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Supplementary Figure 1. SWCNT library. (a) Absorption spectra of the SWCNT suspensions. (b) Fluorescent emission spectra of 
SWCNT suspensions excited by a 785 nm laser. The joint peak of the (9,4) and the (7,6) chiralities is labeled with a circle. 
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Supplementary Figure 2. SWCNT suspension stability. (a) Absorption and (b) fluorescence spectra of DPPE-PEG(5000) – SWCNT 
suspensions, before (solid black curves) and after the removal of excess phospholipid-PEG molecules either by filtration through 
a 100 kDa molecular weight cut off filter (blue dashed line), or by dialysis with 100 kDa molecular weight cut off membrane 
(dotted green curve). (c) Absorption and (d) fluorescence spectra of sodium cholate (SC) – SWCNT suspensions before and after 
the removal of excess SC molecules in a similar mannar. The DPPE-PEG(5000) – SWCNT suspension remains stable, whereas the 
SC sample aggregates and loses its colloidal stability as evident from the loss of both the absorption and fluorescent peaks. 
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Supplementary Figure 3. Spectra deconvolution. SWCNT fluorescent emission spectrum (solid blue curve) and its deconvolution 
to the various chiralities (dashed black curves). The fit is illustrated by the dashed red curve. 
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Supplementary Figure 4. 3D visualization of the proteins panel. The proteins surface is colored according to the hydrophobicity 
of each amino acid, where the color red is the most hydrophobic, and white is hydrophilic. 
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Supplementary Figure 5. Sensor functionality in serum environment. (a) Fluorescent response of DPPE-PEG(5000)-SWCNT 
suspension (5 mg L

-1
) to fibrinogen (0.05, 0.5, and 5 mg ml

-1
) in serum environment (10% fetal Bovine Serum in PBS). (b) 

Fluorescent response of DPPE-PEG(5000)-SWCNT suspension (5 mg L
-1

) to fibrinogen (5 mg ml
-1

) in PBS. 
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Supplementary Figure 6. Circular dichroism spectroscopy. Circular dichroism spectra of fibrinogen (0.02 mg ml

-1
, black solid 

curve), DPPE-PEG(5000)-SWCNT (1 mg L
-1

) with 0.02 mg ml
-1

 fibrinogen (blue dashed curve), and DPPE-PEG(5000)-SWCNT (1 mg 
L

-1
, dotted green curve). 
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Supplementary Figure 7. Raman spectroscopy and zeta potential. (a) Raman spectra of DPPE-PEG(5000)-SWCNT (solid black 
curve), and of DPPE-PEG(5000)-SWCNT with 0.2 mg ml

-1
 (blue dashed curve) or 0.02 mg ml

-1
 (dotted green curve) fibrinogen. (b) 

G-peak position of each of the spectra in (a). (c) G/D peak ratio of each of the spectra in (a). (d) Zeta potential of DPPE-
PEG(5000)-SWCNT, fibrinogen, and DPPE-PEG(5000)-SWCNT with fibrinogen. 
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Supplementary Figure 8. SEM image of SC-SWCNT. 
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Supplementary Figure 9. SWCNT surfactant coating exchange. Absorption spectra of the initial sodium cholate (SC) suspended 
SWCNT and of DPPE-PEG(5000) suspended SWCNT following the removal of the SC by dialysis. 

 

 
Supplementary Figure 10. Experimental microscopy systems. Optical setup of the nIR fluorescent microscopes for (a) high 
throughput screening and (b) immobilized SWCNT sensors detection. 
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Supplementary Table 1. Fit parameters for the solvatochromism shift 
model 
 

Wrapping Slope R2 εeff α 

(GT)15 0.06600 0.972 16.316 0.854 

(GU)15 0.06740 0.974 18.958 0.822 

(AT)30 0.06481 0.942 14.581 0.874 

(GC)30 0.06735 0.974 18.842 0.824 

(AT)15 0.06922 0.963 23.933 0.763 

(AAAT)7 0.06958 0.971 25.258 0.747 

(ATTT)7 0.06782 0.976 19.918 0.811 

(GGGT)7 0.06846 0.978 21.576 0.791 

(GTTT)7 0.07096 0.966 31.882 0.668 

DPPE-PEG(5000) 0.06346 0.983 12.999 0.855 

DMPE-PEG(5000) 0.07091 0.964 31.564 0.657 

DSPE-PEG(5000) 0.06332 0.982 12.859 0.875 

DSPE-PEG(2000) 0.07175 0.990 37.417 0.589 

DSPE-PEG(2000)-Cyanur 0.06525 0.987 15.188 0.848 

DSPE-PEG(2000)-CA 0.07028 0.992 28.211 0.696 

DSPE-PEG(2000)-Maleimide 0.06897 0.991 23.123 0.755 

DSPE-PEG(2000)-PDP 0.06948 0.989 24.883 0.735 

DSPE-PEG(2000)-Amine 0.06664 0.983 17.440 0.821 

DSPE-PEG(2000)-Biotin 0.06716 0.988 18.459 0.810 

DSPE-PEG(350) 0.07304 0.983 52.292 0.416 

The slope, R-squared, effective dielectric constant (    ), and the relative surface coverage ( ).  
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Supplementary Note 1. Background on fibrinogen 
Fibrinogen is an important biomarker, and its plasma concentration has clinical value. It is an 

acute phase reactant, a coagulation factor, and the principal element of blood clots. The fibrinogen 
protein is synthesized in the liver and is one of the most abundant proteins in plasma with normal 
concentrations1 of 1.75-4.3 g L-1. Increased fibrinogen levels can indicate inflammatory state, or 
pregnancy, whereas decreased levels can result from hepatic synthesis dysfunction, thrombosis, genetic 
diseases such as afibrinogenemia, hypofibrinogenemia, and dysfibrinogenemia, and disseminated 
intravascular coagulation1. The latter is associated with severe clinical conditions such as sepsis, trauma, 
cancer, obstetrical complications, vascular disorder, presence of toxins, and immunologic disorder2. 

The coagulation cascade associated with the wound healing response can be initiated by the 
activation of either one of two possible pathways, extrinsic and intrinsic, which converge to a common 
pathway, in which prothrombin is converted into thrombin which hydrolyzes fibrinogen, forming 
insoluble fibrin monomers that polymerize to form a thrombus3. The extrinsic pathway is initiated by the 
release of tissue factors through a broken blood vessel wall, whereas the intrinsic pathway is initiated by 
contact with negatively charged surfaces within a damaged vessel, such as exposed subendothelial 
tissue or collagen4. Direct methods for determining fibrinogen concentration in blood are based on 
immunological assays, such as enzyme-linked immunosorbent assays (ELISA), radial immunodiffusion 
(Mancini method), and gel electrophoresis followed by immunoblotting5. Supplementary functional 
assays for estimating the amount of active clottable fibrinogen such as thrombin time (TT), prothrombin 
time (PT), and partial thromboplastin time (PTT), involve the addition of an activator of one of the 
coagulation pathways to plasma samples, followed by a measurement of the clotting time1,5. Thrombin 
time tests the activation of fibrinogen to fibrin by adding high concentration of thrombin, prothrombin 
time screens the extrinsic pathway by adding tissue factors (thromboplastin) that are released upon 
vessel wall damage, and partial thromboplastin time screens the intrinsic pathway by adding ground 
glass to mimic the charged surface contact. Normal times are 20 – 30 sec for TT, 11-14 sec for PT, and 
22-35 sec for PTT6. 

The fibrinogen protein is constructed by three pairs of mostly alpha-helix polypeptide chains 
(Aα, Bβ, and γ) linked by disulfide bonds. Its structure appears as three-nodules, one in the middle (E-
domain), and two at each of the ends (D-domains), which are connected by helical chains7,8. The total 
length of the fibrinogen molecule ranges between 45 nm – 50 nm, the diameter of the middle and outer 
nodules are 5 nm and 6.5 nm, respectively, and the width of the interconnection helical coil is of the 
order of 1.5 nm7. The distribution of the possible angles between the two helical chains originating at 
the middle nodule was found to be bimodal with peaks around 157 and 106 degrees9, granting the 
fibrinogen an elongated structure with high aspect ratio. 

Supplementary Note 2. Protein panel 
  Our protein panel includes the following proteins: albumin10, IgG11, fibrinogen12, α1-
antitrypsin13, Transferrin14, Haptoglobin15, α2-macroglobolin16, IgA17, IgM18, α2-acid-glycoprotein9, 
apopoliprotein A-I19, insulin20, human chorionic gonadotropin (hCG)21, and C-reactive protein (CRP)22. 
The references indicate the corresponding protein data bank (PDB) files used for the visualization of the 
hydrophobicity maps. 
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