Supplementary Information for

Highly Efficient Quantum Sieving in Porous Graphene-like Carbon Nitride for Light Isotopes Separation

Yuanyuan Qu^a, Feng Li^{a,b}, Hongcai Zhou^a, Mingwen Zhao^{a*}

^a School of Physics, Shandong University, Jinan 250100, Shandong, China;

^b School of Physics and Technology, University of Jinan, Jinan 250022, Shandong, China

Supplementary Equations

Deduction of energy-temperature-dependent transmission probability p(E,T)

According to Maxwell-Boltzmann distribution, the distribution of the molecular velocities at temperature *T* in one-dimension is given by:

$$p(v,T) = \left(\frac{m}{2\pi k_B T}\right)^{1/2} e^{-\frac{mv^2}{2k_B T}}$$

Therefore, the thermally weighted transmission can be obtained by

$$p(T) = \int p(v,T)t(\frac{1}{2}mv^2)dv = \int p(E,T)t(E)dE$$

where t(E) is the quantum tunneling probability as a function of kinetic energy as introduced in the main text.

As such, we can obtain:

$$p(E,T) = p(v,T) \frac{dv}{dE}$$
$$= \left(\frac{m}{2\pi k_B T}\right)^{1/2} e^{-\frac{E}{k_B T}} \frac{1}{\sqrt{2Em}}$$
$$= \left(\frac{1}{4\pi k_B T E}\right)^{1/2} e^{-\frac{E}{k_B T}}$$

Deduction of surface tension σ

Similar to the force f in one-dimension and the pressure P in three-dimension, the surface tension σ in two-dimension can be obtained by the partial derivative of the surface energy E with respect to the surface area S:

$$\sigma = \frac{\partial E}{\partial S}.$$

For the unit cell of C₂N-*h*2D lattice at no strain, the surface area is $S_0 = \frac{\sqrt{3}}{2} a_0^2$, where a_0 is the lattice constant. For the lattice under strain ε , $S = \frac{\sqrt{3}}{2} a^2 = \frac{\sqrt{3}}{2} (a_0(1+\varepsilon))^2$.

Therefore, we can obtain the surface tension as a function of the tensile strain as follows:

$$\sigma = \frac{\partial E}{\partial S}$$
$$= \frac{\partial E}{\partial \varepsilon} \frac{\partial \varepsilon}{\partial S}$$
$$= \frac{\partial E}{\partial \varepsilon} \frac{1}{\sqrt{3}a_0^2(1+\varepsilon)}$$

Supplementary Figure

Figure S1 (a) Comparison between the energy profiles for He passing through the pore of the C_2N-h2D membrane by using DFT-D2, DFT-D3 and DFT-D3(BJ) correction schemes under the strain of 3%. Colored points indicate the results obtained by first-principles calculations; while the curves show the numerically interpolated potentials. (b) Comparison between the barrier height and the FWHM by using DFT-D2, DFT-D3 and DFT-D3(BJ) correction under the strain of 3%.

Supplementary Table

Table S1 The selectivities (S) and the permeances (Q, mol/s/cm²/bar) under different strains for temperatures ranging from 1 to 22 K by using DFT-D3 correction. The red numbers identify the conditions satisfying the industrial acceptable selectivity (> 6) and permeance ($> 6.7 \times 10^{-8} \text{ mol/s/cm}^2/\text{bar}$).

Temperature		1K		2K		5K	1	10K
strain	S	Q	S	Q	S	Q	S	Q
1.5%	22.9	3.4×10 ⁻¹³	22.9	5.7×10^{-11}	21.1	8.5×10^{-10}	18.4	2.0×10^{-9}
2%	18.5	6.8×10^{-12}	18.4	1.1×10^{-9}	15.7	1.7×10^{-8}	12.3	4.1×10^{-8}
2.5%	9.1	1.3×10^{-10}	9.0	2.1×10^{-8}	8.4	3.1×10^{-7}	7.4	7.4×10^{-7}
3%	8.6	1.6×10^{-9}	8.3	2.7×10^{-7}	7.0	4.2×10^{-6}	5.4	1.1×10^{-5}
3.5%	3.7	1.8×10^{-8}	3.7	3.0×10 ⁻⁶	3.8	5.3×10 ⁻⁵	3.4	1.7×10^{-4}
Temperature	1	15K	1	18K		21K	2	22K
strain	S	Q	S	Q	S	Q	S	Q
1.5%	16.1	3.2×10^{-9}	14.0	4.2×10^{-9}	10.4	6.0×10^{-9}	9.0	9.4×10^{-9}
2%	10.3	6.5×10^{-8}	8.7	8.7×10 ⁻⁸	6.5	1.4×10^{-7}	5.7	1.5×10^{-7}
2.5%	6.5	1.2×10^{-6}	5.5	1.6×10^{-6}	4.2	2.6×10^{-6}	3.8	2.7×10^{-6}
3%	4.4	1.9×10^{-5}	3.7	2.6×10^{-5}	2.9	4.1×10^{-5}	2.7	4.3×10 ⁻⁵
3.5%	2.9	2.9×10^{-4}	2.5	4.0×10^{-4}	2.2	6.0×10^{-4}	2.1	6.1×10^{-4}

Temperature		4K		5K		8K	1	10K
strain	S	Q	S	Q	S	Q	S	Q
2.5%	19.5	2.1×10^{-10}	19.6	3.5×10^{-10}	19.4	8.4×10^{-10}	18.8	1.2×10^{-9}
3%	12.8	3.1×10 ⁻⁹	12.9	5.2×10^{-9}	12.8	1.2×10^{-8}	12.3	1.7×10^{-8}
3.5%	7.8	4.9×10^{-8}	8.1	8.0×10^{-8}	8.3	1.9×10^{-7}	8.1	2.6×10 ⁻⁷
4%	4.0	6.8×10 ⁻⁷	4.2	1.1×10^{-6}	4.5	2.5×10^{-6}	4.6	3.6×10 ⁻⁶
Temperature	1	12K	1	15K	1	16K	1	17K
strain	S	Q	S	Q	S	Q	S	Q
2.5%	17.9	1.6×10^{-9}	15.9	2.3×10^{-9}	15.0	2.6×10^{-9}	13.8	2.9×10^{-9}
3%	11.7	2.2×10^{-8}	10.2	3.3×10 ⁻⁸	9.5	3.8×10 ⁻⁸	8.7	4.3×10 ⁻⁸
3.5%	7.7	3.5×10^{-7}	6.7	5.2×10^{-7}	6.2	5.9×10 ⁻⁷	5.7	6.9×10 ⁻⁷
4%	4.5	4.8×10^{-6}	4.1	7.1×10^{-6}	3.9	8.2×10^{-6}	3.6	9.5×10 ⁻⁶

Table S2 The selectivities (S) and the permeances (Q, mol/s/cm²/bar) under different strains for temperatures ranging from 4 to 17 K by using DFT-D3(BJ) correction. The red numbers identify the conditions satisfying the industrial acceptable selectivity (> 6) and permeance (> $6.7 \times 10^{-8} \text{ mol/s/cm}^2/\text{bar}$).

Supplementary Methods

Calculation of DFT-D3 and DFT-D3(BJ) correction schemes

The DFT-D3 and DFT-D3(BJ) correction schemes for the potential barriers are calculated by the Grimme's DFTD3 program, which is a open-source program developed by Lori A. Burns. The program can be freely downloaded at http://www.psicode.org/psi4manual/master/dftd3.html.

Supplementary Data

The Optimized Coordinates of the unit cell of unstretched C₂N-h2D lattice

(Cartesian coordinates, in unit of Angstroms)

- C 3.449333 1.143009 0.000000
- C 2.714540 2.415711 0.000000
- $C \quad 9.063802 \quad 3.558728 \quad 0.000000$
- C 7.594219 3.558730 0.000000

С	4.879661	1.143025	0.000000
С	5.614455	2.415723	0.000000
С	9.044185	6.070146	0.000000
С	9.778977	4.797444	0.000000
С	3.429715	3.654427	0.000000
С	4.899298	3.654425	0.000000
С	6.879063	4.797432	0.000000
С	7.613857	6.070131	0.000000
Ν	2.756981	0.000000	0.000000
Ν	1.378485	2.387614	0.000000
Ν	6.950515	2.387617	0.000000
Ν	5.572031	0.000000	0.000000
N	2.786019	4.825541	0.000000
N	5.543002	4.825539	0.000000

The Optimized Coordinates of unit cell of unstretched C_2N -h2D lattice with a He atom

(Cartesian coordinates, in unit of Angstroms)

С	3.449666	1.143360	0.000000	
С	2.714949	2.415821	0.000000	
С	9.063581	3.559180	0.000000	
С	7.594247	3.559178	0.000000	
С	4.879239	1.143380	0.000000	
С	5.613857	2.415843	0.000000	
С	9.043633	6.069697	0.000000	
С	9.778350	4.797236	0.000000	
С	3.429718	3.653877	0.000000	
С	4.899052	3.653878	0.000000	
С	6.879442	4.797214	0.000000	
С	7.614059	6.069677	0.000000	
N	2.758745	-0.000046	0.000000	

Ν	9.708306	2.389084	0.000000
N	6.949546	2.389102	0.000000
N	5.570286	0.000046	0.000000
N	11.114025	4.823973	0.000000
N	5.543753	4.823956	0.000000
He	0.000000	0.000000	0.000000

Sample VASP input file

INCAR file for optimization:

SYSTEM =C2N-h2D

Start parameter for this run

PREC = Accurate

ISTART = 0

ICHARG = 2

ENCUT = 520

Electronic relaxation

NELM = 80

NELMIN = 2

EDIFF = 1.E-08

LREAL = Auto

ALGO = Normal

GGA = PE

Ionic relaxation

EDIFFG = -0.001

NSW = 500

IBRION = 1

ISIF = 2

POTIM = 0.50

DOS related values

EMIN = -10

$\mathbf{EMAX} = 10$
NEDOS = 800
ISMEAR = 0
SIGMA = 0.05
Write flags
LWAVE = F
LCHARG = F
LORBIT = 12
LVDW = T

INCAR file for static energy calculation:

SYSTEM =C2N-h2D Start parameter for this run PREC = Accurate ISTART = 0ICHARG = 2ENCUT = 520INIWAV = 1Electronic relaxation NELM = 80NELMIN = 2NELMDL = -5EDIFF = 1.E-08LREAL = AutoALGO = NormalGGA = PEIonic relaxation EDIFFG = -0.001NSW = 0IBRION = -1