut-1-ene (8).

Figure S4. GC-MS of an *n*-hexane extract of *S. avermitilis* SUKA22 carrying *slt18_p1880* (A) and EI-MS fragmentation of each peak (B). A peak 2 corresponds to isohirsut-4-ene (9).

Figure S5. GC-MS of an *n*-hexane extract of *S. avermitilis* SUKA22 carrying *slt18_p1078* and EI-MS fragmentation. An asterisk corresponds to cyclooctat-7(8),10 (14)-diene (**10**).

Figure S6. GC-MS of an *n*-hexane extract of *S. avermitilis* SUKA22 carrying *stsu_20912* (A) and EI-MS fragmentation of each peak (B). A peak 3 corresponds to tsukubadiene (11).

Figure S7. GC-MS of an *n*-hexane extract of *S. avermitilis* SUKA22 carrying *nd90_0354* (A) and EI-MS fragmentation of each peak (B). Two peaks, 1 and 2, correspond to odyverdienes A (**12**) and B (**13**), respectively

Figure S9. ¹H-¹H COSY of 1

Figure S10. ¹H-¹³C HMQC of 1.

Figure S11. ¹H-¹³C HMBC of 1.

Figure S12. Crystal structure of 1-epoxide.

Figure S14. ¹H-¹H COSY of 2.

Figure S15. ¹H-¹³C HMQC of 2.

Figure S16. ¹H-¹³C HMBC of 2.

Figure S17. ¹H-¹H NOESY of 2.

Figure S19. ¹H-¹H COSY of 3.

Figure S20. ¹H-¹³C HMQC of **3**.

Figure S21. ¹H-¹³C HMBC of 3.

Figure S23. ¹H-¹H COSY of 4.

Figure S24. ¹H-¹³C HMQC of 4.

Figure S25. ¹H-¹³C HMBC of 4.

Figure S26. ¹H-¹H NOESY of 4.

Figure S28. ¹H-¹H COSY of 5.

Figure S29. ¹H-¹³C HMQC of 5.

Figure S30. ¹H-¹³C HMBC of 5.

Figure S31. ¹H-¹H NOESY of 5.

Figure S33. ¹H-¹H COSY of 6.

Figure S34. ¹H-¹³C HMQC of **6**.

Figure S35. ¹H-¹³C HMBC of 6.

Figure S36. ¹H-¹H NOESY of 6.

Figure S38. ¹H-¹H COSY of 7.

Figure S39. ¹H-¹³C HMQC of **7.**

Figure S40. ¹H-¹³C HMBC of 7.

Figure S41. ¹H-¹H ROESY of 7.

Figure S43. ¹H-¹H COSY of 8.

Figure S44. ¹H-¹³C HMQC of 8.

Figure S47. ¹H-¹H COSY of 9.

Figure S48. ¹H-¹³C HMQC of 9.

Figure S49. ¹H-¹³C HMBC of 9.

Figure S50. ¹H-¹H ROESY of 9.

Figure S52. ¹H-¹H COSY of 10.

Figure S53. ¹H-¹³C HMQC of **10**.

Figure S54. ¹H-¹³C HMBC of 10.

Figure S56. ¹H-¹H COSY of 11.

Figure S57. ¹H-¹³C HMQC of **11**.

Figure S58. ¹H-¹³C HMBC of 11.

Figure S59. ¹H-¹H NOESY of 11.

Figure S61. ¹H-¹H COSY of 12.

Figure S62. ¹H-¹³C HMQC of **12**.

Figure S63. $^{1}H^{-13}C$ HMBC of 12.

Figure S64. 1 H (upper) and 13 C (lower) NMR of odyverdiene B (13).

Figure S65. ¹H-¹H COSY of 13.

Figure S66. ¹H-¹³C HMQC of **13**.

Figure S67. ¹H-¹³C HMBC of **13**.