Trimetazidineprevents macrophage mediated septic myocardial dysfunction via Sirt1

Figure S1. Cardiac function in recipient mice was association with the numbers of $F4/80^+$ macrophages in heart tissues. Scatter plot of cardiac function parameters (y-axis) and the numbers of $F4/80^+$ macrophages (x-axis) determined by immunohistochemical staining in heart tissues. (A) Correlation between LVEF values and the number of $F4/80^+$ macrophages. (B) Correlation between LVFS values and the number of $F4/80^+$ macrophages. (C) Correlation between dp/dt max values and the number of $F4/80^+$ macrophages. (D) Correlation between dp/dt min values and the number of $F4/80^+$ macrophages. (D) Correlation between dp/dt min values and the number of $F4/80^+$ macrophages. Pearson's correlation coefficient was used to analyze the linear relationship between numbers of $F4/80^+$ macrophages and the performance of cardiac function (LVEF values, LVFS values, dp/dt max values and dp/dt min value).

Figure S2. TMZ attenuated LPS-induced cardiomyocyte apoptosis. Neotanal cardiomyocyte were pretreated with TMZ (20 μ M) for 1 hour and then stimulated with LPS (5 μ g·ml⁻¹) for 6 hours. (A) Flow cytometry detection of cardiomyocytes apoptosis was analyzed with annexin V and propidium iodide (PI). (B) The apoptosis rate of different groups and P values. Data were presented as mean ± SEM of three separate experiments. Data were analyzed by one-way ANOVA analysis using SPSS software.

Figure S3. TMZ attenuated ROS-mediated macrophage proinflammatory response via Sirt1. Peritoneal macrophages were first transfected with si-Sirt1 or random siRNA using lipo 2000 for 24 hours. After transfection, cells were pretreated with TMZ (20 μ M) for 1h and then stimulated with LPS (5 μ g ml⁻¹) for 6h. (A) The ROS levels in macrophages were measured by DHE staining. (B) ROS productions were evaluated by qutification of mean fluorescence intensity in DHE staining. (C) RT-PCR revealed the expression of proinflammatory cytokines. Cell lysates were prepared and analyzed for p-AMPK (D) and nuclear PPAR α (E) expression by western blotting. Values

below the western blots represent the densitometry analysis of p-AMPK/AMPK and nuclear PPARa/Lamin B. Data were presented as mean \pm SEM of three separate experiments. Data were analyzed by one-way ANOVA analysis using SPSS software (*p < 0.05 vs. control; [#]p < 0.05 vs. LPS; [§]p < 0.05 vs. LPS + TMZ treated group; [†]p < 0.05 vs. Lipo 2000 control).

Figure S4. TMZ did not affect the shift from fatty acids to glucose metabolism in LPS-stimulated heart. C57BL/6 mice were pretreated with TMZ (20 mg \cdot kg⁻¹, i.g, Tid) or saline three times a day for 3 days, followed by i.p injection of LPS (15mg kg⁻¹) (n=8 in each group). The mice were sacrificed 6 hours after LPS stimulation and the heart tissue were collected to prepare RNA samples. (A-F) RT-PCR analysis showed the relative mRNA levels of CPT-1, CD36, FABP3, GLUT4 and PDK4. All values were normalized internally to 18S RNA expression and to the normal control sets. Data were presented as mean \pm SEM of three independent experiments. Data were analyzed by one-way ANOVA analysis using SPSS software.