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Materials and Methods 

Expression and purification of RGM, NEO1 and DCC constructs and complexes. 

Constructs of the extracellular region of human RGMA (GenBank ID AL136826; eRGMA: 

47-423), human RGMB (GenBank ID AK074887, eRGMB: 53-412), human RGMC 

(GenBank ID AY372521; eRGMC: 36-400), mouse NEO1 (GenBank ID Y09535; 

NEO1FN56M: 883-1134, NEO1FN56: 883-1083 and eNEO1: 37-1134) and human DCC 

(GenBank ID AC011155; eDCC: 26-1129), as well as a full-length transmembrane construct 

of mouse NEO1 (fNEO1: 37-1493), fused C-terminally with a hexa-histidine (His6) tag, a C-

terminal BirA recognition sequence or a 1D4 epitope-tag that can bind selectively the Rho 

1D4 antibody(30), were cloned into the pHLsec or pHL-Avitag3 vectors(31) and expressed 

by transient transfection in HEK-293T cells (using an automated procedure(32) in the 

presence of the class I α-mannosidase inhibitor, kifunensine, as described in(33)). Five days 

post-transfection, the conditioned medium was dialysed (for 48 hours at 4C) and the proteins 

were purified by immobilised metal-affinity chromatography using TALON beads (Clontech) 

and treated with endoglycosidase F1 (75 µg mg-1 protein, 12 h, 21 ºC) to cleave glycosidic 

bonds of N-linked sugars resulting in only one N-acetyl-glucosamine moiety bound to the 

corresponding asparagine side chain. The proteins were concentrated and further purified by 

size-exclusion chromatography (Superdex 200 16/60 column, GE Healthcare) in buffer 

containing 10mM HEPES, pH 7.5, 150 mM NaCl.  

The eRGMB-NEO1 complexes were formed by mixing a molar ratio of 1:1. The mixture was 

incubated for 1 h at room temperature and purified by size-exclusion chromatography 

(Superdex 200 16/60 column, GE Healthcare) in buffer containing 10 mM HEPES, pH 7.5, 

150 mM NaCl. 
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Site directed mutagenesis. Site-directed mutagenesis to test specificity of protein-protein 

interactions or to stabilise the ectodomain of human RGMC (eRGMCAAA: 

R326A/R329A/R332A) was carried out following a two-step, overlap-extension PCR using 

Pyrobest Polymerase (Takara). PCR products were cloned into the pHLsec or pHL-Avitag3 

vectors resulting in protein constructs with a C-terminal hexa-histidine or with a C-terminal 

BirA recognition sequence(31). Mutant proteins were secreted at similar levels to the 

respective wildtype RGM and NEO1 constructs (data not shown). The stringent quality 

control mechanisms specific to the mammalian cell secretory pathway is likely to ensure that 

secreted proteins are correctly folded(34). 

 

Crystallization and data collection. Protein samples were concentrated in size exclusion 

chromatography buffer by ultrafiltration to appropriate concentrations for crystallization 

experiments (NEO1FN56: 10 mg/ml, eRGMB-NEO1FN56: 7 mg/ml). Nanolitre crystallization 

trials using a Cartesian Technologies robot (100 nl protein solution plus 100 nl reservoir 

solution) were setup in 96-well Greiner plates, placed in a TAP (The Automation Partnership) 

Homebase storage vault maintained at 295 K and imaged via a Veeco visualization 

system(35). NEO1FN56 Form 1 crystals were grown out of a mother liquor containing 0.1 M 

Tris-HCl, pH 8.5, 0.2 M sodium acetate, 30% PEG4000, NEO1FN56 Form 2 crystals out of 

mother liquor containing 0.13 M potassium nitrate, 13% PEG3350, eRGMB-NEO1FN56 Form 

1 crystals out of mother liquor containing 0.1 M Tris Propane, pH 8.5, 0.2 M potassium 

nitrate, 20% PEG3350, eRGMB-NEO1FN56 Form 2 crystals out of mother liquor containing 

0.1 M Tris-HCl, pH 8.5, 0.2 M lithium sulphate, 25% PEG3350 and eRGMB-NEO1FN56 

Form 3 crystals out of mother liquor containing 0.1 M sodium acetate, pH 4.6, 0.18 M 

potassium acetate, 18% PEG3350. For the NEO1FN56-sucrose octasulphate (SOS) complex 
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NEO1FN56 was mixed with 3 mM SOS prior to crystallization and crystals were grown out of 

mother liquor containing 0.15 M potassium nitrate, 15% PEG3350. 

Diffraction data were collected at 100 K. Prior to flash-freezing, crystals were treated with 

the appropriate cryo protectant solutions (NEO1FN56 Form 1, NEO1FN56 Form 2 and eRGMB-

NEO1FN56 Form 1: 25% (v/v) glycerol in mother liquor; eRGMB-NEO1FN56 Form 2, 

eRGMB-NEO1FN56 Form 3 and NEO1FN56-SOS: 28% (v/v) ethylene glycol in mother liquor). 

Data were collected at beamline I03 (eRGMB-NEO1FN56 Form 1, 2 and 3 and NEO1FN56 

Form 2) at the Diamond Light Source, UK (equipped with a Pilatus 6M-F detector) and at 

beamline ID14-EH4 (NEO1FN56-SOS and NEO1FN56 Form 1) at the European Synchrotron 

Radiation Facility (ESRF), France (equipped with an ADSC Q315r detector). X-ray data 

were processed and scaled with the HKL suite(36) and XIA2(37). Data collection statistics 

are shown in table S1. 

 

Structure determination and refinement. The eRGMB-NEO1FN56 Form 3 complex was 

solved by molecular replacement in PHASER(38) using the structure of the fifth and sixth 

FNIII domain of human NEO1 (PDB ID: 3P4L(39)) as search model. Additional electron 

density for RGMB was immediately discernible. After density modification with PARROT as 

implemented in CCP4i(40) (figS1 A, B), the RGMB polypeptide chain was traced using 

Buccaneer(40). Iterative rounds of refinement in autoBUSTER(41), PHENIX(42), chain 

tracing in BUCCANEER(40) and manual building in COOT(43) resulted in a well-defined 

model for human RGMB that included residues 134-338 (Fig. 1B). The RGMB N- and C-

terminal regions and the loop region between residues 143 and 157 could not be traced due to 

missing electron density and were thus not included in the final model. All other structures 

were solved by molecular replacement in PHASER using the refined RGMB and NEO1 

chains of the eRGMB-NEO1FN56 Form 3 complex. The models were refined using programs 
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autoBUSTER(41) and PHENIX(42) and, where applicable, non-crystallographic symmetry 

restraints were used. As the test sets for all structures were chosen randomly the presence of 

non-crystallographic symmetry may artificially lower the value of Rfree by a small amount 

but will not render the metric invalid(44). The low resolution eRGMB-NEO1FN56 Form 2 

complex structure was refined in PHENIX(42) only applying rigid body and TLS refinement. 

The resulting electron density maps are of reasonable quality and clearly show features, 

which are not present in the model used for molecular replacement (fig. S1D-F). 

Crystallographic and Ramachandran statistics are given in tableS1. Stereochemical properties 

were assessed by MOLPROBITY(45). Superpositions were calculated using the program 

SHP(46) and COOT(43) and electrostatic potentials were generated using APBS(47). Buried 

surface areas of protein-protein interactions were calculated using the PISA webserver(48) 

for a probe radius of 1.4 Å. 

 

Multiangle light scattering (MALS). MALS experiments were carried out using a DAWN 

HELEOS II from Wyatt Technology (equipped with a K5 flow cell and a 30 mW linearly 

polarized GaAs laser with a wavelength of 690 nm). Proteins used for MALS contained 

wildtype sugars. Prior to the experiments, proteins were purified by size exclusion 

chromatography and concentrated to approximately 2 mg/ml. Data were analysed using 

ASTRA (Wyatt Technologies) and molecular weights were calculated using the Debye fit 

method. 

 

Surface plasmon resonance (SPR) binding studies. SPR experiments were performed 

using a Biacore T100 machine (GE Healthcare) at 25 °C in SPR running buffer (10 mM 

HEPES, pH 7.4, 150mM NaCl, 0.05% (v/v) polysorbate 20). All experiments were carried 

out using orientated protein immobilization by coupling biotinylated proteins to streptavidin-
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coated biosensor chips(49). Proteins for surface attachment were engineered with a C-

terminal recognition sequence for the enzyme BirA, allowing enzymatic biotinylation of a 

lysine residue within this sequence. Biotinylation of the C-terminus of NEO1 and RGMs 

replaces the transmembrane helix or the GPI-anchor, respectively, recapitulating the native 

topology of both proteins. Tagged proteins were secreted from HEK-293T cells with 

equivalent efficiency to their untagged counterparts. Proteins used as analytes were prepared 

as described above and underwent gel filtration in running buffer immediately prior to use. 

Experiments with the wildtype proteins were performed in both orientations and with the 

mutant proteins in one orientation. Protein concentrations were determined from the 

absorbance at 280 nm using calculated molar extinction coefficients. Typically the ligands 

were bound to the surface at concentrations of 150-3,000 response units. After each binding 

experiment the chip was regenerated by short bursts of 2 M Magnesium sulphate. All 

experiments were done in duplicates with independently purified proteins. In all experiments 

analyzed, the experimental trace returned to baseline after each injection and the data fitted to 

a simple 1:1 Langmuir model of binding. Kd values were obtained by nonlinear curve fitting 

of the Langmuir binding isotherm (bound = C*max/(Kd + C), where C is analyte 

concentration and max is the maximum analyte binding) using the Biacore Evaluation 

software (GE Healthcare). 

 

Analytical ultracentrifugation. Sedimentation velocity (SV) experiments were performed 

using a Beckman Optima XL-I analytical centrifuge and a run temperature of 20 °C. After gel 

filtration protein samples were concentrated to the following concentrations for SV analysis: 

eRGMB-WT and eRGMB-P206N: 3 mg/mL, NEO1FN56M: 2 mg/mL and for the complexes, 

the proteins were mixed in a 1:1 ratio with a final concentration of 6 mg/mL. For the pH-

dependent experiments, runs were conducted at pH 7 and pH 4. The samples were held in 3 
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mm path length Epon sector-shaped 2-channel centrepieces and were spun at 40,000 rpm, 

with 50 sample distribution scans being taken increments of 6 minutes apart. Data were 

collected using 280 nm absorbance optics. Data were analysed using Sedfit (50,51), available 

from http://www.analyticalultracentrifugation.com. The scans 6-50 were used in the 

continuous c(s) distribution analysis, they were performed with a floating frictional ratio and 

baseline, smin = 0.5, smax = 10, and a resolution of 100. A value of 0.73 ml/g was used for the 

partial specific volumes. Graphs were plotted and Gaussian distributions fitted to the curves 

using the plotting program PROFIT (Uetikon am See, Switzerland).  

 

Co-immunoprecipitation 

Transfection and co-transfection of full-length fNEO1-His6 and fNEO-1D4 plasmids were 

performed using previously described methods(31). About 40 hours post-transfection the 

media (250 ml) was removed. The cells were washed in 2 x 50 mL PBS and lysed in 5 mL 

Lysis Buffer (10 mM Tris-HCl (pH 8.0), 150 mM NaCl, 1.5% DDM and protease inhibitor 

cocktail (Sigma)) for 2 hours at 4 °C. The lysate was cleared by centrifugation (100000 xg, 2 

hours) and diluted 1:50 in lysis buffer containing 0.03 % DDM. Complexes were recovered 

on 1D4-antibody (University British Colombia)-conjugated sepharose beads (Amersham) and 

washed three times with lysis buffer (0.03 % DDM). Bound protein complexes were eluted 

from the beads by incubation (12 hours, 4 °C) with 500 μM 1D4 peptide (TETSQVAPA, 

GenScript). Samples were analysed by Western blotting with a mouse anti-His6 antibody probe. 

 

Neurite growth assays. Cerebellar external granule layer (EGL) explants were grown on 

RGMB coated coverslips. First, coverslips were coated with poly-D-lysine (100 µg/ml), 

washed and air-dried. Purified RGMB-WT, RGMB-P206N, RGMB-A186R or Fc control 

protein was then added to the coverslip at 50 µg/ml mixed with laminin (40 µg/ml, 
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Invitrogen) in Neurobasal medium (NB, Gibco) overnight at 4 °C. Routinely, a 10% 

adsorption of input protein to poly-D-lysine-coated coverslips was observed(52). Shortly 

before plating the explants, coverslips were washed once in NB and incubated at 37 °C with 

culture medium (NB with penicillin/streptomycin, l-glutamine, 18 mM Hepes and 1xB27). 

Explants were obtained from postnatal day (P)9 mouse pups. In brief, the cerebellum was 

removed and dissected in ice cold L15, and coronal slices were cut using a MCIllwain tissue 

chopper. Slices were further dissected to isolate the EGL and equally sized tissue explants 

were cut and placed onto the coated coverslips. After 3 days in vitro (DIV), the explants were 

fixed with 4% PFA for 20 min at room temperature. For immunohistochemistry, coverslips 

were washed with PBS and incubated in blocking buffer (PBS with 5% normal goat serum, 

1% BSA, 1% glycine, and 0.4% Triton-X100) for 1 hour at RT. Primary (mouse anti βIII-

tubulin, T8660 Sigma) and secondary (goat anti mouse Alexa-488, A11029 Molecular 

Probes) antibodies were diluted in blocking buffer and incubated overnight at 4 °C. Nuclei 

and F-actin were stained using DAPI (Invitrogen) and Phalloidin-TRITC (Sigma-Aldrich), 

respectively, diluted in PBS. Pictures were taken with a Zeiss Scope A1 microscope with a 

10x objective (Zeiss) and an Axiocam Mrm camera (Zeiss). Neurite outgrowth from the 

explants was analysed using ImageJ. The distance between explant and the growth cones of > 

20 individual, non-fasciculated neurites was measured (three separate experiments, total 

explants analyzed per condition: WT n=27, P206N n=24, A186R n=26, control n=23) (fig. 

S13) and neurite lengths were normalized to the average neurite length of control explants per 

experiment. Three bins (short, medium, long) containing an equal proportion of 

measurements ranging from shortest to longest were created to establish the distribution of 

neurite lengths per explant. The percentage of neurites in each bin was calculated for each 

explant to obtain the average distribution of neurite lengths per condition. A two-way 
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ANOVA with Bonferroni post-test was used to compare the distributions of neurite length 

between the experimental conditions.  

 

Illustrations. Figures were produced using the programs PYMOL (www.pymol.org), Adobe 

Photoshop (Adobe Systems) and Corel Draw (Corel Corporation). 
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Fig. S9: SPR data of NEO1-RGM interactions. Binding of NEO1 constructs and mutants to the 
full-length ectodomains of RGMA (left panel), RGMB (middle panel) and RGMC (right panel), 
respectively. Graphs show a plot of the equilibrium binding response (response units (RU)) against 
concentration of the used NEO1 constructs. All experiments were performed in duplicate. Best-fit 
binding curves calculated using a 1:1 binding model are shown as lines. If not differently stated in the 
graph, the chip concentrations were 80 RU, 500 RU and 90 RU for eRGMA, eRGMB and eRGMC, 
respectively. Corresponding ligands (immobilised on the chip) are indicated in grey boxes. Binding 
constants (Kd) are given as mean with the error representing the standard error of the mean. N/A: not 
applicable. NEO1 constructs comprising only the FN5 and FN6 domains (NEO1FN56 and NEO1FN56M) 
(Fig. 7A and B) showed even tighter binding to all RGMs compared to the full-length NEO1 
ectodomain (Fig. 7C), possibly explained by better accessibility of the RGMs to the truncated 
constructs. 
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Table S1. Crystallographic data collection and refinement statistics 

 
 NEO1FN56- 

eRGMB 
Form 1 

(high pH) 

NEO1FN56-
eRGMB 
Form 2 

(high pH) 

NEO1FN56- 
eRGMB 
Form 3 

(low pH) 

 
NEO1FN56 

Form 1 

 
NEO1FN56 

Form 2 

 
NEO1FN56- 

SOS 

 
DATA COLLECTION 

      

X-ray source DIAMOND-I03 DIAMOND-I03 DIAMOND-I03 ESRF-ID14-EH4 DIAMOND-I03 ESRF-ID14-EH4 
Resolution 30.0-2.3 (2.4-2.3) 50.0-6.6 (6.8-6.6) 50.0-2.8 (2.9-2.8) 30.0-2.9 (3.0-2.9) 30.0-2.7 (2.8-2.7) 30.0- 3.2 (3.3-3.2) 
Space group P212121 P3212 P41212 P3121 P21 C2221 
Cell dimensions [Å] a= 91.3 Å 

b = 100.4 Å 
c = 103.7 Å 

a= 109.7 Å 
b = 109.7 Å 
c = 187.9 Å 

a = 116.9 
b = 116.9 
c = 91.8 

a = 103.6 Å 
b = 103.6 Å 
c = 110.8 Å 

a = 59.0 Å 
b = 97.4 Å 
c = 91.3 Å 
β = 106.4° 

a = 96.2 Å 
b = 157.8 Å 
c = 89.9 Å 

Solvent content [%] 
(mols per AU) 

55 (2 mols 
eRGMB, 2 mols 

NEO1FN56) 

65 (2 mols 
eRGMB, 2 mols 

NEO1FN56) 

68 (1 mol 
eRGMB, 1 mol 

NEO1FN56) 

68 (2 mols
NEO1FN56) 

56 (4 mols 
NEO1FN56) 

69 (2 mols 
NEO1FN56) 

Wilson B factor [Å2] 57 182 84 64 81 67 
Unique reflections 42796 (2990) 2508 (181) 16223 (1167) 15545 (1531) 26660 (2518) 11572 (820) 
Completeness [%] 99.3 (95.6) 97.7 (97.4) 99.9 (99.4) 99.9 (100.0) 97.7 (92.7) 99.4 (98.6) 
Rmerge [%]a 9.2 (84.1) 23.3 (78.9) 8.9 (90.8) 13.5 (86.8) 8.0 (82.9) 11.4 (83.0) 
I/σI 10.2 (1.3) 7.5 (2.3) 15.5 (1.9) 10.8 (1.5) 11.3 (1.2) 16.3 (2.9) 
Redundancy 6.0 (4.0) 6.0 (5.0) 8.4 (7.8) 4.2 (4.3) 2.3 (2.2) 10.0 (10.3) 
 
REFINEMENT 

      

Resolution range [Å] 30.0-2.3 (2.36-2.30) 50.0-6.6 (8.3-6.6) 50.0-2.8 (3.0-2.8) 30.0-2.9 (3.1-2.9) 30.0-2.7 (2.8-2.7) 30.0- 3.2 (3.5-3.2) 
Number of reflections 42757 (2852) 2488 (1116) 16180 (2854) 15443 (2737) 26625 (2837) 11548 (2686) 
No. of atoms 
(protein/NAG/SOS/H2O) 

5771/28/0/329 5750/0/0/0 2905/14/0/0 3106/28/0/0 6277/56/0/0 2951/14/110/0 

B factors [Å2] 
(protein/NAG/SOS/H2O) 

52/80/0/48 - 76/119/0/0 69/110/0/0 89/109/0/0 98/109/180/0 

Rfactor [%)]c 22.1 (21.0) 26.1 (28.9) 18.7 (21.9) 20.6 (27.2) 20.1 (24.5) 22.0 (24.2) 
Rfree [%] d 26.6 (23.1) 27.2 (29.3) 20.3 (26.8) 23.2 (31.7) 22.4 (25.6) 26.5 (28.0) 
r.m.s.d. bonds [Å] 0.010 0.019 0.009 0.010 0.010 0.010 
r.m.s.d. angles [deg] 1.21 1.90 1.18 1.21 1.13 1.19 
Ramachandran statistics       
Favoured [%] 94.6 94.0 96.1 96.6 97.6 95.9 
Disallowed [%] 0 0.7 0 0 0 0 

 

r.m.s.d.: root mean square deviation from ideal geometry. Numbers in parentheses refer to the 
appropriate outer shell. 
aRmerge = hkl i|I(hkl;i) – <I(hkl)>|/hkl iI(hkl;i), where I(hkl;i) is the intensity of an individual 
measurement and <I(hkl)> is the average intensity from multiple observations. 
bRfactor =hkl||Fobs| – k|Fcalc||/hkl |Fobs|. 
cRfree equals the R-factor against 5% of the data removed prior to refinement. 
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