Supplementary Information

Atomic-layer soft plasma etching of MoS₂

Shaoqing Xiao^{*,1,‡}, Peng Xiao^{1,‡}, Xuecheng Zhang¹, Dawei Yan¹, Xiaofeng Gu¹, Fang Qin², Zhenhua Ni^{*,3}, Zhao Jun Han⁴, and Kostya (Ken) Ostrikov^{*,4,5,6} ¹ Engineering Research Center of IoT Technology Applications (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi 214122, China. ²Analysis & Testing Center, Jiangnan University, Wuxi 214122, China ³Department of Physics, Southeast University, SEU Research Center of Converging Technology, Nanjing 211189, China ⁴CSIRO Manufacturing, P.O. Box 218, Lindfield, New South Wales 2070, Australia ⁵School of Physics, The University of Sydney, Sydney, New South Wales 2006, Australia ⁶Institute for Future Environments and School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia E-mail: *larring0078@hotmail.com; zhni@seu.edu.cn; kostya.ostrikov@csiro.au*

[‡]These authors contributed equally to this work.

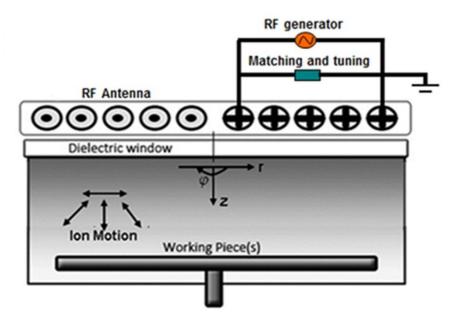
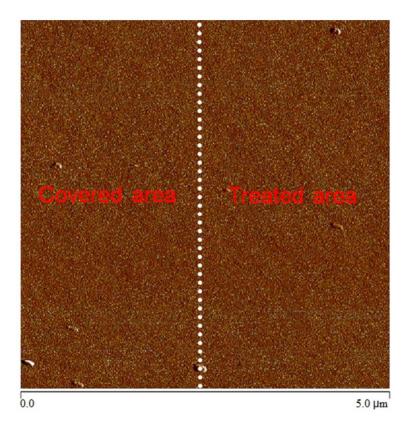
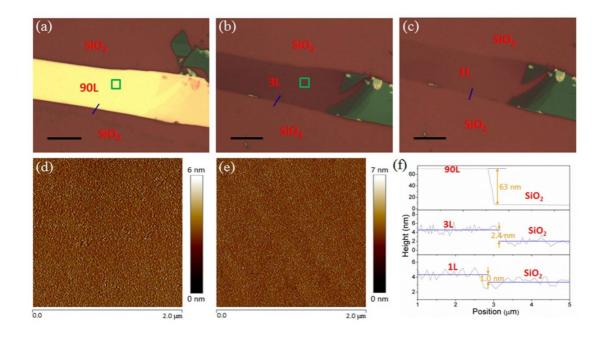
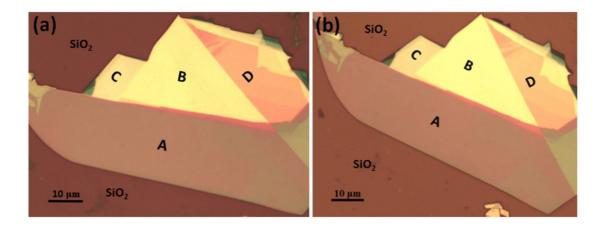
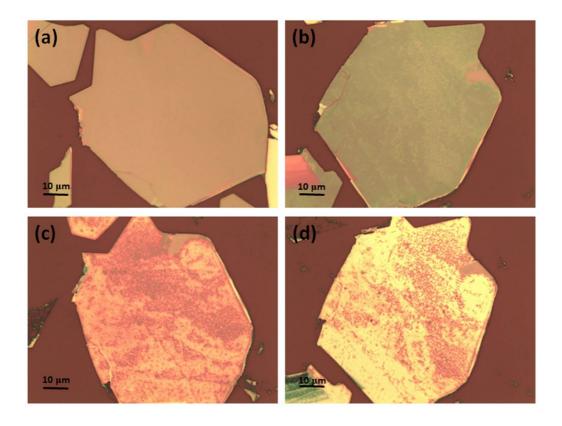


Figure S1 | The schematics of the experimental setup of the planar E-mode ICP source.


Figure S2 | A representative AFM surface morphology of the SiO₂/Si substrate consisting of the treated area under $SF_6 + N_2$ plasma environment for 2 hr and the covered area.

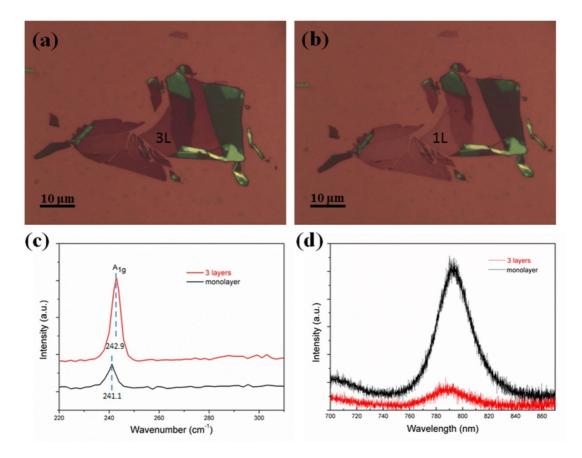

Figure S3 | (a) A large-area thick MoS_2 multilayer and (b,c) its corresponding etched samples by combining the fine and fast etching modes at power densities of 0.8 and 1.2 mW/cm³, respectively. a) Optical image of pristine MoS_2 flakes; (b) after 20 min etching at 1.2 mW/cm³; (c) after 4 min etching at 0.8 mW/cm³. (d) and (e) are the corresponding AFM images of the squared regions in (a) and (b), respectively. The rms roughness in (d) and (e) is 0.7 nm and 0.8 nm, respectively. (f) The AFM depth profiles of MoS_2 as denoted by blue lines in (a-c). Scale bars in (a-c) are 10 µm.

Figure S4 | Optical images of the pristine sample used for etching in Figure 2: before (a) and after (b) $SF_6+N_2+H_2$ plasma etching at an input power density of 4.0 mW/cm³. The A area is made of ~158 MoS₂ layers, the B area ~87-91 layers, the C area ~53 layers, and the D area ~106-109 layers. The etching thickness of SiO₂ after this plasma process is estimated to be about 20 nm deduced from the AFM results.

Figure S5 | (a) Optical images of a large-area thick MoS_2 flake. (b) The same sample after 10 min etching at a power density of 2 mW/cm³; (c) after another 10 min etching at the same power; and (d) after further 10 min etching at the same power. Non-uniform and rough surface was observed on the etched MoS_2 flake.

Figure S6 | Two typical optical images of plasma-etched MoSe₂ flakes. (a) Pristine MoSe₂ flake showing 3 layers; (b) monolayer (1L) after 1 min *fine* plasma etching; (c) corresponding Raman spectra and (d) PL spectra before and after this soft plasma thinning. About 2 layers were removed after the etching process. One can see that as the number of MoSe₂ layers was decreased, the A_{1g} Raman mode shifted from 242.9 to 241.1 cm⁻¹, which was in good agreement with previous report [see *Nano Lett. 12, 5576 (2012)*]. The PL spectra also showed a large enhancement when the 3 layers of MoSe₂ were thinned down to monolayer. Similar to MoS₂ PL results, this enhancement in PL for single-layer MoSe₂ can be attributed to an indirect-to-direct bandgap transition.

Supplementary Table

Table S1 | Summary of competitive advantages of our soft plasma etching method of thinning MoS_2 compared to other methods such as thermal annealing, laser thinning and Ar plasmathinning.

Features	Thermal thinning	Laser thinning	Ar Plasma thinning	Soft etching
Number of layers etched	1-7	Unkown	1-3	Any*
Layers removal rate	1 layer/hr	Unkown	1 layer/115 s	1 layer/180 s (fine etching mode) 290 layers/hr (fast etching mode)
Domain area reduction	Yes	Yes	No	No
Etching residues left on surface	No	Yes	Yes	No
Damage to underlying layers	Yes	Yes	No	No
Selective etching between MoS ₂ and SiO ₂	Yes	Yes	Yes	Yes
Vacuum needed	Low	Low	Medium	Medium
Controllability on etching rate	Low	Unable	Medium	High
Scalability	Low	Low	High	High

*In this work the results of up to 90 layers are presented.