
|                  |              | Std.      |            |
|------------------|--------------|-----------|------------|
|                  | Mean         | Deviation | Std. Error |
| TRGV9/           |              |           |            |
| TRDV2            | 20.06        | 16.11     | 4.306      |
| TRGV4/           |              |           |            |
| TRDV1            | 12.71        | 15        | 4.008      |
| TRGV8/           |              |           |            |
| TRDV1            | 8.714        | 10.63     | 2.842      |
| TRGV9/           | 0.057        | 04.05     | 5.00       |
| TRDV3<br>TRGV2/  | 8.357        | 21.25     | 5.68       |
| TRDV1            | 7.836        | 14.61     | 3.906      |
| TRGV1/           | 7.030        | 14.01     | 5.900      |
| TRDV2            | 4.643        | 13.51     | 3.61       |
| TRGV3/           | 1.010        | 10.01     | 0.01       |
| TRDV3            | 4.35         | 13.09     | 3.498      |
| TRGV9/           |              |           |            |
| TRDV1            | 4.279        | 8.702     | 2.326      |
| TRGV4/           |              |           |            |
| TRDV3            | 4.071        | 9.059     | 2.421      |
| TRGV3/           |              |           |            |
| TRDV1            | 4.029        | 5.646     | 1.509      |
| TRGV2/           | 0.074        | 0.004     | 0.050      |
| TRDV3            | 3.071        | 8.801     | 2.352      |
| TRGV5/<br>TRDV3  | 2.643        | 6.744     | 1.802      |
| TRGV8/           | 2.045        | 0.744     | 1.002      |
| TRDV2            | 1.971        | 5.388     | 1.44       |
| TRGV5/           |              |           |            |
| TRDV1            | 1.871        | 3.633     | 0.9711     |
| TRGV2/           |              |           |            |
| TRDV2            | 1.871        | 3.633     | 0.9711     |
| TRGV8/           |              |           | 1          |
| TRDV3            | 1.643        | 4.557     | 1.218      |
| TRGV2/<br>TRAV29 |              |           |            |
| /DV5             | 1.492        | 4.706     | 1.305      |
| TRGV3/           | 1.102        | 1.100     | 1.000      |
| TRDV2            | 1.279        | 2.922     | 0.7808     |
| TRGV10           |              |           |            |
| /TRDV1           | 1.071        | 2.31      | 0.6175     |
| TRGV9/           |              |           |            |
| TRAV38           | <b>. .</b> · |           |            |
| -2/DV8           | 0.3571       | 1.336     | 0.3571     |
| TRGV4/           | 0 1957       | 0.6040    | 0 1957     |
| TRDV2<br>TRGV9/  | 0.1857       | 0.6949    | 0.1857     |
| TRAV29           |              |           |            |
| /DV5             | 0.1714       | 0.6414    | 0.1714     |
|                  | 0            | 0.0111    | 0          |

**Supplemental Table S1. TRGV/TRDV repertoire among 14 human samples.** The percentage of paired TRGV/TRDV usage was analyzed from the sequencing results of each 14 human PBMC samples. Average values, standard deviation and standard error were reported.



Supplemental Figure S1. Co-transfection of human CD3 can improve the expression of human TCR constructs. (a-b) Comparison of single transfection of human TCR constructs and co-transfection of human TCR constructs and human CD3. (c) Quantification of mCherry/ametrine and TCR/CD3 expression is shown. Statistical differences were determined by One-way ANOVA; p < 0.05 was considered statistically significant. Data are mean  $\pm$  SEM of two independent experiments\*\*\*p < 0.001, \*\*\*\*p < 0.0001.



**Supplemental Figure S2. Gating strategy of TCR-transfected-NJ76 cells in flow cytometry.** The data of TCR-transfected-NJ76 cells after stimulation in Figure 3 were analyzed by applying the gating strategy to all the samples. The gating is flowing "autofluorescence gate – lymphocytes gate – single cell gate – mCherry<sup>+</sup>Ametrine<sup>+</sup> gate – TCR<sup>+</sup>CD3<sup>+</sup> gate – GFP<sup>+</sup> gate".



Supplemental Figure S3. Gating strategy of Human TCR $\gamma/\delta^+$  CD3<sup>+</sup> cells single cell sorting. Single cell of human TCR $\gamma\delta^+$  CD3<sup>+</sup> cells from PBMC samples were sorted into 96-well plate by applying the gating strategy above. The gating is flowing "autofluorescence gate – lymphocytes gate – single cell gate – live/dead gate – dump gate (CD11b/14/19) – TCR $\gamma\delta^+$ /CD3<sup>+</sup> gate".