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SIS SYNERGY MODEL WITH LINEAR
SYNERGY RATE.

In this section, we solve the SIS model exactly for a
population of individuals having the network of contacts
with the topology of random z-regular graph with lin-
ear dependence of transmission rate on the number of
ignorant/healthy neighbours and demonstrate that this
solution is analogous to that for the exponential depen-
dence of σz(n

h(i)) discussed in the main text.
The equilibrium states correspond to the solutions of

Eq. (6) in the main text which can be recast in the fol-
lowing form:

F1(y) ≡ −y(µ− z λz (1− y)) = 0 . (1)

In the synergy-free case, λz = α and the stable solution
of Eq. (1) is y = 0 for α ≤ αc = µ/z and y = 1− µ/(αz)
for α > αc.

In the model with linear synergy, the transmission rate
is given by λz = α(1 + βz(1 − y)) and F1(y) is a third
order polynomial in y which can have from one to three
real roots. The equilibrium solution, ysf = 0 (spreader-
free regime), is always present while the two other roots,

y± = 1 +
1

2βz

(
1±

√
1 +

4βµ

α

)
, (2)

are real only for α ≥ α∗(β), where

α∗(β) = −4βµ . (3)

The values of y± represent equilibrium concentrations of
spreaders and thus must be in the range, y± ∈ [0, 1]. An
equilibrium concentration, yeq, corresponding to a root
of F1(y) can refer to either stable (if F ′1(yeq) < 0) or
unstable (if F ′1(yeq) > 0) equilibrium.

In the α−β parameter space, there is a special (tricrit-
ical) point, (αtp, βtp) = (2µ/z,−1/(2z)) (see the point
labelled by TP in Fig. 1), at which all three roots of
F1(y) coincide, i.e. ysf = y− = y+ = 0. This point
separates the regimes of explosive and continuous tran-
sitions between non-invasive (spreader-free) and invasive

(endemic) epidemics. Fig. 2 shows the dependence of the
equilibrium concentration of spreaders, yeq, on α for fixed
value of β above (panel (a)) and below (panel (b)) the
tricritical point. For fixed β above the tricritical point,
β > βtp, and values of α smaller than critical value,

αc(β) =
µ

z + βz2
, (4)

both roots y± are outside the physical range [0, 1] and
the only stable equilibrium at ysf = 0 corresponds to the
spreader-free state (cf. Fig. 2(a)). For α = αc(β) (see
the solid line in Fig. 1), the root y− intersects the al-
lowed range [0, 1] at a point where y− = ysf = 0. With
increasing value of α > αc(β), the equilibrium concentra-
tion y− continuously increases in the interval [0, 1] and
it corresponds to the stable equilibrium (F ′1(y−) < 0)
while the spreader-free equilibrium, ysf = 0, is unstable
(F ′1(ysf) > 0) for these values of α. This means that
an increase in the inherent transmission rate at fixed
β > βtp drives the system continuously from spreader-
free (α ≤ αc(β)) to endemic (α > αc(β)) state (the re-
gion above continuous line in Fig. 1).

For values of β below the tricritical point, β < βtp, the
scenario is very different from that described above (see
Fig. 2(b)). Indeed, if α < α∗, the only acceptable root
of F1 is ysf which corresponds to the stable spreader-free
state (the region below the dashed line in Fig. 1). At
α = α∗(β), the roots y± become real and take values in
the range (0, 1), i.e. 0 < y+ = y− < 1. With increasing
α in the interval α ∈ (α∗(β), αc(β)) (the region between
dashed and dot-dashed lines in Fig. 1) at fixed β, these
two roots split in such a way that 0 < y+ < y− < 1. The
concentration y− corresponds to the stable equilibrium
while y+ to the unstable one. Overall, there are two sta-
ble equilibria describing the spreader-free state with con-
centration of spreaders ysf = 0 and endemic state with
concentration of spreaders equal to y−. The finite gap
between these two equilibrium states is a signature of dis-
continuous explosive transition between non-invasive and
invasive epidemics. With further increase of α for fixed
value of β, the root y+ leaves the physical range [0, 1]
when α = αc(β) (and y+ = 0), and the only stable equi-
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FIG. 1. Contagion diagram for the SIS model with linear
synergy. The solid line represents the threshold αc(β) for
continuous transitions between the spreader-free and invasive
endemic regimes. The circle labelled by TP indicates the
tricritical point. The dot-dashed line corresponds to αc(β) in
the region with explosive transitions. The bi-stability region
is bounded from below by the dashed line corresponding to the
function α∗(β). Numerical values along the axes correspond
to random z-regular graphs with z = 2 and µ = 1. The
horizontal axis shows only meaningful values of β > −1/z.

librium at y− corresponds to the endemic state (the re-
gion above the dot-dashed line in Fig. 1). In the bi-stable
regime with α ∈ (α∗(β), αc(β))), the mean-field system,
depending on initial conditions, reaches the spreader-free
regime, ysf, or the endemic regime, y−. The dotted lines
in Fig. 2(b) indicate the explosive transitions observed
by increasing α from α < α∗ (up arrow) or decreasing
from α > αc (down arrow). A hysteresis loop of width
αc − α∗ becomes wider as β becomes more negative.

MODELS WITH REMOVAL OF SPREADERS ON
z-RANDOM REGULAR GRAPHS

In this section, we derive the general solution (Eq. (15)
of the main text) for the mean-field models with re-
moval of spreaders and illustrate its properties using the
SIR model with linear synergistic transmission rate as a
benchmark.

From Eqs. (11)-(13) of the main text and the definition
of λz(x) = ασz(x), one obtains,

y = − 1

αzσz(x)x

dx

dt
=

1

µγ(x)

dr

dt
. (5)

Integrating the second equation in Eq. (5) over time in
the interval [0, t] leads to the following expression:

−
∫ x(t)

x0

γ(x)

σz(x)x
dx =

zα

µ

∫ r(t)

0

dr . (6)
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FIG. 2. Equilibrium concentration, yeq (yeq ∈ [0, 1]), of
spreaders in SIS epidemics on random z-regular graphs with
z = 2 and µ = 1 vs inherent transmission rate, α. Linear syn-
ergy rates with (a) β = −0.1 > βtp and (b) β = −0.4 < βtp,
illustrate continuous and explosive transitions, respectively.
In (b), the equilibrium concentration y+ corresponds to un-
stable states (dashed line). The dotted vertical lines at αc

and α∗ indicate explosive transitions with increasing and de-
creasing α, respectively.

Here, we have assumed a population which initially con-
sists of only ignorants and spreaders, i.e., r(0) = 0,
x(0) = x0 ≤ 1 and y(0) = 1 − x0. From Eq. (6), the
concentration of removed individuals over time, r(t), can
be expressed as a function of the concentration of igno-
rants as follows:

r(t) =
µ

αz
[F2(x0)− F2(x(t))] . (7)

The function F2(x) is defined in Eq. (16) of the main
text.

The fixed points of the system given by Eqs. (11)-(13)
in the main text correspond to states without spreaders,
y = 0. In general, any finite system with an initially
positive concentration of spreaders, y0 > 0, and positive
removal rate, γ(x) > 0, evolves towards a fixed point
with y = 0, x = x∞ and r∞ = 1 − x∞. The condition
y = 0 points out the end of the epidemic. Examples of
the evolution of x and r are shown in Figs. 3 and 4 for the
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FIG. 3. Trajectories of the concentration of removeds and ig-
norants during SIR epidemics with µ = 1 and linear synergy
rate for β = 0.5 spreading on random z-regular graphs with
z = 2. The initial concentration of ignorants is x0 = 1 and
x0 = 0.95 in the upper and lower panel, respectively. Epi-
demics stop (circles) when the trajectories reach the dashed
line corresponding to r = 1 − x. The final concentration of
removeds, r∞, increases smoothly with α in both panels.

SIR model with linear synergy for several values of x0, α
and β. The value of the final concentration of ignorants,
x∞ (or removeds, r∞ = 1 − x∞), depends in general
on the initial concentration of ignorants, x0 = 1−y0, the
inherent transmission rate, α, as well as on the synergistic
and recovery mechanisms encoded by the functions σz
and γ, respectively. Such dependence can be recast from
Eq. (7) in the implicit form given by Eq. (15) of the main
text which we repeat here for convenience:

α = f(x∞;x0) ≡ µ

z(1− x∞)
[F2(x0)− F2(x∞)] . (8)

It is clear from Eq. (8) that systems characterised by
a function f(x∞;x0) that decreases monotonically with
x∞ will exhibit continuous transitions from smaller to
larger r∞ (from larger to smaller x∞ ) with increasing
α. Examples of this type of behaviour of f(x∞;x0) are
shown by the continuous lines in Fig. 5 for the SIR model
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FIG. 4. Trajectories of the concentration of removeds and
ignorants during SIR epidemics on random z-regular graphs
with z = 2 for x0 = 0.95, β = −0.45, µ = 1 and linear synergy
rate with β = −0.45. The dashed line shows the function
r = 1 − x giving the locus of concentrations at the end of
epidemics. Circles indicate the final state of each trajectory
at r∞ = 1 − x∞. The final concentration of removeds, r∞,
changes abruptly with increasing α, thus indicating an explo-
sive transition to large contagion. The explosion occurs at the
critical value of αc ' 2.1. For this critical value, the blue dot-
ted line shows solutions of Eq. (8) that are not reached during
the epidemic because the epidemic (solid blue line) terminates
at the point denoted by the blue circle which corresponds to
the largest value of x∞.

with linear synergy rate. In contrast, discontinuous tran-
sitions can occur when f(x∞;x0) is not monotonic and
it increases with x∞ in some sub-interval of (0, 1). In
this case, Eq. (8) can have several solutions for x∞ cor-
responding to several fixed points (cf. dashed lines in
Fig. 5). The evolution given by Eqs. (11)-(13) in the
main text is such that x decreases with time from x0 and
the system evolves towards the solution corresponding to
the largest value of x∞; the rest of solutions are not ac-
cessible to the system. The trajectories of the SIR model
with linear synergy shown in Fig. 4 illustrate this be-
haviour. In particular, the trajectory for αc shows both
the reachable (continuous line) and unreachable (dotted
line) solutions of Eq. (8).

As mentioned in the main text, the regimes with con-
tinuous and explosive transitions are separated by a crit-
ical regime for which f(x∞;x0) displays an inflection
point at some value of x∞ = xtp ∈ (0, 1). This situa-
tion corresponds to the tricritical point discussed in the
main text. At the inflection point,

∂f(x;x0)

∂x

∣∣∣∣
xtp

=
∂2f(x;x0)

∂x2

∣∣∣∣
xtp

= 0 . (9)

These conditions and definition of f(x∞;x0) given by
Eq. (8) result in Eqs. (17) and (18) given in the main
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FIG. 5. Function f(x;x0) defined by Eq. (8) with x∞ re-
placed by x, for (a) x0 = 1 and (b) x0 = 0.95 corresponding
to SIR epidemics with linear synergy spreading on random
regular graphs with z = 2. In both panels, the continuous
and dashed lines correspond to β = 0 and β = −0.45, respec-
tively. The horizontal dot-dashed line in (b) illustrates the
solutions (circles) of Eq. (8) for α = 2. The system evolves
towards the largest solution and reaches the final concentra-
tion of ignorants x∞ = xa.

text for the tricritical point. For the SIR model with
linear synergy, Eqs. (17)-(19) in the main text lead to

the following relations at the tricritical point:

xtp = − 1

2zβtp
, (10)

x0 = − 1

zβtp(1 + e2(2zβtp+1))
, (11)

αtp = −4βtpµ . (12)

Fig. 6 shows the phase diagram for the SIR model
with linear synergistic transmission for two initial con-
ditions: x0 = 1 (i.e. a negligible initial concentration of
infecteds, y0) and x0 = 0.95. For x0 = 1, one obtains
βtp = −1/(2z) from Eq. (11) which leads to xtp = 1
and αtp = −2µ/z. The value of βtp decreases with x0
(see Fig. 7). This implies that social phenomena starting
with a relatively large initial concentration of spreaders,
y0 = 1 − x0, will require larger synergistic effects of the
context in order for them to be explosive. However, ex-
plosive transitions exist for any initial conditions with
x0 > 0 since βtp is finite for any x0 > 0 (from Eq. (11),
it is clear that βtp → −∞ only for x0 → 0.).
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FIG. 6. Contagion phase diagram for the SIR model on ran-
dom z-regular graphs. The continuous black line indicates the
invasion threshold for continuous transitions observed for an
initial concentration of ignorants, x0 = 1. The solid straight
line displays the locus of tricritical points given by Eq. (12).
The blue and green dashed lines give the explosive invasion
threshold for epidemics with x0 = 1 and x0 = 0.95, respec-
tively. Numerical values along the axes correspond to random
z-regular graphs with z = 2 and µ = 1.
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FIG. 7. Graphical representation of the dependence of βtp on
x0 for the SIR model with linear synergy rate (cf. Eq. (11)).


