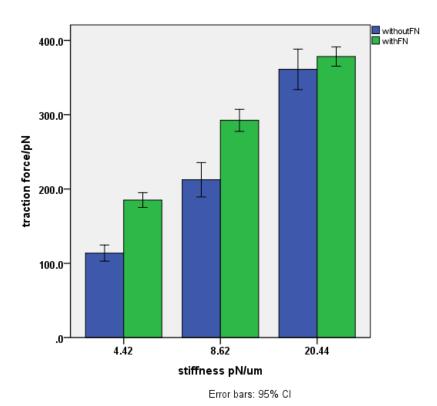
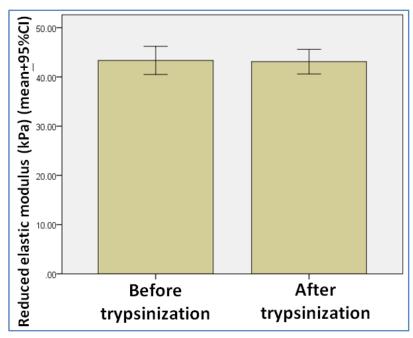
Multiphoton photochemical crosslinking-based fabrication of protein micropatterns with controllable mechanical properties for single cell traction force measurements


Ming Hui Tong¹, Nan Huang¹, Wei Zhang¹, Zhuo Long Zhou², Alfonso Hing Wan Ngan², Yanan Du³, Barbara Pui Chan^{1,*}

¹Tissue Engineering Laboratory, Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region, China.


²Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region, China.

³Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, China

^{*}Corresponding author: bpchan@hku.hk

Supplementary Figure 1 – Traction force of human dermal fibroblast on micropillars with and without fibronectin coating.

