Supplementary Materials for

Mutations in the *neverland* **gene turned** *Drosophila pachea* **into an obligate specialist species**

Michael Lang, Sophie Murat, Andrew G. Clark, Géraldine Gouppil, Catherine Blais, Luciano M. Matzkin, Émilie Guittard, Takuji Yoshiyama-Yanagawa, Hiroshi Kataoka, Ryusuke Niwa, René Lafont, Chantal Dauphin-Villemant and Virginie Orgogozo

This file includes:

Materials and methods

Supporting text

Figs. S1 to S13

Tables S1 to S10

References

Materials and methods

Drosophila strains and fly culture

The *2-286-GAL4* (from C. S. Thummel) (*18*) and *UAS-nvd-RNAi-IR-1* (*8*) lines were described previously. Line *w ¹¹¹⁸* was used for in situ hybridization. Non-*melanogaster Drosophila* species were obtained from the San Diego Drosophila Stock Center (San Diego, CA, USA): *D. pachea* (15090-1698.01, -1698.02 and -1698.05), *D. acanthoptera* (15090-1693.00), *D. nannoptera* (15090-1692.01), *D. wassermani* (15090-11697.11), *D. robusta* (15020-1111.10) and *D. mojavensis* (15081-1352.22). The three *D. pachea* strains were collected in 1996 in El Cardonal (Sonora, Mexico), in 1997 in Organ Pipe National Monument (Arizona, US) and in 2007 in Punta Ohna (Sonora, Mexico). Flies were raised at 25°C on standard medium containing 83 g of dry baker's yeast, 83 g of maize flour, 11 g of agar and 25 mL of 10% methyl 4-hydroxybenzoate (dissolved in ethanol) in 1 L of water. Tubes containing standard fly food (10 g) were supplemented with 60 microliters of a 5-mg/mL 7DHC (Sigma, Saint Louis) solution or of a 1-mg/mL lathosterol (Sigma) solution. *D. melanogaster* transgenic flies were produced by FlyFacility, Clermont-Ferrand. For the rescue experiment, we scored progeny flies according to sex and visible markers from more than 8 vials per food condition and per cross. More than 1000 progeny flies were scored in total for each condition.

Sequencing of the *nvd* **locus**

We used degenerate primers, inverse PCR, RT-PCR, 5' RACE and 3' RACE to sequence the *nvd* locus in various *Drosophila* species. To avoid potential PCR-induced errors, we determined DNA sequences from at least two independent PCR amplifications. See fig. S1 and Table S1 for amplification reactions and primers. Genomic DNA was isolated from adults using QIAgen DNeasy Tissue kit. Part of exon 2 was amplified from *D. acanthoptera* with primers nvd.ex2.F1 and nvd.ex2.R2. Part of exon 2 was amplified from all the other *nannoptera* group species and from *D. robusta* with nvd.ex2.F1 and nvd.ex2.R1 primers. Part of exon 3 was amplified from *D. pachea* with primers nvd.ex3.F1 and nvd.ex3.R1. Part of exons 5 and 6 was amplified from *D. pachea* with nvd.ex5.F1 and nvd.ex6.R2 primers, and from *D. acanthoptera* with nvd.ex5.F1 and nvd.ex6.R3 primers. PCR fragments were purified and cloned into PGEMT-Easy (Promega, Madison) prior to sequencing. RT-PCR showed that the three non overlapping *nvd* exonic sequences that we amplified using degenerate primers in *D. pachea* were contiguous, suggesting that a single *nvd* gene is present in the *D. pachea* genome. Inverse PCR was performed to amplify the 5' and 3' *nvd* regions from *D. pachea* and *D. acanthoptera*. Genomic DNA was digested with MspI or Sau3AI and then ligated using T4 ligase (Promega) (19). Total RNA was isolated from adults using SV Total RNA Isolation System (Promega) following the manufacturer's protocol. Reverse transcriptase reaction was performed with M-MLV retrotranscriptase (Promega) and oligo-dT primers. Subsequent 5' and 3' RACE were done using SMART™ RACE cDNA Amplification Kit (Clontech, Mountain View). Various PCR and RT-PCR were also performed to

sequence the entire *nvd* locus (fig. S1). For population genetics analysis, DNA was isolated from single flies with the QIAgen DNeasy Tissue kit and the 3-kb *nvd* locus was amplified and sequenced using the primers reported in Table S1.

Analysis of *nvd* **coding sequences in Diptera species**

Insect *nvd* gene regions were retrieved from NCBI database with TBLASTN and were annotated manually with Artemis (*20*). 5' RACE was performed as described above on *D. mojavensis* with the 5'Nvd-mojR primer and corroborated our gene annotation. Presumptive deleterious mutations were detected with SIFT (*21*) based on *Drosophila* and other insect NVD protein sequences. DNA sequences were aligned with ClustalW in BioEdit (*22*), with hand alignment of small indels based on amino acid sequences. Bayesian reconstruction of ancestral sequences and maximum likelihood analysis was performed with codeml in the PAML 4.2b package (*23*). We used the F3x4 model of codon frequencies. Global replacement changes per site (dN) / synonymous changes per site (dS) were calculated by a free-ratio model, which allows dN/dS to vary along different branches. To test whether the dN/dS ratio is higher in the *D. pachea* lineage, we used a branch model, where the null model is a single dN/dS ratio over the entire tree and the alternative model is two dN/dSs, one for the *D. pachea* lineage and one for the rest of the tree (Table S3).

In situ hybridization

Part of the *nvd* coding region was amplified by RT-PCR from *D. pachea*, *D.*

acanthoptera and *D. melanogaster* using the following primers: pa.ex2.F3 and pa.finR, ac.ex2.F3 and ac.finR, Nvd.up2 and Nvd.do2 respectively. Fragments were purified, cloned into pGEMT-Easy and sequenced. The resulting plasmids were digested with ApaI or SacI and used as templates to generate sense and anti-sense in situ probes using the dNTP DIG RNA labeling mix (Roche) with T7 or SP6 polymerases (Promega). Wandering third instar larvae were dissected in PBT and fixed in 4% paraformaldehyde. In situ hybridization was carried out according to standard protocols.

Steroid hormone extraction and HPLC separation

D. pachea flies were raised on regular fly food supplemented with 7DHC or with senita cactus pieces (see Methods section). For each condition, 100 wandering third instar larvae were homogenized in methanol and processed as described previously (*13*). Samples were then dissolved in HPLC mobile phase (a mix of dichloromethane/propan-2-ol/water, 125:30:1, $v/v/v$) and separated through a Zorbax \circledR Sil column (250 x 4.6 mm) i.d.) in an isocratic normal-phase mode using a Beckman HPLC apparatus (System Gold), a 1 mL min⁻¹ flow rate and UV detection at 245 nm. From each collected fraction (700 microliters) we kept 175 microliters for nanoLC-MS/MS analyses and used the remaining part for enzyme immunoassay (EIA) detection of steroid hormones. All samples were evaporated to dryness.

Enzyme immunoassay detection of steroid hormones

Steroid hormones were detected with an enzyme immunoassay as described previously

(*13*). We used the polyclonal anti-ecdysone antiserum L2 (from M. De Reggi, Marseille), which displays the following cross-reactivities for reference steroids: ecdysone, 1.0 ; 20 hydroxyecdysone, 4.6 ; makisterone A, 50.0; makisterone C, 114.6. Calibration curves were generated with 20-hydroxyecdysone and results are given in 20-hydroxyecdysone equivalents.

NanoLC-tandem mass spectrometry

For nanoLC-MS/MS analyses, HPLC fractions corresponding to the two major immunoreactive peaks detected by EIA were pooled. Five fractions around the retention time of reference makisterone C were added to the pool of ecdysone/makisterone A zone fractions (see horizontal bars in fig. S5). Nano LC-MS/MS was performed at UPMC (Plate-forme de Spectrométrie de Masse et Protéomique, IFR 83, Paris) as described previously (*13*). Reference 20-hydroxyecdysone was given by J. Harmatha (Prague). Reference makisterone A and makisterone C were previously isolated from *Ajuga iva* (*24*) and *Leuzea carthamoides* (*25*), respectively. Reference ecdysone was purchased from Northern Biochemical Company, Russia. Their purity was higher than 97%.

Construction of plasmids for in vivo and in vitro assays

The *pUAST*, *pUAST-HA*, *UAS-GFP* and *UAS-HA-nvd-B.mori* plasmids were described previously (*8*, *15*, 26). The entire *nvd* coding region was amplified from *D. pachea*, *D. acanthoptera* and *D. mojavensis* cDNA using the following primers: pa-debut and pastop, ac-debut and ac-stop, moj-debut and moj-stop, respectively. Fragments were

subcloned into pGEMT-Easy, digested with *EcoR*I and *Kpn*I (*D. pachea*) or *Xho*I and *Xba*I (*D. acanthoptera*) or *Bgl*II and *Xba*I (*D. mojavensis*), and ligated into pUAST. The resulting *pUAS-nvd-D. mojavensis* plasmid contains part of the endogenous *nvd* 5' UTR. This construct gave the strongest NVD activity in our assay and was used as a reference in all our assays. A *pUAS-nvd-D. mojavensis* plasmid with no *nvd* 5'UTR was constructed using debut_pUAST3H_Dmoj_BamHI and pUASTR primers to amplify the *nvd* coding region and *Bgl*II/*BamH*I and *Xba*I as cloning sites into *pUAST*. The pGEMT-Easy vectors containing *nvd* inserts were used as templates for site-directed mutagenesis and mutants were generated with the QuickChange® Multi Site-Directed Mutagenesis kit according to the manufacturer's specifications (Stratagene, Europe). Primer sequences are indicated in Table S1. Then *nvd* inserts containing the mutations of interest were cloned into *pUAST*. *D. pachea HA-nvd* and *D. mojavensis HA-nvd* were amplified from *pUAST-nvd* constructs using the reverse primer pUASTR and a gene-specific forward primer (pacHAdebut and mojHAdebut), introducing a *BamH*I restriction site upstream of the start codon. The resulting PCR fragments were ligated into pGEMT, digested with *BamH*I and *Xba*I, and ligated into *pUAST-HA* linearized with *Bgl*II and *Xba*I. For preparation of HA-tagged *D. mojavensis nvd* constructs with mutations, pUAST-*D. mojavensis HA-nvd* was digested with *EcoR*I, releasing a HAtag-5´*nvd* coding sequence fragment and this fragment was ligated into the five *pUAST-D. mojavensis HA-nvd* constructs with mutations *using the EcoR*I site. For preparation of HA-tagged *D. pachea nvd* constructs with mutations, the same strategy was used, but digesting with *RsrI*I and *Xba*I. The *D. melanogaster Start1* cDNA was cloned as a *Xho*I-*Nhe*I fragment into the S2

expression vector *pBRAcpA* (from L. Cherbas), which contains an *actin5C* promoter. Maxiprep were performed using PureYield Plasmid Maxiprep System (Promega) following the manufacturer's instructions.

In vitro assay

Our assay was adapted from refs. (*15*, *27*). *D. melanogaster* S2 cells were maintained at 22 °C in Schneider medium (Invitrogen) supplemented with 10% heat-inactivated FCS and antibiotics (100 μ g/mL streptomycin and 60 μ g/mL penicillin). One day after subculture, cells were transfected using Effectene transfection reagent (QIAgen) with the following three plasmids: A*ctin5C-GAL4* (from Yasushi Hiromi)*, UAS-GFP* (*26*), *Actin5C*-Start1 (*28*), and one of our *UAS-nvd* plasmids. GFP served as a control for transfection efficiency. Transfected cells were incubated for 3 days at 22 °C to allow optimal protein expression. Then, 4 mL-cell culture solutions were incubated with 80 microliters of a cholesterol or lathosterol solution $(1 \text{ mg/mL}$ in 45% 2-hydroxypropyl- β cyclodextrin) for 24 h. Both 2-hydroxypropyl-β-cyclodextrin (Sigma) and *Actin5C*-*Start1*-transfection are thought to facilitate cholesterol absorption (*28*, *29*). Ethyl acetate extracts were analyzed by reverse phase-high pressure liquid chromatography (RP-HPLC) with a Waters 1525 HPLC system or an Ettan LC system. Conditions were as follows: C18 column (150 \times 4.6 mm i.d. Advanced Chromatography Technologies), acetonitrile:isopropanol (5:2, vol/vol) solvent, 1 mL/min flow-rate, detection at 210 nm and 280 nm. NVD activity was measured as the amount of 7DHC produced (proportional to the corresponding peak surface). Since cell conditions can vary from day to day, the

amount of 7DHC was always reported relative to the amount of 7DHC produced by cells transfected during the same assay with the very active *UAS-nvd-D. moj* construct. This construct contains part of the *D. mojavensis nvd 5*'UTR upstream of the start codon. At least three independent assays were performed for each condition.

Western blot

For each sample we used 1 mL of transfected S2 cell culture after sterol addition and just before sterol extraction. Cells were pelleted, resuspended in PBS buffer, pelleted again and resuspended in 1 mL RIPA buffer (50 mM Tris-Cl pH 7.4, 150 mM NaCl, 1% NP-40, 0.5% Na Deoxycholate, 0.1% SDS, protease inhibitors). Cell extracts were sonicated with three 5-s pulses at output level 2 using a Branson sonifier S-250 with a 3-mm microtip. Standard Western blot protocols were applied for detection of epitope tagged NVD enzyme and actin using the following antibodies: rat anti-HA monoclonal antibody 11867423001 (Roche) (1:2000 dilution), donkey anti-rat peroxydase 31470 (Pierce) (1:1000 dilution), mouse anti-actin monoclonal antibody 691001 (MP Biomedicals) (1:2000 dilution), anti-mouse IgG peroxydase A6782 (Sigma) (1:1000 dilution).

Fluorescent in situ hybridization (FISH) of polytene chromosomes

Polytene chromosomes were prepared from *D. pachea* 15090-1698.02 third instar larva salivary glands by standard acid fixation squash procedures (*30*). For fixation, salivary glands were incubated in 45% acetic acid for 5 min, and then in 50% acetic acid and 16,67% lactic acid for 2 min. FISH probes were prepared with the FISH Tag DNA Green Kit, Alexa Fluor 488 (Life Technologies). Each labeling was performed with an equimolar pool of five 1.5-to-2.5-kb PCR products corresponding to the amplification of 8 to 10 kb of the genomic region of interest (see Table S1 for primers). Hybridization of DNA probes to polytene chromosomes was carried out following the protocol of (*30*). As a control, we stained for the *Acetyl-CoA carboxylase* (*ACC*) locus in *D. pachea* and we observed that it localizes to a polytene band that is different from the one detected with the *nvd* probe (not shown).

D. pachea **whole genome sequencing and assembly**

The DNA of thirty individuals of the *D. pachea* 15090-1698.02 line was sequenced with the Illumina platform (Fasteris, Geneva, 2x100 bp, 134 million reads). The genome sequence was assembled with velvet 1.0.13 (31) using multiple hash lengths ($k = 45, 49$, 53, 57, 63). The assembly based on 49-kmers was chosen for further analysis. The N50 contig length of this assembly is 3,661 bp (minimum contig size $= 100$ bp). Then, 8 kband 20 kb- Long Jumping Distance (LJD) libraries (Eurofins MWG, Ebersberg) were constructed from a pool of genomic DNA from 120 adults of the *D. pachea* 5090- 1698.02 line and sequenced with the Illumina platform (2x100 bp, 33 millions of reads paired with another read for the 8 kb-library and 33 million of reads paired with another read for the 20 kb-library). Reads were mapped to the genome assembly with bwa 0.5.5 (*32*). The mapping results were visualized with IGV (*33*) and contigs adjacent to the contig containing *nvd* were linked manually based on the LJD paired-end read information. This method allowed us to obtain a scaffold spanning approximately 40 kb

on the 3' side of *nvd* and more than 150 kb on the other side (fig. S9). A better assembly of the *D. pachea* genome sequence is ongoing and will be published elsewhere. For gene annotation, we performed BLAST searches in Drosophila nucleotide sequences with tblastx and blastn and annotated coding sequences manually in Geneious (*34*).

Natural population sampling and initial processing of population genetics sequence data

Initially, we collected a population of 15 individuals from Guaymas (Sonora, Mexico) in 2003 and another one of 14 individuals from San Felipe (Baja California, Mexico) in 2008. On May 2011, we placed two bottles containing rotten senita cactus in a large cactus forest near San Felipe (Baja California, Mexico 114 53' 40.26" W, 31 06' 20.71" N). On May 14 we collected 34 *D. pachea* individuals: 13 were found in one bottle and 21 in another bottle located 5 meters away. We recorded the sex of each individual (Table S4). Genomic DNA was isolated from each individual fly using QIAgen DNeasy Tissue kit. The 3-kb- *nvd* locus (from the start codon to the stop codon, including introns) was amplified and Sanger-sequenced in all the individuals (see Table S1 for primers). In addition, we amplified and sequenced seven genes located in the scaffold containing *nvd* and nine "control" genes that were chosen randomly across the genome from the 34 individuals collected in 2011 (fig. 4). The PCR amplicon length ranged from 1.5 to 3.5 kb and was sequenced with at least two sequencing primers (Table S1). We used Geneious 5.5.6 (*34*) and Indelligent (*35*) to find heterozygote nucleotide positions and infer heterozygote indels. Loci with heterozygote SNPs in males were inferred to be autosomal

(*acc, ddc, pis, RhoI, sad, Tpi* and all the genes in the *nvd* scaffold) whereas loci with no heterozygote nucleotides in males were inferred to be X-linked (*dib, shade, smt3*). Indels were removed manually from all the sequences. The sequences were then phased using the Stephens et al. PHASE tool (*36*), and the resulting haplotypes (68 haplotypes for each autosomal gene and 59 haplotypes for X-linked genes) were used in subsequent analysis.

Population Structure

If the San Felipe sample of 34 individuals came from a highly structured population, this could present a challenge in interpretation of the other population genetic analysis. The control region data were subjected to analysis using STRUCTURE (*37*) and we also applied Principal Components Analysis (*38*) to assess whether these data look like a single panmictic population. We found no hint of clustering of any subset of lines (fig. S10), in agreement with the results of STRUCTURE (not shown), indicating no sign that this population has significant substructure. For subsequent analysis, we accepted the null hypothesis that the data behave as though the 34 sampled individuals are derived from a single panmictic population.

Population genetics analysis

The estimates of the population recombination rate, rho $=$ 4Nr, were calculated with DnaSP (*39*) and compared between the *nvd* region and the control regions (Table S7). The counts of synonymous differences, nonsynonymous differences and rate of substitutions per nonsynonymous site (Ka) were done with DnaSP (Table S8). We also on the 3' side of *nvd* and more than 150 kb on the other side (fig. S9). A better assembly of the *D. pachea* genome sequence is ongoing and will be published elsewhere. For gene annotation, we performed BLAST searches in Drosophila nucleotide sequences with tblastx and blastn and annotated coding sequences manually in Geneious (*34*).

Natural population sampling and initial processing of population genetics sequence data

Initially, we collected a population of 15 individuals from Guaymas (Sonora, Mexico) in 2003 and another one of 14 individuals from San Felipe (Baja California, Mexico) in 2008. On May 2011, we placed two bottles containing rotten senita cactus in a large cactus forest near San Felipe (Baja California, Mexico 114 53' 40.26" W, 31 06' 20.71" N). On May 14 we collected 34 *D. pachea* individuals: 13 were found in one bottle and 21 in another bottle located 5 meters away. We recorded the sex of each individual (Table S4). Genomic DNA was isolated from each individual fly using QIAgen DNeasy Tissue kit. The 3-kb- *nvd* locus (from the start codon to the stop codon, including introns) was amplified and Sanger-sequenced in all the individuals (see Table S1 for primers). In addition, we amplified and sequenced seven genes located in the scaffold containing *nvd* and nine "control" genes that were chosen randomly across the genome from the 34 individuals collected in 2011 (fig. 4). The PCR amplicon length ranged from 1.5 to 3.5 kb and was sequenced with at least two sequencing primers (Table S1). We used Geneious 5.5.6 (*34*) and Indelligent (*35*) to find heterozygote nucleotide positions and infer heterozygote indels. Loci with heterozygote SNPs in males were inferred to be autosomal

(*acc, ddc, pis, RhoI, sad, Tpi* and all the genes in the *nvd* scaffold) whereas loci with no heterozygote nucleotides in males were inferred to be X-linked (*dib, shade, smt3*). Indels were removed manually from all the sequences. The sequences were then phased using the Stephens et al. PHASE tool (*36*), and the resulting haplotypes (68 haplotypes for each autosomal gene and 59 haplotypes for X-linked genes) were used in subsequent analysis.

Population Structure

If the San Felipe sample of 34 individuals came from a highly structured population, this could present a challenge in interpretation of the other population genetic analysis. The control region data were subjected to analysis using STRUCTURE (*37*) and we also applied Principal Components Analysis (*38*) to assess whether these data look like a single panmictic population. We found no hint of clustering of any subset of lines (fig. S10), in agreement with the results of STRUCTURE (not shown), indicating no sign that this population has significant substructure. For subsequent analysis, we accepted the null hypothesis that the data behave as though the 34 sampled individuals are derived from a single panmictic population.

Population genetics analysis

The estimates of the population recombination rate, rho $=$ 4Nr, were calculated with DnaSP (*39*) and compared between the *nvd* region and the control regions (Table S7). The counts of synonymous differences, nonsynonymous differences and rate of substitutions per nonsynonymous site (Ka) were done with DnaSP (Table S8). We also performed two tests of selection that rely on the consistency of polymorphism and divergence at synonymous and nonsynonymous sites. The McDonald-Kreitman test (*40*) tabulates the counts of synonymous and nonsynonymous polymorphic sites and compares them to the counts of synonymous and nonsynonymous divergent sites when *D. pachea* sequences are compared to an outgroup (*D. mojavensis*). The McDonald-Kreitman test asks whether the pattern of polymorphism is consistent with the pattern of divergence (Table S9). The other test that was applied, the Hudson-Kreitman-Aguadé test (*41*), also uses a contrast between levels of polymorphism and divergence. This test fits a model consistent with the observed nucleotide diversity and asks about the consistency of nucleotide divergence at two genomic regions. We contrasted the *nvd* region to the control regions using the HKA test. This test shows that the *nvd* region has less polymorphism than the control loci, despite the fact that the divergence (and hence mutation rates) are similar. The HKA test yielded a chi-square of 18.348, and a P-value of 10^{-4} .

The Kim and Nielsen omega statistics (*42*, *43*), which tests for selective sweeps, was calculated with the OmegaPlus sofware (*44*). The plot was made as though there is no gap between genes, which is somewhat artificial but is justified by the fact that there is such a low rate of recombination (fig. 4). We performed 1000 simulations using the neutral coalescent simulator ms (*45*) and the average estimates of theta and rho for the region in order to calculate the significance level of omega (fig. 4). We conclude that there is evidence of at least one selective sweep in the *nvd* region.

The haplotype bifurcation diagram was created with the SWEEP sofware developed by

the Broad Institute (*46*). Input data for SWEEP was the concatenated and phased data for the nvd region spanning from *C952* to *SpdS*. Linkage disequilibrium (LD) estimates were based on genotypic correlations calculated from unphased sequences using Zaykin's mcld program (*47*). The LD heat map was constructed using the LDheatmap R package (*48*).

Supporting Text

Lathosterol conversion

In mammals, lathosterol is converted into 7DHC during cholesterol biosynthesis by the 7-sterol C5-desaturase SC5DL (*49*). This desaturase is a membrane nonheme iron enzyme and is orthologous to the *Saccharomyces cerevisiae* ERG3 D5-desaturase involved in ergosterol biosynthesis (*49*), whereas NVD is a Rieske oxygenase (*8*). No ERG3 ortholog is present in any *Drosophila* species sequenced to date (*50*) and no NVD ortholog has yet been found in mammals (*8*, *15*). Our work thus suggests that conversion of lathosterol into 7DHC is catalyzed by unrelated enzymes in *Drosophila* and mammals.

Nvd and heterochromatin

In *D. melanogaster* the *nvd* gene is located in heterochromatin near the centromere on the left arm of chromosome 3 (*8*) whereas in *D. mojavensis* the *nvd* gene is located within one of the largest scaffolds, scaffold 6540, which is typical of euchromatin (*48*). The Y chromosome, the fourth chromosome and regions around centromeres and telomeres are typical heterochromatin domains in *Drosophila* (*49*). They are marked by HP1 protein and H3K9 methylation (*50*) and are characterized by low nucleotide diversity and low recombination rate (*51*). For several reasons we think that the low nucleotide diversity and low recombination rate we observed in the *nvd* region in *D. pachea* is not due to the fact that this gene is – or was very recently – in HP1 heterochromatin in *D. pachea*. First, our FISH analysis (fig. S12) shows that *nvd* is

located in the middle of a chromosome arm in *D. pachea*. Second, in *D. melanogaster*, the median intron length of euchromatic protein coding genes is 79 bp (*52*) and genes located in heterochromatin are in average four times larger than introns located in euchromatin (*53*). Intron size of the *nvd* gene in the *D. nannoptera* subgroup species and *D. mojavensis* is typical of euchromatin genes (fig. S11). Third, repetitive sequences typically reside within one or more introns of each gene as well as in intergenic regions in heterochromatin (*53*). No large repetitive sequences were found in our *nvd* scaffold of *D. pachea* and in the part of *D. mojavensis* scaffold_6450 that contains *nvd* and the neighboring orthologs.

However, we found that the %GC is significantly lower in the *nvd* region than in the control loci both in *D. mojavensis* and *D. pachea* (Table S9). In general, protein-coding genes in heterochromatin regions are approximatively 5–10% more AT-rich than their euchromatic orthologs in other *Drosophila* species (*53*). This suggests that *nvd* was embedded in heterochromatin in the past. According to the variation of intron sizes within the Drosophilidae phylogeny (fig. S11), *nvd* might have moved from heterochromatin to euchromatin before the separation of the *D. mojavensis* and *D. pachea* lineages. Translocations from heterochromatin to euchromatin and vice versa are not rare during Drosophila evolution (*51*–*53*).

Summary of the population genetics analysis of the *nvd* **locus**

Our population genetics analysis shows that *nvd* is in a large genomic region with low recombination rate and low nucleotide diversity. The divergence rate (between *D.*

mojavensis and *D. pachea*) of the coding sequences present in the *nvd* region is not significantly different from genes located in unlinked regions of the genome (Table S8). Regions of lower recombination rates are expected to diverge faster (*54*, *55*) but this is not the case here, suggesting that the low recombination rate and low nucleotide diversity of the *nvd* region is a relatively recent phenomena that appeared after the separation of the *D. mojavensis* and *D. pachea* lineages. Such a low diversity and recombination rate over several dozens of kilobases in a *Drosophila* species can be the result of recent and strong positive selection. The Kim and Stephen omega statistics does indeed show evidence for a selective sweep (fig. 4). A recent selective sweep would generate a strong linkage disequilibrium (LD) over a group of segregating sites, which is not the case here (fig. S13). The pattern of linkage disequilibrium that we observe (a low level of LD background with a few sites of high LD) rather suggests that the *nvd* region is recovering from one or several selective sweeps. Together, our data are consistent with an old selective sweep in a low recombination region, or with multiple recent selective sweeps targeting neighboring loci in the *nvd* region. Because of the low level of polymorphism of the *nvd* region, neither the date of the selective sweep nor the precise target gene of the selective sweep can be inferred.

Supporting figures

Figure S1. Schematic representation of the most representative amplification reactions performed in D. pachea (A), D. acanthoptera (B), D. nannoptera (C), D. wassermani (D) and D. robusta (E) to obtain *nvd* sequences. Schematic structure of the *nvd* gene is shown in the top panel, with blue boxes representing coding exons. Legend is indicated below.

Figure S2. Phylogeny and dN/dS ratios of Diptera nvd sequences. Branch lengths are proportional to the number of nucleotide substitutions per codon (scale on the top left corner), except for the mosquitoes-Drosophila branch which should be 50 times longer. dN/dS values are shown in bold above each branch. "inf" refers to cases where dS equals or approximates 0. The dN and dS values corresponding to terminal branches are also indicated near each species name. Values were calculated with the free-ratio model and the F3x4 model of codon frequencies in PAML. The tree topology is based on refs (55-57).

Figure S3. In situ hybridization of *nvd* in the brain-ring gland complex. *D. melanogaster* w^{1118} $(A-B)$, D. pachea (C) and D. acanthoptera (D) third instar larvae at the wandering stage were stained with sense (A) or antisense $(B-D)$ probe. nvd is expressed in the prothoracic gland. No *nvd* expression was detected in other larval tissues. Arrowheads point to the prothoracic gland. Scale bar is $100 \mu m$.

Figure S4. Putative D. pachea steroid hormone metabolic pathways. The senita cactus contains lathosterol, campestenol and schottenol as putative precursors (7). Owing to their inability to dealkylate 24-alkylsterols, insects are thought to produce various steroid hormones, depending on available dietary sterols (13).

Figure S5. Biochemical analysis of *D. pachea* steroid hormones.A, NP-HPLC-EIA analysis of steroids extracted from *D*. pachea raised on regular fly food supplemented with senita cactus (black line) or with 7DHC (dotted line). Arrows indicate retention times of reference steroids. Ecdysone and makisterone A have the same retention time in this HPLC system. Brackets indicate fractions that were pooled and analyzed further by LC-MS/MS. (B-C) MS/MS spectra of steroids present in pooled HPLC fractions from *D. pachea* raised on senita cactus. B, MS/MS spectrum at m/z 465 from pool 1. This spectrum is similar to the MS/MS spectrum of ecdysone (13). No characteristic fragments corresponding to makisterone C or A at m/z 509 or 495, respectively, were detected. C, MS/MS spectrum at m/z 481 from pool 2. This spectrum is similar to the MS/MS spectrum of 20-hydroxyecdysone (13).

Figure S6. RP-HPLC analysis after S2 cell incubation with cholesterol. Cells were transfected with a GFP negative control (A), with D. mojavensis nvd (B), with D. acanthoptera nvd (C), or with D. pachea nvd (D). Absorption was measured at 280 nm (black line) and 210 nm (dotted line) simultaneously. Cholesterol absorbs preferentially at 210 nm and 7DHC at 280 nm. Retention time of cholesterol and 7DHC reference compounds are indicated with arrows. In our assays, *D. mojavensis* NVD typically converts about 20% of total cholesterol or lathosterol into 7-dehydrocholesterol.

Figure S7. Expression of HA-tagged NVD proteins in the S2 cell NVD in vitro assay. (A) Western blot of *D. pachea* and *D. mojavensis* N-terminal HA-tagged NVD and *D. mojavensis* NVD without tag, using anti-HA and anti-Actin antibodies. Note that *D. pachea* HA-NVD is expressed at comparable levels to *D. mojavensis* HA-NVD. (B,C) Relative NVD enzyme activities of (B) D. mojavensis NVD, HA-NVD and HA-NVD with mutations and (C) D. pachea NVD, HA-NVD and HA-NVD with mutations; cholesterol was used as substrate. Western blots with anti-HA and anti-Actin are presented below for each expression assay. Protein extract corresponding to 10 microliters of homogenized cell culture was applied to each lane. NVD activity levels are indicated as in Fig. 3. Note that HA-tagged NVD proteins consistently display a lower enzymatic activity than wild-type NVD proteins. Nevertheless, the relative effects of the tested mutations are comparable between HA-tagged and non HA-tagged enzymes (compare Fig. 3B with S7B and 3C with S7C).

Figure S8. Alignment of NVD protein sequences from various *D. pachea* individuals and several insect species. The Rieske domains and the non-heme iron-binding domains are indicated in yellow. The five presumptive deleterious mutations detected with SIFT and tested in in vitro assays are in yellow.

Figure S9. Reconstructed D. pachea nvd scaffold. Each contig is shown as a blue rectangle. Contigs were linked together when more than three non-overlapping reads were paired with reads mapping to another contig. Small brackets correspond to 8-kb-long jumping distance reads and large brackets to 20-kb-long jumping distance reads. Annotated genes are shown in red and orange. The PCR fragments that were sequenced for the population genetics analysis are indicated as black rectangles.

Figure S10. Principal Component Analysis of the sequences obtained from 34 D. pachea individuals. No clustering of any subset of lines is found, indicating that the population looks like a single panmictic population.

Figure S11. Intron size of the *nvd* gene accross several insect species. The five introns of the D. melanogaster nvd gene are located at the following amino acid positions: first, 50; second, 180; third, 280; fourth, 319; fifth, 378. All are in phase 0 (splicing between codons) except the second and third intron which are in phase 1 (splicing between the first nucleotide of the codon and the second) and 2 (splicing between the second nucleotide of the codon and the third), respectively. * indicates introns which are located at a slightly different position and/or with another phase. ?: intron annotation is unclear. Introns whose size is greater than 2 kb are shown in yellow and those whose size is greater than 10 kb are in red. The nvd gene lies in heterochromatin in *D. melanogaster* (7). Transitions between small size and large size introns might be associated with euchromatin-heterochromatin translocations.

Figure S12. Localization of the *nvd* **locus on** *D. pachea polytene chromosomes.* **A full set of polytene chromosomes is shown in inverse colors. Inset: magnification of the framed region. DNA is stained with DAPI (red) an** The position of the nvd locus is indicated with a white arrowhead. Scale bar is 20 μ m.

Figure S13. Linkage Disequilibrium (LD) heat map of the 272 polymorphic sites identified in 8 loci in the nvd region and in 9 control loci for 34 individuals. No block of nucleotides in high LD is detected in the *nvd* region (red line triangle). The *nvd* region displays a low background level of LD with a few sites in high LD, suggesting that the nvd region is recovering from one or several selective sweeps.

Supporting Tables

Table S1. PCR primers used in this study. See fig. S1 and Materials and Methods for details. A: PCR amplification, S: sequencing, SM: site-directed mutagenesis, F: probe synthesis for Fluorescent in situ hybridization of polytene chromosomes.

Table S2. Annotations of *nvd* **sequences from various insect species.** Note that *D. virilis* genes 1 and 2 share exons 1, 2 and 3. The *D. yakuba* genome assembly (12-AUG-2009) contains a translocation within the *nvd* locus.

Table S3. PAML analyses of the *nvd* **coding sequences across the Diptera phylogeny.** We tested a branch model, where the null model is a single ω (dN/dS) ratio over the entire tree and the alternative model is two values, one for the *D. pachea* lineage and one for the rest of the tree. Analyses were done either with the inclusion or the exclusion of the mosquitoes sequences, because of possible saturation of dS to these lineages. Both analyses indicate that ω_{pachea} is significantly higher than for the rest of the tree. This suggests that either positive selection or relaxed purifying selection occurred in *nvd* in this lineage.The free ratio model was used to estimate ω on each branch (fig. S2).

Table S4. Progeny number of the rescue experiments of *D. melanogaster nvd* **RNAi flies.**

The number of adult progeny flies from two crosses is shown. Cross 1: *D. melanogaster* females *UAS-nvd-RNAi/CyO* x males *UAS-nvd-pa/Y; 2-286-GAL4/TM3 Sb.* Cross 2: *D. melanogaster* females *UAS-nvd-RNAi/CyO* x males *UAS-nvd-pa-4mut/Y; 2-286-GAL4/TM3 Sb.* Only tubes where the total number of progeny exceeded 50 were considered for the statistical analysis (see main paper) and for Fig. 2.

Cross 2

Table S5. Sex of the 34 individuals used for population genetics analysis.

Table S6. Polymorphism statistics of the sequences obtained from the 34 *D. pachea* **individuals.** There is a 10 fold difference in nucleotide diversity between the eight genes that are within the *nvd* scaffold and the nine control genes. All three of the simple tests of selection (Tajima's D, and the two Fu and Li tests) show that there is evidence for purifying selection and/or recovery from a selective sweep in the *nvd* region and not across the control regions. The column headings are: Nchrom: number of chromosomes in the test (34 individuals yielded 68 phased haplotypes for autosomal genes and 59 phased haplotypes for sex-linked genes). Seg. Sites: number of segregating sites; TotSites: total number of sites sequenced; rho: estimate of rho = 4NR per site. NA: not applicable. References for nucleotide diversity (π) , Watterson's theta or mutation rate (θw), Tajima's D, Fu and Li D^{*}, Fu and Li F^{*}, Zns and rho statistics can be found in (39). Values in grey background are significant ($p < 0.05$).

Table S7. Table contrasting the population genetics attributes of the *nvd* **region compared to control**

loci. The population recombination rate in the *nvd* region is low (grey background) compared to the control loci. These data are consistent with the presence of only 4 recombination events in the *nvd* region across this sample, as compared to 53 recombination events in the control genes. Note that for the purpose of this analysis, the sequences of the *nvd* region were concatenated according to their order and orientation along the *nvd* scaffold. Those of the control loci were also concatenated. Since the 9 control loci probably lie relatively far from each other in the genome, it means that there are probably 53 -9 +1 = 45 recombination events within the 9 loci.

Table S8. Table of synonymous and non synonymous divergence between *D. pachea* **and** *D. mojavensis***.** Nsites: total number of sites analyzed in the coding regions, SynDiffs: count of synonymous differences, SynPosns: synonymous positions, Ks: rate of substitution per synonymous site, NsynDiffs: count of nonsynonymous differences, NsynPosns: count of nonsynonymous positions, Ka: rate of nonsynonymous substitution per nonsynonymous site, NA: not applicable. Note that all the genes look like typical conserved coding regions, with most nonsynonymous changes having been removed by purifying natural selection. *nvd* has a rather high Ka, but *C952* is a bit higher (but the Ka/Ks ratio is highest for *nvd*). This alone does not suggest selection, but this is perhaps not expected, since it only took 4 amino acid changes to lose cholesterol conversion. Note also that Ks are significantly higher for the *nvd* region than for the control genes (two-sided t-test, $p < 0.0031$), whereas Ka values are similar (two-sided t-test, $p > 0.18$).

Table S9. Table of MacDonald-Kreitman scores in *D. pachea***.** Ncodons: number of codons, SynPoly: number of synonymous polymorphic sites within *D. pachea*, SynDifs: number of fixed synonymous differences between *D. pachea* and *D. mojavensis*, NsynPoly: number of nonsynonymous polymorphic sites within *D. pachea*, NsynDifs: number of fixed nonsynonymous differences between *D. pachea* and *D. mojavensis*. The genes in the *nvd* region have low levels of polymorphism (see also Table S4) and only *NAcR80B* attains nominal significance, but this is not significant after correcting for the fact that 17 tests were performed. None of the control loci yield a signature of natural selection either.

Table S10. GC content in *D. pachea* **and** *D. mojavensis* **coding genes.** The coding regions that were sequenced in the 34 *D. pachea* individuals were aligned to *D. mojavensis* sequences and we calculated the percentage of GC in the aligned regions from *D. pachea* and *D. mojavensis*. The percentage of GC is significantly different between the *nvd* region and the control loci (Wilcoxon rank test, p < 0.0018).

References

18. L. Timmons *et al.*, Green fluorescent protein/β-galactosidase double reporters for visualizing Drosophila gene expression patterns, *Developmental Genetics* , 338–347 (1997).

19. A. M. Huang, E. J. Rehm, G. M. Rubin, Recovery of DNA sequences flanking Pelement insertions in Drosophila: inverse PCR and plasmid rescue, *Cold Spring Harb Protoc* 2009, pdb.prot5199 (2009).

20. K. Rutherford *et al.*, Artemis: sequence visualization and annotation, *Bioinformatics* 16, 944–945 (2000).

21. P. C. Ng, S. Henikoff, SIFT: Predicting amino acid changes that affect protein function, *Nucleic Acids Res* 31, 3812–3814 (2003).

22. T. Hall, BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT, *Nucleic Acids Symposium Series* 41, 95–98 (1999).

23. Z. Yang, PAML 4: Phylogenetic Analysis by Maximum Likelihood, *Molecular Biology and Evolution* 24, 1586 –1591 (2007).

24. M. Wessner *et al.*, Ecdysteroids from Ajuga iva, *Phytochemistry* 31, 3785–3788 (1992).

25. J.P. Girault *et al.*, Ecdysteroids from Leuzea carthamoides, *Phytochemistry* 27, 737– 741 (1988).

26. R. Niwa *et al.*, CYP306A1, a cytochrome P450 enzyme, is essential for ecdysteroid biosynthesis in the prothoracic glands of Bombyx and Drosophila, *J. Biol. Chem* 279, 35942–35949 (2004).

27. J. T. Warren *et al.*, Molecular and biochemical characterization of two P450 enzymes in the ecdysteroidogenic pathway of Drosophila melanogaster, *Proc. Natl. Acad. Sci. U.S.A* 99, 11043–11048 (2002).

28. G. E. Roth *et al.*, The Drosophila gene Start1: a putative cholesterol transporter and key regulator of ecdysteroid synthesis, *Proc. Natl. Acad. Sci. U.S.A* 101, 1601–1606 (2004) .

29. A. E. Christian, M. P. Haynes, M. C. Phillips, G. H. Rothblat, Use of cyclodextrins for manipulating cellular cholesterol content, *J. Lipid Res* 38, 2264–2272 (1997).

30. S. Lavrov, J. Déjardin, G. Cavalli, Combined immunostaining and FISH analysis of polytene chromosomes, *Methods Mol. Biol.* 247, 289–303 (2004).

31. D. R. Zerbino, E. Birney, Velvet: algorithms for de novo short read assembly using de Bruijn graphs, *Genome Res.* 18, 821–829 (2008).

32. H. Li, R. Durbin, Fast and accurate short read alignment with Burrows-Wheeler transform, *Bioinformatics* 25, 1754–1760 (2009).

33. J. T. Robinson *et al.*, Integrative genomics viewer, *Nature Biotechnology* 29, 24–26 $(2011).$

34. A. Drummond *et al.*, *Geneious* (2011; http://www.geneious.com/).

35. D. A. Dmitriev, R. A. Rakitov, Decoding of superimposed traces produced by direct sequencing of heterozygous indels, *PLoS Comput. Biol.* 4, e1000113 (2008).

36. M. Stephens, N. J. Smith, P. Donnelly, A new statistical method for haplotype reconstruction from population data, *Am. J. Hum. Genet.* 68, 978–989 (2001).

37. J. K. Pritchard, M. Stephens, P. Donnelly, Inference of population structure using multilocus genotype data, *Genetics* 155, 945–959 (2000).

38. D. Reich, A. L. Price, N. Patterson, Principal component analysis of genetic data, *Nat. Genet.* 40, 491–492 (2008).

39. P. Librado, J. Rozas, DnaSP v5: a software for comprehensive analysis of DNA polymorphism data, *Bioinformatics* 25, 1451–1452 (2009).

40. J. H. McDonald, M. Kreitman, Adaptive protein evolution at the Adh locus in Drosophila, *Nature* 351, 652–654 (1991).

41. R. R. Hudson, M. Kreitman, M. Aguadé, A test of neutral molecular evolution based on nucleotide data, *Genetics* 116, 153–159 (1987).

42. Y. Kim, R. Nielsen, Linkage disequilibrium as a signature of selective sweeps, *Genetics* 167, 1513–1524 (2004).

43. Y. Kim, W. Stephan, Detecting a local signature of genetic hitchhiking along a recombining chromosome, *Genetics* 160, 765–777 (2002).

44. P. Pavlidis, N. Alachiotis, OmegaPlus 2.0.0 software (2012) (available at http://sco.hits.org/exelixis/software/OmegaPlus_Manual.pdf).

45. R. R. Hudson, Generating samples under a Wright-Fisher neutral model of genetic variation, *Bioinformatics* 18, 337–338 (2002).

46. P. Sabeti, Sweep software (available at http://www.broadinstitute.org/mpg/sweep/index.html).

47. D.V. Zaykin, A. Pudovkin, B.S. Weir, Correlation-based inference for linkage disequilibrium with multiple alleles, *Genetics* 180, 533–545 (2008).

48. J.H. Shin, S. Blay, B. McNeney, J. Graham, LDheatmap: An R Function for Graphical Display of Pairwise Linkage Disequilibria Between Single Nucleotide Polymorphisms, *Journal of Statistical Software* 16 (available at http://rgm2.lab.nig.ac.jp/RGM2/func.php?rd_id=LDheatmap:LDheatmap).

49. S. Nishi, H. Nishino, T. Ishibashi, cDNA cloning of the mammalian sterol C5 desaturase and the expression in yeast mutant, *Biochim. Biophys. Acta* 1490, 106–108 (2000).

50. G. Vinci, X. Xia, R. A. Veitia, Preservation of genes involved in sterol metabolism in cholesterol auxotrophs: facts and hypotheses, *PLoS ONE* 3, e2883 (2008).

51. S. W. Schaeffer *et al.*, Polytene chromosomal maps of 11 Drosophila species: the order of genomic scaffolds inferred from genetic and physical maps, *Genetics* 179, 1601– 1655 (2008).

52. J. C. Yasuhara, C. H. DeCrease, B. T. Wakimoto, Evolution of heterochromatic genes of Drosophila, *Proc. Natl. Acad. Sci. U.S.A.* 102, 10958–10963 (2005).

53. S. R. Schulze *et al.*, Heterochromatic genes in Drosophila: a comparative analysis of two genes, *Genetics* 173, 1433–1445 (2006).

54. T. F. C. Mackay *et al.*, The Drosophila melanogaster Genetic Reference Panel, *Nature* 482, 173–178 (2012).

55. R. J. Kulathinal, S. M. Bennett, C. L. Fitzpatrick, M. A. F. Noor, Finescale mapping of recombination rate in Drosophila refines its correlation to diversity and divergence, *Proc. Natl. Acad. Sci. U.S.A.* 105, 10051–10056 (2008).

56. A. G. Clark *et al.*, Evolution of genes and genomes on the Drosophila phylogeny, *Nature* 450, 203–218 (2007).

57. B. L. Ward, W. B. Heed, Chromosome phylogeny of *Drosophila pachea* and related species, *J. Hered.* **61**, 248-258 (1970).