Magnetic Resonance Spectroscopy discriminates the response to microglial stimulation of wild type and Alzheimer's disease models

Marie-Christine Pardon^{1*}, Maria Yanez Lopez^{2,5}, Ding Yuchun³, Małgorzata Marjańska⁴, Malcolm Prior⁵, Christopher Brignell⁶, Samira Parhizkar¹, Alessandra Agostini¹, Li Bai³, Dorothee P. Auer^{2,5}, and Henryk M Faas^{2,5*}

¹Neuroscience, School of Life Sciences, ²Sir Peter Mansfield Imaging Centre, School of Medicine, ³School of Computer Sciences, ⁵Medical Imaging Unit, School of Medicine, and ⁶School of Mathematics, University of Nottingham, United Kingdom

⁴Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA

*Corresponding Authors:

Henryk M. Faas, PhD Assistant Professor in Neuroimaging Sir Peter Mansfield Imaging Centre School of Medicine The University of Nottingham Room W/B 1441 B Floor West Block Queen's Medical Centre NG7 2UH Nottingham United Kingdom Tel: 0115 823 1174 Fax: 0115 823 1180 henryk.faas@nottingham.ac.uk

Marie-Christine Pardon, PhD Assistant Professor in Translational Neuroscience School of Life Sciences The University of Nottingham Room E65 Queen's Medical Centre NG7 2UH Nottingham United Kingdom Tel: 0115 823 30149 marie.pardon@nottingham.ac.uk

Suppl. Fig. 1: (A-H**)** Scatterplot of baseline metabolite concentrations, expressed as ratios to the sum of selected metabolites, and (I-J) representative amyloid plaque load in the hippocampus and cortex at mild (4.5 months old i.e. ~ 120 days) and moderate (10.5 months old i.e. ~320 days) stage of pathology.

Suppl. Fig. 2: Histology based quantification of glial cells. Illustrative examples of extracted Iba1 positive microglia and microglial processes (A, B) and GFAP positive astrocytes (C,D), extracted using a custom made semi-automated segmentation tool. For extraction of morphometric features, a region of interest (ROI) was drawn on the digitized histology images at 20x magnification using custom made software (Matlab), outlining the region covered by the MRS spectroscopy voxel (2x2 mm2, extending over the hippocampus and thalamus). For feature recognition (using custom made software programmed in Matlab), soma were first identified in the ROIs on histological images by blurring with an average filter of adjacent pixels and thresholding adapted for uneven background staining. All images were inspected and corrected manually to avoid artifacts.

	Covariate	Genotype	Treatment	Time	Genotype X	Genotype X Time	Treatment X	Genotype X Treatment X
					ricutilient	Time	Time	Time
MRS	Baseline							
	levels							E(1 100) 0 10
GABA	F(1,29)=3.76	F(1,29)=1.25	F(1,29)=0.05	F(4,120)=2.79	F(1,29)=1.44	F(4,120)=0.7	F(4,120)=0.47	F(4,120)=0.48
-	p=0.06	p=0.27	p=0.81	p=0.029	p=0.24	p=0.59	p=0.76	p=0.75
Glu	F(1,29)=18.46	F(1,29)=1.98	F(1,29)=2.13	F(4,120)=1.45	F(1,29)=7.77	F(4,120)=1.67	F(4,120)=0.88	F(4,120)=1.05
	p=0.0002	p=0.17	p=0.15	p=0.22	p=0.009	p=0.16	p=0.48	p=0.38
GIX	F(1,29)=9.2	F(1,29)=0.16	F(1,29)=0.78	F(4,120)=6.66	F(1,29)=2.3	F(4,120)=3.27	F(4,120)=1.17	F(4,120)=0.47
.	p=0.005	p=0.69	p=0.38	p<0.001	p=0.14	p=0.01	p=0.33	p=0.76
mı	F(1,29)=1.19	F(1,29)=0.58	F(1,29)=0.18	F(4,120)=1.4	F(1,29)=1.47	F(4,120)=0.97	F(4,120)=0.33	F(4,120)=2.87
MLO	$\mu = 0.28$	$\mu = 0.45$	μ=0.08 Ε(1.20)-Ε.ΕΕ	$\mu = 0.24$	p=0.23	$\mu = 0.42$	$\mu = 0.80$	p=0.020
ML9	F(1,29) = 40.01	F(1,29)=2.00	r(1,29)=5.05	F(4,120)=2.70	r(1,29)=5.39	F(4,120)=2.04	r(4,120)=3.37	F(4,120)=1.02
Taurina	P < 0.001	$\mu = 0.17$	p=0.024	p=0.03	p=0.027	p=0.027	p=0.012	p=0.13
Taurine	n = 0.12	n = 0.30	n = 0.78	n (4,120) = 10.24	n = 0.10	(4,120) = 1.31	n = 0.16	n = 0.23
tCho	p=0.12 E(1.20)=0.74	P=0.59 F(1.20)=3.67	P=0.78 F(1.20)=1.55	F(4 120) = 15 10	F(1, 20) = 0.10	p=0.27 E(4 120)=2 37	p=0.10 E(4 120)=0.50	p=0.23 E(4 120)=0.31
teno	n = 0.30	n=0.065	n = 0.22	n<0 001	n = 0.01	n = 0.06	n = 0.74	n = 0.87
tCr	F(1, 20) = 0.59	F(1, 20) = 0.16	F(1, 29) = 0.22	F(4, 120) - 6, 66	F(1, 20) = 2, 3	F(4 120) = 3.27	p=0.74 F(4 120)=1 17	F(4 120) = 0.07
	n=0.005	n=0.69	n=0.38	n<0 001	n=0.14	n=0.01	n=0.33	n=0.76
tNΔΔ	F(1 29) = 7.56	F(1,29)=1,61	F(1, 29) = 0.26	F(4 120) = 0.29	F(1 29) = 4 17	F(4 120) = 356	F(4 120)=0.28	F(4 120) = 1.79
	n=0.01	n=0.21	n=0.61	n=0.88	n=0.05	n=0 009	n=0.89	n=0.13
	p-olor	p=0.21	p=0.01	p=0.00	P-0100	p=01005	p=0.05	p=0.15
Histoloav	Number of							
	microglial							
Iba1	clusters							
% area	F(1,29)=29.3	F(1,29)=8.06	F(1,29)=6.01	N/A	F(1,29)=0.53	N/A	N/A	N/A
stained	p<0.0001	p=0.008	p=0.02		p=0.47			
Cells/mm ²	F(1,29)=27.06	F(1,29)=2.87	F(1,29)=0.11	N/A	F(1,29)=0.04	N/A	N/A	N/A
	p<0.0001	p=0.10	p=0.74		p=0.85			
Soma size	F(1,29)=27.2	F(1,29)=9.82	F(1,29)=14.18	N/A	F(1,29)=2.6	N/A	N/A	N/A
	p<0.0001	p=0.004	p=0.0008		p=0.12			
GFAP								
% area	F(1,29)=0.08	F(1,29)=0.06	F(1,29)=0.01	N/A	F(1,29)=1.46	N/A	N/A	N/A
stained	p=0.77	p=0.80	p=0.93		p=0.24			

Suppl. Table 1: Statistical analysis of metabolite concentration and histological changes

	Baseline	1 hour post iniection	2 hours post iniection	3 hours post iniection	4 hours post iniection					
Glu										
WT-PBS	0.221 <u>+</u> 0.002	0.224 <u>+</u> 0.002	0.229 <u>+</u> 0.002	0.223 <u>+</u> 0.003	0.229 <u>+</u> 0.004					
WT-LPS	0.217 <u>+</u> 0.003	0.218 <u>+</u> 0.003	0.218 <u>+</u> 0.003	0.215 <u>+</u> 0.002	0.217 <u>+</u> 0.002					
APP/PS1-PBS	0.221 <u>+</u> 0.003	0.218 <u>+</u> 0.002	0.218 <u>+</u> 0.003	0.218 <u>+</u> 0.002	0.222 <u>+</u> 0.003					
APP/PS1-LPS	0.222 <u>+</u> 0.003	0.219 <u>+</u> 0.003	0.221 <u>+</u> 0.004	0.224 <u>+</u> 0.004	0.222 <u>+</u> 0.003					
Glx										
WT-PBS	0.312 <u>+</u> 0.002	0.328 <u>+</u> 0.002	0.331 <u>+</u> 0.003	0.321 <u>+</u> 0.003	0.335 <u>+</u> 0.004					
WT-LPS	0.320 <u>+</u> 0.003	0.320 <u>+</u> 0.003	0.323 <u>+</u> 0.002	0.321 <u>+</u> 0.003	0.327 <u>+</u> 0.005					
APP/PS1-PBS	0.319 <u>+</u> 0.004	0.324 <u>+</u> 0.004	0.324 <u>+</u> 0.003	0.326 <u>+</u> 0.003	0.326 <u>+</u> 0.004					
APP/PS1-LPS	0.324 <u>+</u> 0.004	0.327 <u>+</u> 0.004	0.329 <u>+</u> 0.005	0.333 <u>+</u> 0.005	0.330 <u>+</u> 0.005					
Ins										
WT-PBS	0.116 <u>+</u> 0.009	0.119 <u>+</u> 0.003	0.114 <u>+</u> 0.004	0.115 <u>+</u> 0.004	0.117 <u>+</u> 0.005					
WT-LPS	0.116 <u>+</u> 0.005	0.115 <u>+</u> 0.005	0.116 <u>+</u> 0.006	0.115 <u>+</u> 0.006	0.115 <u>+</u> 0.005					
APP/PS1-PBS	0.112 <u>+</u> 0.003	0.110 <u>+</u> 0.009	0.113 <u>+</u> 0.004	0.112 <u>+</u> 0.003	0.113 <u>+</u> 0.003					
APP/PS1-LPS	0.110 <u>+</u> 0.002	0.115 <u>+</u> 0.003	0.109 <u>+</u> 0.004	0.113 <u>+</u> 0.002	0.117 <u>+</u> 0.004					
ML9										
WT-PBS	0.161 <u>+</u> 0.004	0.158 <u>+</u> 0.004	0.161 <u>+</u> 0.005	0.167 <u>+</u> 0.003	0.155 <u>+</u> 0.006					
WT-LPS	0.161 <u>+</u> 0.011	0.173 <u>+</u> 0.005	0.175 <u>+</u> 0.007	0.183 <u>+</u> 0.005	0.181 <u>+</u> 0.003					
APP/PS1-PBS	0.169 <u>+</u> 0.018	0.189 <u>+</u> 0.020	0.157 <u>+</u> 0.006	0.158 <u>+</u> 0.008	0.151 <u>+</u> 0.010					
APP/PS1-LPS	0.165 <u>+</u> 0.003	0.167 <u>+</u> 0.008	0.162 <u>+</u> 0.005	0.173 <u>+</u> 0.008	0.164 <u>+</u> 0.007					
Tau										
WT-PBS	0.194 <u>+</u> 0.004	0.190 <u>+</u> 0.004	0.188 <u>+</u> 0.004	0.188 <u>+</u> 0.005	0.183 <u>+</u> 0.004					
WT-LPS	0.191 <u>+</u> 0.009	0.193 <u>+</u> 0.008	0.187 <u>+</u> 0.009	0.187 <u>+</u> 0.009	0.181 <u>+</u> 0.009					
APP/PS1-PBS	0.204 <u>+</u> 0.005	0.199 <u>+</u> 0.005	0.199 <u>+</u> 0.007	0.200 <u>+</u> 0.005	0.194 <u>+</u> 0.005					
APP/PS1-LPS	0.201 <u>+</u> 0.004	0.194 <u>+</u> 0.003	0.197 <u>+</u> 0.004	0.190 <u>+</u> 0.002	0.180 <u>+</u> 0.005					
tCho										
WT-PBS	0.041 <u>+</u> 0.001	0.038 <u>+</u> 0.001	0.037 <u>+</u> 0.001	0.038 <u>+</u> 0.001	0.037 <u>+</u> 0.001					
WT-LPS	0.043 <u>+</u> 0.001	0.041 <u>+</u> 0.002	0.041 <u>+</u> 0.002	0.040 <u>+</u> 0.002	0.040 <u>+</u> 0.002					
APP/PS1-PBS	0.043 <u>+</u> 0.001	0.042 <u>+</u> 0.002	0.041 <u>+</u> 0.002	0.040 <u>+</u> 0.002	0.041 <u>+</u> 0.001					
APP/PS1-LPS	0.043 <u>+</u> 0.001	0.042 <u>+</u> 0.001	0.041 <u>+</u> 0.001	0.040 <u>+</u> 0.001	0.042 <u>+</u> 0.001					
tCr										
WT-PBS	0.194 <u>+</u> 0.002	0.193 <u>+</u> 0.001	0.197 <u>+</u> 0.002	0.198 <u>+</u> 0.001	0.196 <u>+</u> 0.002					
WT-LPS	0.197 <u>+</u> 0.001	0.197 <u>+</u> 0.002	0.199 <u>+</u> 0.003	0.201 <u>+</u> 0.002	0.201 <u>+</u> 0.002					
APP/PS1-PBS	0.191 <u>+</u> 0.003	0.191 <u>+</u> 0.002	0.192 <u>+</u> 0.003	0.192 <u>+</u> 0.001	0.194 <u>+</u> 0.002					
APP/PS1-LPS	0.189 <u>+</u> 0.001	0.191 <u>+</u> 0.002	0.194 <u>+</u> 0.002	0.193 <u>+</u> 0.002	0.198 <u>+</u> 0.002					
tNAA										
WT-PBS	0.163 <u>+</u> 0.003	0.158 <u>+</u> 0.003	0.158 <u>+</u> 0.002	0.165 <u>+</u> 0.002	0.157 <u>+</u> 0.002					
WT-LPS	0.159 <u>+</u> 0.006	0.160 <u>+</u> 0.005	0.161 <u>+</u> 0.005	0.165 <u>+</u> 0.006	0.161 <u>+</u> 0.006					
APP/PS1-PBS	0.155 <u>+</u> 0.003	0.160 <u>+</u> 0.005	0.159 <u>+</u> 0.002	0.153 <u>+</u> 0.007	0.159 <u>+</u> 0.004					
APP/PS1-LPS	0.155 <u>+</u> 0.003	0.152 <u>+</u> 0.002	0.151 <u>+</u> 0.004	0.151 <u>+</u> 0.003	0.154 <u>+</u> 0.003					

Suppl. Table 2. Mean \pm SEM metabolite concentrations, expressed as ratios to the sum of selected metabolites, of WT and APP/PS1 mice treated with LPS or its vehicle PBS at baseline and after injection.