
Supplementary Note 1.

Modeling of the NV relaxation process

Here we develop the theory of relaxation based sensing as used in the main text of this work. As we are considering
axial magnetic field strengths, B0, such that B0 ∼ 2πD/2γe ∼ 512G (where D = 2.87GHz is the zero-field splitting
of the NV spin, and γe = 17.6 × 106 s−1 G−1 is the electronic gyromagnetic ratio), only the |0⟩ ↔ | − 1⟩ transitions
of the NV spin will be appreciably excited, meaning we can disregard any population of the | + 1⟩ state. The time
evolution of the associated density matrix, ρT, is described by

dρT
dt

= −i
[
HT(t), ρT

]
, (1)

where ρT represents the combined density matrix of the entire NV spin + environment system. The full Hamiltonian
is given by HT = HNV +Hint +HE where HNV and HE are the self Hamiltonians of the NV centre and environment,
which, for a general spin bath environment are given by

HNV = 2πDP2
z + ωNVPz,

HE =
∑
i

ωESz,i +
∑
j>i

Sz,i ·Eij · Sz,j

 , (2)

respectively, where we have assumed that the both the z axis and the external magnetic field are aligned with the
principle axis of the NV spin, and Eij is the tensor describing the interaction between spins i and j in the environment,
which in general may include both exchange and magnetic-dipole interactions depending on the environment in
question.
Due to the highly localised nature of the NV wavefunctions, the coupling of the environmental spins to the NV

may be described by the magnetic dipolar interaction alone,

Hint =
µ0

4π
~γeγE

∑
i

1

R3
i

[
P⃗ · S⃗i − 3

1

R2
i

(
P⃗ ·Ri

)(
Ri · S⃗i

)]
,

≡
∑
i

(
P⃗ ·Bi · S⃗i

)
, (3)

where Bi is the symmetric magnetic dipole tensor describing the interaction of the NV spin with the ith environmental
spin, and includes both transverse and longitudinal components, proportional to Px,y and Pz of the NV spin respec-
tively. The latter have a pure dephasing effect, resulting in an additional contribution to the intrinsic dephasing rate
of the NV. As relaxation processes occur on timescales that are much longer that the typical interaction timescales
of the environmental constituents, essentially placing the system in a Markovian regime, the resulting dephasing will
be purely exponential. These effects may thus be modeled using a master equation approach for the reduced density
matrix of the NV spin, ρNV, as follows

dρNV

dt
= −i

[
H(t), ρNV

]
+

(
LρNVL† − 1

2

{
L†L, ρNV

})
, (4)

where, in the present context, L is the Lindbladian operator corresponding to a pure dephasing process on the NV
spin, and is given by L =

√
2ΓNVPz. The total dephasing rate due to both the local crystal environment and the

longitudinal coupling to any external environment is given by ΓNV = (T ∗
2 )

−1
+ΓNV−E

2 . The timescale of the intrinsic

dephasing process is described using the inhomogeneous linewidth, (T ∗
2 )

−1
, since the transverse phase accumulation

occurs in the absence of any pulsed microwave control. Subtle tuning effects that modify the sensitivity of this
technique to various parts of the environmental spectral density may be achieved by changing the intrinsic dephasing
rate via dynamic decoupling techniques.
In what follows, owing to the strong intra-environment and comparatively weak NV-environment couplings, we will

treat the coupling of the environment to the transverse components of the NV spin as a semiclassical oscillatory field
(these simplifications will be later justified in Supplementary Note 2),

Hint 7→ B (ωE) e
iωEt + B† (ωE) e

−iωEt,

≡ V (5)



where B (ωE) = bx (ωE)Px+by (ωE)Py; and bx and by are the x and y components of the magnetic field. The frequency
spectrum (ie the distribution of ωE) is determined by analysing the interaction between environmental constituents,
as described by HE (again, see Supplementary Note 2). To make the solution tractable, we change to the interaction
picture. The transformed equation of motion is given by

d

dt
ρI(t) = −i

[
VI(t), ρI(t)

]
+ ΓNV

(
PzρI(t)Pz − ρI(t)

)
, (6)

with the interaction Hamiltionian given by VI = eiHNVtVe−iHNVt.
We are then interested in determining the rate at which the NV spin relaxes to its equilibrium state under the

influence of the environment. We proceed by reducing the 3 × 3 system of first order linear differential equations
described by equation 6 to a higher order differential equation for P0 ≡ ρ00. We then wish to solve this equation,
together with the initial conditions of ρij = 0 unless i = j = 0, in which case we have ρ00 = 1, representing the initial
polarisation of the NV spin in the |0⟩ state.
To gain insight into the expected analytic solution for the spin-1 NV centre, we consider the simplified case in

which only one of the transitions of the NV centre is excited by the environment, and the other is assumed to be
too far detuned to have any effect on the population of the spin states. This simplifies the analysis dramatically,
yet demonstrates the main properties of relaxation based detection, and is applicable to a spin-1 system for cases of
significantly strong Zeeman splittings between the | ± 1⟩ states.
The equation of motion for P0(ωNV, ωE, b, t) ≡ ρ00(t) is

d3P0

dt3
+ 2ΓNV

d2P0

dt2
+

(
Γ2
NV + δ2 +

b2

2

)
dP0

dt
+ ΓNV

b2

2
P0 − ΓNV

b2

4
= 0, (7)

where b ≡
⟨
B2
⟩ 1

2 is the second moment of the strength of the effective magnetic field operator, B, and δ = 2πD −
ωNV − ωE is the detuning between the energy levels of the NV (2πD − ωNV) and environmental (ωE) frequencies.

A. Response to a monochromatic transverse field

1. Resonant case

For the case where the frequency of the environment is resonant with the transition frequency between the probe’s
spin states (δ = 0), the solution of Supplementary Equation 7 is

P0(ωNV, ωE, b, t) =
1

2
+

1

2
exp

(
−ΓNVt

2

)[
cosh

(
t

4

√
Γ2
NV − 2b2

)
+

ΓNV√
Γ2
NV − 2b2

sinh

(
t

4

√
Γ2
NV − 2b2

)]
. (8)

Typically the spin based environments in which we are interested couple weakly to the NV spin as compared with its
intrinsic dephasing rate, implying ΓNV ≫ b. In fact, even a strong coupling will also induce additional dephasing, so
even in a worst case scenario we are guaranteed ΓNV > b. In this limit, we have

P0(b, t)|δ=0 =
1

2
+

1

2
exp

(
− b2

2ΓNV
t

)
. (9)

Hence the resonant (and therefore maximal) longitudinal relaxation rate is given by

Γmax
1 =

b2

2ΓNV
=

1

2
T ∗
2

⟨
B2
⟩
. (10)

2. General case

When a finite detuning, δ, exists, we may examine relative importance of the terms within Supplementary Equa-
tion 7, subject to rescaling t in terms of the decay time from the resonant solution. That is, if we consider the

dimensionless variable T = Γmax
1 t and retain terms up to and including order O

(
b2

Γ2
NV

)
, the solution for an arbitrary

detuning becomes

P0(b, t)|δ=0 =
1

2
+

1

2
exp

(
−b2t

2

ΓNV

Γ2
NV + δ2

)
. (11)



For zero detuning, we recover the previous result (Supplementary Equation 10). For finite detuning, the relaxation rate
is modified by a Lorentzian factor with a FWHM of ΓNV. The complete decay profile is then obtained by integrating
this expression over the spectral density of the environment, implying that the δ-dependent relaxation rate acts acts
to filter out the environmental spectrum about δ ∼ 0.

B. Response to a transverse field with an arbitrary spectral density

Even without considering the specifics of the spectral density, the response of the NV spin to an arbitrary spin
bath can vary remarkably due the geometric proximity and arrangement of the bath relative to the NV centre. The
definitions of the NV spin relaxation and the corresponding filter function are given by

M(ωNV, t) =

∫
G(ωNV, ωE, t)S(ωNV, ωE) dωE, (12)

,and

G(ωNV, ωE, t) =

∫
P0(ωNV, ωE, b, t)Pb(b) db, (13)

respectively, where the filter function, G(ωNV, ωE) acts to filter out regions of the spectral density (as dependent on
the external field strength, B0 = ωNV/γe), and depends explicitly on the geometric arrangement of the environmental
constituents. Ultimately, given some measurement record and filter function, it is expression 12 that must be decon-
volved to reproduce the spectral density, S(ωE). In this section, we consider the effects of the geometric arrangement
of the environment on the filter function, G, for a general spectral density; and specific case of the internal P1 nitrogen
donor electron spin bath in type-1b diamond is considered below in Supplementary Note 2.

1. Response to an internal (bulk) spin bath

We note that the coupling of the NV to a bath spin located at some distance r may be written b ≡ β(θ, ϕ)/r3, where
the specific details of the angular dependence of the coupling are incorporated into the parameter β(θ, ϕ). We note
that is is necessary to omit further discussion of β until Supplementary Note 2, as different environmental processes
will be more readily detectable by the NV spin at different relative angles. Unlike the transverse (spin echo) case,
where the precession of the NV spin vector in the x − y plane is sensitive to all longitudinal field sources, the effect
on the longitudinal projection is dominated by the coupling to the nearest P1 electron spin. As such, we may write
Pb(b) = Pr(r)Pθ,ϕ(θ, ϕ), where r, θ, ϕ are the spherical coordinates associated with the distribution of field sources.
From Ref. 1, the distribution of distances from a given NV centre to its nearest spin impurity is given by

Pr(r) = 4πnr2 exp

(
4

3
πnr3

)
, (14)

where n is the average density of impurities in the bath. Substituting this expression into Supplementary Equation 12,
we find

M(ωNV, t) =
1

2
+

1

3

√
2πn

∫
β(θ, ϕ)

√
ΓNVt

Γ2
NV + δ2

G3,0
0,3

(
8β2(θ, ϕ)n2π2tΓNV

9 (Γ2
NV + δ2)

∣∣∣∣ −1
2 , 0,

1
2

)
×Pθ,ϕ(θ, ϕ) dθ dϕS(ωNV, ωE) dωE,

∼
∫

exp

(
−2π

3

(
2πn2t

)1/2 ⟨|β|⟩√ ΓNV

Γ2
NV + δ2

)
S(ωNV, ωE) dωE, (15)

where G is the Meijer-G function, and
⟨
|β|
⟩

=
∫
|β(θ, ϕ)|Pθ,ϕ(θ, ϕ) dθ dϕ. Thus, we identify the filter function

associated with environments inside the diamond lattice to be

Gin(ωNV, ωE) = Ain

√
ΓNV

(2πD − ωNV − ωE)2 + Γ2
NV

, (16)

where Ain is a constant, associated with the geometry of the bath, that may be renormalised.



2. Response to an external (surface) spin bath

In contrast to the bulk spin bath case, spins on the surface are unable to exist arbitrarily close to the NV centre.
Typically we consider samples in which NV centres exist at some depth h + δh below the surface, with h being the
mean depth, and δh a normally distributed variable with variance

⟨
δh2
⟩
≪ h2. In this case, an individual NV spin is

exposed to many bath spins, meaning that the effective coupling distribution, Pb(b), is normally distributed.
In this case, we may expand Supplementary Equation 11 for small t, which, upon substitution into Supplementary

Equation 12 and averaging over Pb(b) gives⟨
P0(t)

⟩
∼ 1− t

⟨
b2
⟩(∫ ΓNV

Γ2
NV + δ2

S(ωNV, ωE) dωE

)
, (17)

Thus, we identify the filter function associated with environments outside the diamond lattice to be

Gout(ωE, ω0) = Aout
ΓNV

(2πD − ωNV − ωE)2 + Γ2
NV

. (18)



Supplementary Note 2.

Theoretical description of the coupled NV-P1 system

In this section, we discuss the features we expect to be evident in the P1 centre spectrum by examining the effect
of a P1 centre on the magnetic field dependent relaxation rate of a near-by NV centre. We conclude this section by
demonstrating the equivalence of the semi-classical approach used in this work, and a quantum mechanical treatment
of the NV-P1 interaction.

A. P1 Hamiltonian

The Hamiltonian of a P1 centre is given by

HP1 = S⃗ ·AP1 · I⃗ +B0 ·
(
γeS⃗ + γNI⃗

)
+ I⃗ ·QP1 · I⃗, (19)

where AP1 is the hyperfine tensor describing the coupling between the P1 electron, S⃗, and 14N nuclear spin, I⃗; and Q
is the quadrupole splitting of the nuclear spin. For all field strengths at which there is an appreciable overlap of this
spectrum with the NV spin filter function, B0 ∼ 512G, we find that the eigenstates of the P1 centre electron spin are
predominantly dictated by the external magnetic field. In this instance, the Hamiltonian of the P1 centre becomes

Hon
P1 = AzSzIz +Ax (SxIx + SyIy) +B0 (γeSz + γNIz) +QP1I2

z , (20)

for cases where the P1 axis is aligned with the external magnetic field, where Az = 114MHz, and Ax = 81.3MHz. If
the P1 axis is aligned along one of the three other bond directions not aligned with the field, the Hamiltonian may
be transformed via the rotation operator R = exp (−iIyθ) = 1− iIy sin(θ)−I2

y (1− cos(θ)) (The other two axes may
be realised via a trivial rotation about the z axis), and is given by

Hoff
P1 = azSzIz + ax (SxIx + SyIy) +B0 (γeSz + γNIz) +Q′

P1I2
z , (21)

where az = 1
9 (8Ax +Az) = 85MHz, and ax = 1

9 (5Ax + 4Az) = 99MHz.

B. Coupling of the P1 environment to the NV centre

The interaction between the NV spin and the P1 nuclear spin is ignored on account of its comparative weakness.
For the interaction between the NV and the P1 electron, the magnetic dipole interaction is given by

Hint = bint

[
P⃗ · S⃗ − 3

(
r̂ · P⃗

)(
r̂ · S⃗

)]
, (22)

where r̂ is the unit separation vector between the NV and P1 centres, and

bint =
µ0~γ2

e

4πr3
, (23)

is the effective dipolar coupling strength.
The components of the NV-P1 interaction responsible for the relaxation of the NV spin are those coupling to its

transverse components, namely Px and Py. Without loss of generality, we may rewrite this interaction as an effective

quantum mechanical magnetic field, B⃗, where Bx,y,z couples to Px,y,z.
To make use of Supplementary Equation12, we make the semi-classical approximation, and assume that NV-P1

interaction plays very little part in determining the dynamics of the environment. The problem of determining the
environmental spectrum then reduces to solving for the environmental evolution exclusively under its own influence
as follows.
In order to determine the effective strength of the semi-classical magnetic field used to model the effect of the

P1 bath on the NV spin, we must determine which components of the NV-P1 interaction, Hint, are relevant, and
which may be discarded for a given magnetic field strength. To do this, we transform Hint to the interaction picture
(we point out that only the Hilbert space associated with the NV and P1 electron spins need be considered, as the



interaction between the NV electron spin and the P1 nuclear spin is sufficiently weak that it may be ignored). In
matrix form, Hint is given (in the

{∣∣ 0,+1
2

⟩
,
∣∣ 0,− 1

2

⟩
,
∣∣−1,+1

2

⟩
,
∣∣−1,−1

2

⟩}
basis) by

Hint
∼=

1

2
√
2


0 0 bxz − ibyz bxx − 2ibxy − byy
0 0 bxx + byy −bxz + ibyz

bxz + ibyz bxx + byy −
√
2bzz −

√
2 (bxz − ibyz)

bxx + 2ibxy − byy −bxz − ibyz −
√
2 (bxz + ibyz)

√
2bzz

 . (24)

In order to simplify Hint, we switch to the interaction picture to see which terms are important near 512G.

H(I)
int = ei(HNV+HP1)tHinte

−i(HNV+HP1)t

∼=
1

2
√
2


0 0
0 0

eit(D−ω0) (bxz + ibyz) eit(D+kAz) (bxx + byy)
eit(D−kAz−2ω0) (bxx + 2ibxy − byy) −eit(D−ω0) (bxz + ibyz)

. . .

. . .

e−it(D−ω0) (bxz − ibyz) e−it(D−kAz−2ω0) (bxx − 2ibxy − byy)
e−it(D+kAz) (bxx + byy) −e−it(D−ω0) (bxz − ibyz)

−
√
2bzz −

√
2eit(kAz+ω0) (bxz − ibyz)

−
√
2e−it(kAz+ω0) (bxz + ibyz)

√
2bzz

 , (25)

where k = −1, 0,+1 is the hyperfine projection of the nuclear spin. Using the rotating wave approximation, we can
see that only terms of frequency 2πD−2ω0−2πkAz need be retained, and all other off-diagonal terms may be ignored.
Transforming back to the Schrodinger picture, the simplified interaction Hamiltonian becomes

Hint
∼=

1

2
√
2


0 0 0 bxx − 2ibxy − byy
0 0 0 0

0 0 −
√
2bzz 0

bxx + 2ibxy − byy 0 0
√
2bzz

 , (26)

from which we infer that the effective transverse field strength associated with the allowed NV-P1 |0, ↓⟩ ↔ | + 1, ↑⟩
transitions ((a), (b) in Supplementary Figure 1) is given by

ball ≡ 1

2

√
(bxx + byy)

2
+ (2bxy)

2

=
3

2
b sin2 (Θ) . (27)

Determination of the effective field strength associated with the disallowed transitions ((c), (d) in Supplementary
Figure 1) follows the same approach as above. From this, we find the associated field strength to be

bdis ≡ 1

2

√
b2xz + b2yz,

=
3

4
b sin (2Θ) . (28)

C. P1 dynamics

To determine the dynamic behaviour of the P1 environment, we compute the autocorrelation functions associated
with the field components above. Interactions between environmental components may be modeled by damping these
autocorrelation functions with a decaying exponential, exp (−ΓP1t) to describe their relaxation due to mutual flip-flop
processes with corresponding relaxation rate ΓP1.
The corresponding spectra may then be found by computing the Fourier transforms of the autocorrelation functions.

From this, we find the spectra associated with the allowed transitions to be

Son
all(ω) =

1

6π

[
ΓP1

Γ2
P1 + (ω ± ω0)2

+
ΓP1

Γ2
P1 + (ω ± ω0 +Az)2

+
ΓP1

Γ2
P1 + (ω ± ω0 −Az)2

]
, (29)



and

Soff
all (ω) =

1

6π

[
ΓP1

Γ2
P1 + (ω ± ω0)2

+
ΓP1

Γ2
P1 + (ω ± ω0 + az)2

+
ΓP1

Γ2
P1 + (ω ± ω0 − az)2

]
, (30)

for cases of on and off axis P1 centres respectively. Taking the relative proportions of on and off-axis P1 centres to
be 25% and 75% respectively, we find the overall spectrum associated with the allowed transitions to be

Sall(ω) =
1

4
Son
all(ω) +

3

4
Soff
all (ω). (31)

Similarly, the spectra associated with the disallowed transitions are given by

Son
dis(ω) =

1

4π

[
ΓP1

Γ2
P1 + (ω ± ω0 + λ1)2

+
ΓP1

Γ2
P1 + (ω ± ω0 − λ2)2

]
, (32)

and

Soff
dis(ω) =

1

4π

[
ΓP1

Γ2
P1 + (ω ± ω0 + λ3)2

+
ΓP1

Γ2
P1 + (ω ± ω0 − λ4)2

]
, (33)

respectively, where

λ1 =

√
2A2

x +

(
ω0 +

Az

2

)2

∼ ω0 +
Az

2

λ2 =

√
2A2

x +

(
ω0 −

Az

2

)2

∼ ω0 −
Az

2

λ3 =

√
2a2x +

(
ω0 +

az
2

)2
∼ ω0 +

az
2

λ4 =

√
2a2x +

(
ω0 −

az
2

)2
∼ ω0 −

az
2
.

The spectrum associated with the disallowed transitions is then

Sdis(ω) =
1

4
Son
dis(ω) +

3

4
Soff
dis(ω). (34)

By employing the full spectrum, S(ωE) = Sall(ωE) + Sdis(ωE), in equation 12, we find the resulting external field-
dependent relaxation rate of the NV centre to be

Γ1(ω0) =

⟨
b2⊥
⟩

6π

[
1

4

(
Γ2 + ΓP1

(Γ2 + ΓP1)
2
+ 4(ω0 ± D

2 + Az

2 )2
+

Γ2 + ΓP1

(Γ2 + ΓP1)
2
+ 4(ω0 ± D

2 − Az

2 )2

)

+
3

4

(
Γ2 + ΓP1

(Γ2 + ΓP1)
2
+ 4(ω0 ± D

2 + az

2 )2
+

Γ2 + ΓP1

(Γ2 + ΓP1)
2
+ 4(ω0 ± D

2 − az

2 )2

)

+
Γ2 + ΓP1

(Γ2 + ΓP1)
2
+ 4(ω0 ± D

2 )
2

]

+

⟨
b2∥

⟩
4π

[
1

4

(
Γ2 + ΓP1

(Γ2 + ΓP1)
2
+ 4(ω0 ± D

2 + Az

4 )2
+

Γ2 + ΓP1

(Γ2 + ΓP1)
2
+ 4(ω0 ± D

2 − Az

4 )2

)

+
3

4

(
Γ2 + ΓP1

(Γ2 + ΓP1)
2
+ 4(ω0 ± D

2 + az

4 )2
+

Γ2 + ΓP1

(Γ2 + ΓP1)
2
+ 4(ω0 ± D

2 − az

4 )2

)]
, (35)

where the effective couplings,
⟨
b2⊥
⟩
and

⟨
b2∥

⟩
, are due to integration over all possible NV-P1 separations. By taking

the average P1 density to be 50 ppm, and the FID rate to be Γ2 = 5.0MHz, we may plot the resulting field-dependent
relaxation rate of the NV spin (Supplementary Figure 1).
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Supplementary Figure 1: Analytic calculation of the relaxation rate of an NV centre spin placed in a 50ppm environment of P1
donor electron spins vs the strength of an external magnetic field aligned along the NV axis. (a) Peaks associated with allowed
transitions of the NV centre spin due to its direct interaction with aligned P1 centre electron spins. (b) As in (a), but for the
case of P1 centres not aligned along the NV axis. (c) Peaks associated with disallowed transitions of the NV spin as mediated
by flip-flop dynamics between the on-axis P1 electron and nuclear spins. (d) As in (c), but for the case of off-axis P1 centres.

D. Quantum mechanical justification of the semi-classical approach

In the analysis above, we have concerned ourselves with the response of the NV spin to a general transverse classical
field. Whilst the spectral makeup of this field is entirely general, and thus applicable to the sensing of fields external to
the diamond crystal (the primary motivation of this work), it still remains to be shown the that quantum mechanical
P1 environment used as our practical example system can also be modelled using this technique. We show this by
modelling the NV-P1 system exactly, using the same dephasing model as the semi-classical approach above. As the
two approaches produce identical results, we conclude that the semi-classical approach to modelling the P1 bath, and
the resulting filter-function picture employed in the analysis of experimental results, is valid.
Given the discussion above about the static spin projection of the P1 nuclear spin projection, we may regard its

influence on the P1 electron spin as an additional static magnetic field, where the total field felt by the P1 electron
is given by ωP1 = ω0 + 2πkA, where A is the P1 hyperfine coupling, and k = −1, 0, +1. Thus, we may restrict our
system to the NV (P) and P1 (S) electron spins.
The Hamiltonian of the system is

HNV−P1 = H0 +Hint, (36)

where

H0 = 2πDP2
z + ωNVPz + ωP1Sz, (37)

and Hint is as previously defined in Supplementary Equation 3.
Following the same procedure as in the semi-classical case, we assume that both the NV and P1 electron spins

experience a dephasing effect from the distant components of the bath, with corresponding rates given by ΓNV and
ΓP1 respectively. The equation of motion for the full (NV and P1) density matrix in the interaction picture is then

d

dt
ρI(t) = −i

[
VI(t), ρI(t)

]
+ ΓNV

(
PzρI(t)Pz − ρI(t)

)
+ ΓP1

(
SzρI(t)Sz − ρI(t)

)
, (38)

with the interaction Hamiltionian given by

VI = eiH0tVe−iH0t. (39)

There are two basis states associated with the |0⟩ state of the NV, namely
∣∣0,+1

2

⟩
and

∣∣0,− 1
2

⟩
, with corresponding

populations given by the density matrix elements ρ33 and ρ44 respectively. The corresponding equations of motion
are

dρ33
dt

= 0,

d3ρ44
dt3

+ 2 (ΓNV + ΓP1)
d2ρ44
dt2

+

[
b2

2
+ δ2 + (ΓNV + ΓP1)

2

]
dρ44
dt

+
b2

2
(ΓNV + ΓP1) ρ44 −

b2

4
(ΓNV + ΓP1) = 0,

(40)



where, as in the semi-classical approximation, we have made the substitution b ≡ 1
2

√
(bxx + byy)

2
+ (2bxy)

2
.

As can be seen by comparison with Supplementary Equation 7, the semi-classical and quantum mechanical ap-
proaches yield an identical differential equation, up to a replacement of ΓNV 7→ ΓNV+ΓP1. Physically, this relates the
total broadening of the NV ralaxation rate, to the intrinsic NV linewidth, ΓNV, and the linewidth of P1 electron spin,
ΓP1, in the same way that the broadening of the NV relaxation rate in the semiclassical picture is the convolution of
the NV filter function (having width ΓNV) and the spectral density of the P1 environment (having width ΓP1).
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