Supplementary Information for

Highly Efficient Quantum Sieving in Porous Graphene-like Carbon Nitride for Light Isotopes Separation

*Yuanyuan Qu a , Feng Lia,b, Hongcai Zhou^a , Mingwen Zhaoa**

a School of Physics, Shandong University, Jinan 250100, Shandong, China;

^bSchool of Physics and Technology, University of Jinan, Jinan 250022, Shandong, China

Supplementary Equations

Deduction of energy-temperature-dependent transmission probability p(E,T)

According to Maxwell-Boltzmann distribution, the distribution of the molecular velocities at temperature *T* in one-dimension is given by:

$$
p(v,T) = \left(\frac{m}{2\pi k_B T}\right)^{1/2} e^{\frac{-mv^2}{2k_B T}}.
$$

Therefore, the thermally weighted transmission can be obtained by

$$
p(T) = \int p(v, T)t(\frac{1}{2}mv^2)dv = \int p(E, T)t(E)dE
$$

,

where $t(E)$ is the quantum tunneling probability as a function of kinetic energy as introduced in the main text.

As such, we can obtain:

$$
p(E,T) = p(v,T) \frac{dv}{dE}
$$

=
$$
\left(\frac{m}{2\pi k_B T}\right)^{1/2} e^{-\frac{E}{k_B T}} \frac{1}{\sqrt{2Em}}
$$

=
$$
\left(\frac{1}{4\pi k_B TE}\right)^{1/2} e^{-\frac{E}{k_B T}}
$$

Deduction of surface tension

Similar to the force f in one-dimension and the pressure P in three-dimension, the surface tension σ in two-dimension can be obtained by the partial derivative of the surface energy E with respect to the surface area *S*:

$$
\sigma = \frac{\partial E}{\partial S}.
$$

For the unit cell of C₂N-h₂D lattice at no strain, the surface area is $S_0 = \frac{\sqrt{3}}{2} a_0^2$ $0 - 2 \alpha_0$ $S_0 = \frac{\sqrt{3}}{2} a_0^2$, where a_0 is the lattice constant. For the lattice under strain ε , $S = \frac{\sqrt{3}}{2} a^2 = \frac{\sqrt{3}}{2} (a_0(1+\varepsilon))^2$ 0 $u^2 = \frac{\sqrt{3}}{2} (a_0(1+\varepsilon))$ 2 3 2 $S = \frac{\sqrt{3}}{2}a^2 = \frac{\sqrt{3}}{2}(a_0(1+\varepsilon))^2$.

Therefore, we can obtain the surface tension as a function of the tensile strain as follows:

$$
\sigma = \frac{\partial E}{\partial S} \n= \frac{\partial E}{\partial \varepsilon} \frac{\partial \varepsilon}{\partial S} \n= \frac{\partial E}{\partial \varepsilon} \frac{1}{\sqrt{3}a_0^2(1+\varepsilon)}
$$

Supplementary Figure

Figure S1 (a) Comparison between the energy profiles for He passing through the pore of the C_2N-h2D membrane by using DFT-D2, DFT-D3 and DFT-D3(BJ) correction schemes under the strain of 3%. Colored points indicate the results obtained by first-principles calculations; while the curves show the numerically interpolated potentials. (b) Comparison between the barrier height and the FWHM by using DFT-D2, DFT-D3 and DFT-D3(BJ) correction under the strain of 3%.

Supplementary Table

Table S1 The selectivities (S) and the permeances $(Q, \text{mol/s/cm}^2/\text{bar})$ under different strains for temperatures ranging from 1 to 22 K by using DFT-D3 correction. The red numbers identify the conditions satisfying the industrial acceptable selectivity (> 6) and permeance ($> 6.7 \times 10^{-8}$ mol/s/cm²/bar).

Temperature	1 _K		2K		5K		10K	
strain	S	Q	S	Q	S	Q	S	Q
1.5%	22.9	3.4×10^{-13}	22.9	5.7×10^{-11}	21.1	8.5×10^{-10}	18.4	2.0×10^{-9}
2%	18.5	$6.8\times10^{\text{-}12}$	18.4	1.1×10^{-9}	15.7	1.7×10^{-8}	12.3	4.1×10^{-8}
2.5%	9.1	1.3×10^{-10}	9.0	2.1×10^{-8}	8.4	3.1×10^{-7}	7.4	7.4×10^{-7}
3%	8.6	1.6×10^{-9}	8.3	2.7×10^{-7}	7.0	4.2×10^{-6}	5.4	1.1×10^{-5}
3.5%	3.7	1.8×10^{-8}	3.7	3.0×10^{-6}	3.8	5.3×10^{-5}	3.4	1.7×10^{-4}
Temperature	15K		18K		21K		22K	
strain	S	Q	S	$\mathbf 0$	S	Q	S	Q
1.5%	16.1	3.2×10^{-9}	14.0	4.2×10^{-9}	10.4	6.0×10^{-9}	9.0	9.4×10^{-9}
2%	10.3	6.5×10^{-8}	8.7	8.7×10^{-8}	6.5	1.4×10^{-7}	5.7	1.5×10^{-7}
2.5%	6.5	1.2×10^{-6}	5.5	1.6×10^{-6}	4.2	2.6×10^{-6}	3.8	2.7×10^{-6}
3%	4.4	1.9×10^{-5}	3.7	2.6×10^{-5}	2.9	4.1×10^{-5}	2.7	4.3×10^{-5}
3.5%	2.9	2.9×10^{-4}	2.5	4.0×10^{-4}	2.2	6.0×10^{-4}	2.1	6.1×10^{-4}

Temperature	4K		5K		8K		10K	
strain	S	$\mathbf 0$	S	$\mathbf 0$	S	$\mathbf 0$	S	$\mathbf 0$
2.5%	19.5	2.1×10^{-10}	19.6	3.5×10^{-10}	19.4	8.4×10^{-10}	18.8	1.2×10^{-9}
3%	12.8	3.1×10^{-9}	12.9	5.2×10^{-9}	12.8	1.2×10^{-8}	12.3	1.7×10^{-8}
3.5%	7.8	4.9×10^{-8}	8.1	8.0×10^{-8}	8.3	1.9×10^{-7}	8.1	2.6×10^{-7}
4%	4.0	6.8×10^{-7}	4.2	1.1×10^{-6}	4.5	2.5×10^{-6}	4.6	3.6×10^{-6}
Temperature	12K		15K		16K		17K	
strain	S	Q	S	Q	S	Q	S	Q
2.5%	17.9	1.6×10^{-9}	15.9	2.3×10^{-9}	15.0	2.6×10^{-9}	13.8	2.9×10^{-9}
3%	11.7	2.2×10^{-8}	10.2	3.3×10^{-8}	9.5	3.8×10^{-8}	8.7	4.3×10^{-8}
3.5%	7.7	3.5×10^{-7}	6.7	5.2×10^{-7}	6.2	5.9×10^{-7}	5.7	6.9×10^{-7}
4%	4.5	4.8×10^{-6}	4.1	7.1×10^{-6}	3.9	8.2×10^{-6}	3.6	9.5×10^{-6}

Table S2 The selectivities (S) and the permeances $(Q, \text{mol/s/cm}^2/\text{bar})$ under different strains for temperatures ranging from 4 to 17 K by using DFT-D3(BJ) correction. The red numbers identify the conditions satisfying the industrial acceptable selectivity (> 6) and permeance ($> 6.7 \times 10^{-8}$ mol/s/cm²/bar).

Supplementary Methods

Calculation of DFT-D3 and DFT-D3(BJ) correction schemes

The DFT-D3 and DFT-D3(BJ) correction schemes for the potential barriers are calculated by the Grimme's DFTD3 program, which is a open-source program developed by Lori A. Burns. The program can be freely downloaded at http://www.psicode.org/psi4manual/master/dftd3.html.

Supplementary Data

The Optimized Coordinates of the unit cell of unstretched C2N-h2D lattice

(Cartesian coordinates, in unit of Angstroms)

- C 3.449333 1.143009 0.000000
- C 2.714540 2.415711 0.000000
- C 9.063802 3.558728 0.000000
- C 7.594219 3.558730 0.000000

The Optimized Coordinates of unit cell of unstretched C2N-h2D lattice with a He atom

(Cartesian coordinates, in unit of Angstroms)

Sample VASP input file

INCAR file for optimization: SYSTEM =C2N-h2D Start parameter for this run

PREC = Accurate

 $ISTART = 0$

 $ICHARG = 2$

 $ENCUT = 520$

Electronic relaxation

 $NELM = 80$

 $NELMIN = 2$

 $EDIF = 1.E-08$

 $LREAL = Auto$

 $ALGO = Normal$

 $GGA = PE$

Ionic relaxation

```
EDIFFG = -0.001
```
NSW = 500

 $IBRION = 1$

 $ISIF = 2$

 $POTIM = 0.50$

DOS related values

 $EMIN = -10$

$EMAX = 10$
$NEDOS = 800$
$ISMEAR = 0$
$SIGMA = 0.05$
Write flags
$LWAVE = F$
$LCHARG = F$
$LORBIT = 12$
$LVDW = T$

INCAR file for static energy calculation:

SYSTEM =C2N-h2D Start parameter for this run PREC = Accurate $ISTART = 0$ $ICHARG = 2$ $ENCUT = 520$ $INIWAV = 1$ Electronic relaxation $NELM = 80$ $NELMIN = 2$ $NELMDL = -5$ $EDIFF = 1.E-08$ $LREAL = Auto$ $ALGO = Normal$ $GGA = PE$ Ionic relaxation $EDIFFG = -0.001$ $NSW = 0$ $IBRION = -1$

 $LCHARG = F$

 $LORBIT = 12$

 $LVDW = T$