Toxin and fragment	Primer	Sequence ^b	Amino acids ^a
Toxin A	TxA-frag1-Fw	ag <u>ccatgg</u> gtttaatatctaaagaagagttaataaaactcgcatatagc	1 - 669
fragment 1	TxA-frag1-Rv	ccggatccacttaatctagcaaattcgcttgtgttgaattcatctttacc	
Toxin A	TxA-frag2-Fw	ag <u>ccatgg</u> gcgtaacctttattggacatggtaaagatgaattcaacacaagcga atttgctag	649 - 1265
Fragment 2	TxA-frag2-Rv	ccggatccgtaaaatttacctgggtataaatctcttattgaatcaagtaatc	045 1205
Toxin A	TxA-frag3-Fw	ag <u>ccatgg</u> gcgaaaatgacggaactagattacttgattcaataagagatttata cccagg	1245 - 1848
fragment 3	TxA-frag3-Rv	cc <u>ggatcc</u> aaattctataggatcaaaatagaataatgaattatttatattgattaa tcc	
Toxin A	TxA-frag4-Fw	ag <u>ccatgg</u> gcttagttaaaggattaatcaatataaataattcattattctattttg atcc	1828 - 2710
fragment 4	TxA-frag4-Rv	ccggatccgccatatatcccaggggcttttactccatcaacacc	1828 - 2710
Toxin B	TxB-frag1-Fw	ag <u>ccatgg</u> gcttagttaatagaaaacagttagaaaaaatggcaaatgtaag	1 - 602
fragment 1	TxB-frag1-Rv	gg <u>ctcgag</u> cttacctaggcggttcatctctatgtctgtata <u>ggatcc</u> aggagtcttt gcaaataagttacatgctgcttc	
Toxin B	TxB-frag2-Fw	ag <u>ccatgg</u> gccagttacaaggagataaaattagttatgaagcagcatg	582 -1194
fragment 2	TxB-frag2-Rv	ccggatcctgttattgatggtgctgaaaagaagtgatctatatcatcag	502 1151
Toxin B	TxB-frag3-Fw	ag <u>ccatgg</u> gcggttcaggtcatactgtaactgatgatatagatcacttc	1174 - 1786
fragment 3	TxB-frag3-Rv	cc <u>ggatcc</u> atcactaaagttaaaagatagcttatttgccaaagtcttatc	1,00
Toxin B	TxB-frag4-Fw	ag <u>ccatgg</u> gcttcgttaatgtttttaaagataagactttggcaaataagc	1766 2266
fragment 4	TxB-frag4-Rv	ccggatccttcactaatcactaattgagctgtatcaggatcaaaataatac	1766 - 2366

Table S1. Oligonucleotides used for cloning toxin domains of C. difficile VPI10463

^a Corresponding amino acids sequence of toxin cloned on fragment. All toxin fragments are cloned to give a 20 amino acid overlap between adjacent toxin domains.

^bUnderlined sequence indicates the restriction sites introduced for cloning.

Table S2. Strains and plasmids used in study

Strain or plasmid	Relevant properties	Reference or source
Plasmids		
рКА432	pET28a with <i>C. difficile</i> toxin A catalytic domain (fragment 1)	This work
рКА433	pET28a with <i>C. difficile</i> toxin A translocation domain (fragment 2)	This work
рКА434	pET28a with <i>C. difficile</i> toxin A translocation domain (fragment 3)	This work
рКА435	pET28a with <i>C. difficile</i> toxin A receptor binding domain (fragment 4)	This work
рКА436	pET28a with <i>C. difficile</i> toxin B catalytic domain (fragment 1)	This work
рКА437	pET28a with <i>C. difficile</i> toxin B translocation domain (fragment 2)	This work
рКА438	pET28a with <i>C. difficile</i> toxin B translocation domain (fragment 3)	This work
рКА439	pET28a with <i>C. difficile</i> toxin B receptor binding domain (fragment 4)	This work
pAF100	Expression plasmid for secreted expression in lactobacilli	(31)
pAF900	Expression plasmid for cell wall anchored expression in lactobacilli	(31)
рКА498	pAF100 with VHH-B2 inserted for secreted expression	This work
рКА452	pAF100 with VHH-E2 inserted for secreted expression	This work
рКА453	pAF100 with VHH-G3 inserted for secreted expression	This work
рКА500	pAF100 with VHH-D8 inserted for secreted expression	This work
рКА456	pAF100 with VHH-G1 inserted for cell wall anchored expression	This work
рКА458	pAF100 with VHH-D2 inserted for cell wall anchored expression	This work
рКА461	pAF100 with VHH-B5 inserted for cell wall anchored expression	This work
рКА463	pAF100 with VHH-G9 inserted for cell wall anchored expression	This work
рКА457	pAF100 with VHH-B2 inserted for cell wall anchored expression	This work
рКА459	pAF100 with VHH-E2 inserted for cell wall anchored expression	This work
рКА460	pAF100 with VHH-G3 inserted for cell wall anchored expression	This work
рКА462	pAF100 with VHH-D8 inserted for cell wall anchored expression	This work

Strains

ККА370	E. coli BL21 with plasmid pKA432	This work
KKA371	E. coli BL21 with plasmid pKA433	This work
KKA372	<i>E. coli</i> BL21 with plasmid pKA433	This work
ККАЗ7З	<i>E. coli</i> BL21 with plasmid pKA434	This work
KKA374	E. coli BL21 with plasmid pKA435	This work

ККА375	E. coli BL21 with plasmid pKA436	This work
ККА376	E. coli BL21 with plasmid pKA437	This work
KKA377	E. coli BL21 with plasmid pKA438	This work
L. paracasei BL23	Previously considered a plasmid-free L. casei 393 strain	(23)
KKA101	L. paracasei BL23 harbouring empty expression plasmid	(33)
KKA382	L. paracasei BL23 with plasmid pKA453, secreted VHH-G3	This work
ККА440	L. paracasei BL23 with plasmid pKA452, secreted VHH-E2	This work
KKA441	L. paracasei BL23 with plasmid pKA500, secreted VHH-D8	This work
KKA442	L. paracasei BL23 with plasmid pKA498, secreted VHH-B2	This work
ККА412	L. paracasei BL23 with plasmid pKA457, cell wall anchored VHH-G1	This work
KKA414	L. paracasei BL23 with plasmid pKA457, cell wall anchored VHH-D2	This work
ККА417	L. paracasei BL23 with plasmid pKA457, cell wall anchored VHH-B5	This work
KKA419	L. paracasei BL23 with plasmid pKA457, cell wall anchored VHH-G9	This work
ККА413	L. paracasei BL23 with plasmid pKA457, cell wall anchored VHH-B2	This work
ККА415	L. paracasei BL23 with plasmid pKA459, cell wall anchored VHH-E2	This work
KKA416	L. paracasei BL23 with plasmid pKA460, cell wall anchored VHH-B3	This work
KKA418	L. paracasei BL23 with plasmid pKA462, cell wall anchored VHH-D8	This work
C. difficile 630 (tcdA-,tcdB+)	Toxin A negative and toxin B positive strain of <i>C. difficile</i> 630∆erm	(8)
<i>E. coli</i> DH5α		

E. coli BL21-CodonPlus(DE3)-RIPL

Table S3. Progression of infection in hamsters

Groups	Hamster no	1. Day	2. Day	3. Day	4. Day	5. Day
Spores only	58-1	GDH negative	GDH negative - -	GDH positive Toxin positive Wet tail	Death	
	58-2	GDH negative - -	GDH negative - -	GDH negative - -	GDH positive Toxin positive Wet tail	Death
	58-3	GDH negative - -	GDH negative - -	GDH positive Toxin positive Wet tail	Death	
	58-4	GDH negative - -	GDH negative - -	GDH positive Toxin positive Wet tail	Death	
	58-5	GDH negative - -	GDH negative - -	GDH positive Toxin positive Wet tail	Death	
	58-6	GDH negative - -	GDH negative - -	GDH positive Toxin positive Wet tail	Death	
5x10 ⁹ CFU KKA413 and 5x10 ⁹ CFU KKA416	54-1	GDH negative - -	GDH negative - -	GDH positive Toxin negative Wet tail	GDH positive Toxin negative Wet tail	N.D Toxin negative Wet tail
	54-2	GDH negative - -	GDH positive N.D -	GDH positive Toxin negative Wet tail	GDH positive Toxin negative Wet tail	N.D Toxin negative Wet tail
	54-3	GDH negative - -	GDH negative -	GDH positive Toxin negative Wet tail	GDH positive Toxin positive Wet tail	Death
	54-4	GDH negative -	GDH negative -	GDH negative - -	GDH positive Toxin positive Wet tail	Death
	54-5	GDH negative - -	GDH negative - -	GDH negative - -	GDH positive Toxin negative Wet tail	GDH positive Toxin positive Wet tail
	54-6	GDH negative - -	GDH negative -	GDH negative - -	GDH positive Toxin positive Wet tail	Death
1x10 ¹⁰ CFU KKA101	53-1	GDH negative - -	GDH negative -	GDH negative - -	GDH positive Toxin positive - Death	
	53-2	GDH negative - -	GDH negative - -	GDH positive Toxin positive Wet tail	Death	
	53-3	GDH negative - -	GDH negative - -	GDH positive Toxin negative Wet tail	GDH positive Toxin positive Wet tail	Death
	53-4	GDH negative - -	GDH negative - -	GDH positive Toxin positive Wet tail	Death	
	53-5	GDH negative - -	GDH negative - -	GDH positive Toxin positive Wet tail	Death	
	53-6	GDH negative	GDH negative -	GDH positive Toxin positive Wet tail	Death	

Markers for the progression of infection for hamsters receiving: *C. difficile* spores only; *C. difficile* spores and engineered *L. paracasei* BL23 expressing cell wall anchored anti-toxin B neutralizing VHH fragments B2 and G3 (strain KKA413 and KKA416); or *C. difficile* spores and non-expressing *L. paracasei* BL23 (strain KKA101). Glutamate Dehydrogenase (GDH) was measured by ELISA in fecal droppings as a marker for spore germination and presence of vegative *C. difficile*. Presence of toxins in the feces were detected by an ELISA for toxin B as marker of onset of virulence. Episodes of diarrhea were observed through the presence of wet tail. (-) No sample taken as feces were still GDH negative. (ND) measurement not done.

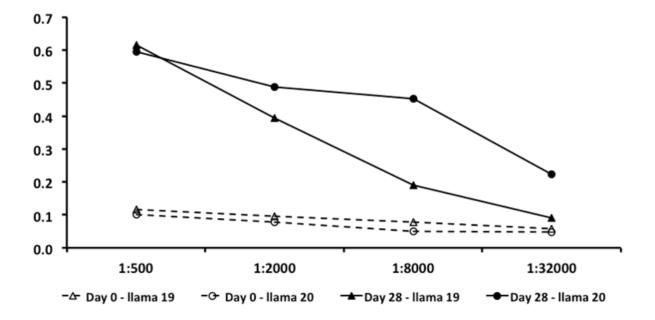


Figure S1. Analysis of serum antibody responses in llamas immunized with *C. difficile* toxin B. Fourfold dilution range of pre-immune sera (day 0) and sera taken after third immunization (day 28) of llama 19 and 20 analyzed for binding to toxin B.

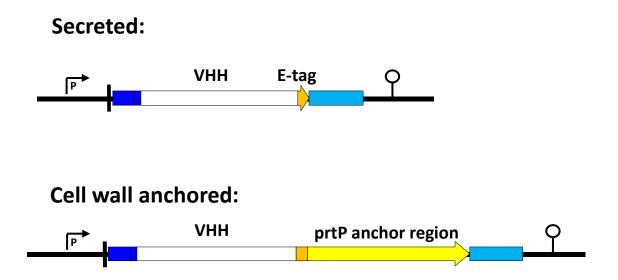


Figure S2. Plasmid constructs for expression of VHH fragments in *L. paracasei* BL23. The expression plasmids based on the expression cassette of the *apf* gene from *L. crispatus* M247. The inclusion of a PrtP anchoring domain and placement of the stop codon gives either secreted expression or cell wall anchoring of the VHH fragment. The APF promoter (P), APF signal peptide (blue), VHH (white), prtP anchor (yellow), E-tag (orange), translational stop codon (arrowhead), non-translated APF anchoring domain (light blue) and transcriptional terminator (lollipop) are indicated.

(A)

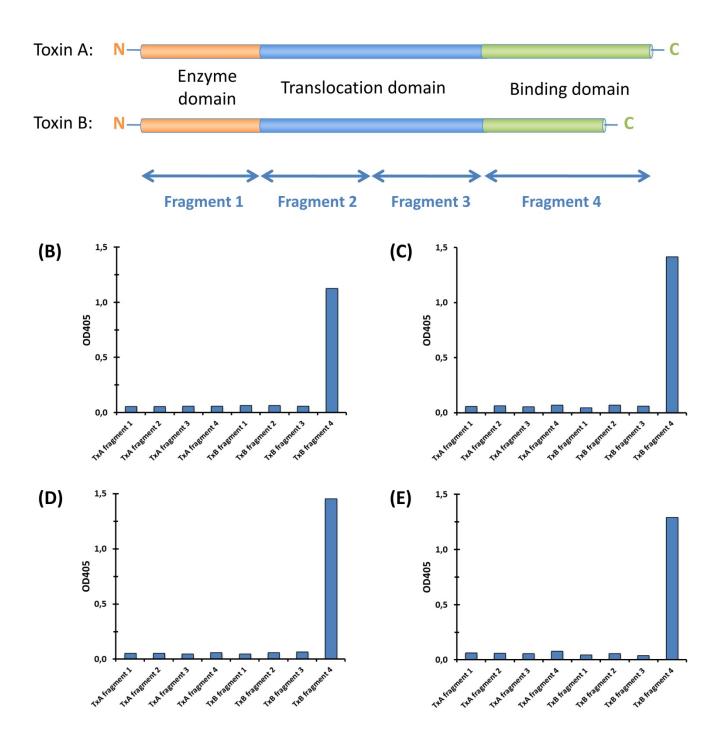


Figure S3. Mapping of domain specificity of *L. paracasei* BL23 produced anti-toxin B VHH on toxin A and toxin B. (A) Schematic representation of the toxin A and toxin B domains and the corresponding recombinant fragments produced in *E. coli*. (B) All tested VHH fragments (VHH-B2, VHH-E2, VHH-G3, VHH-D8) bind to the toxin B fragment 4, corresponding to the C-terminal receptor binding domain.

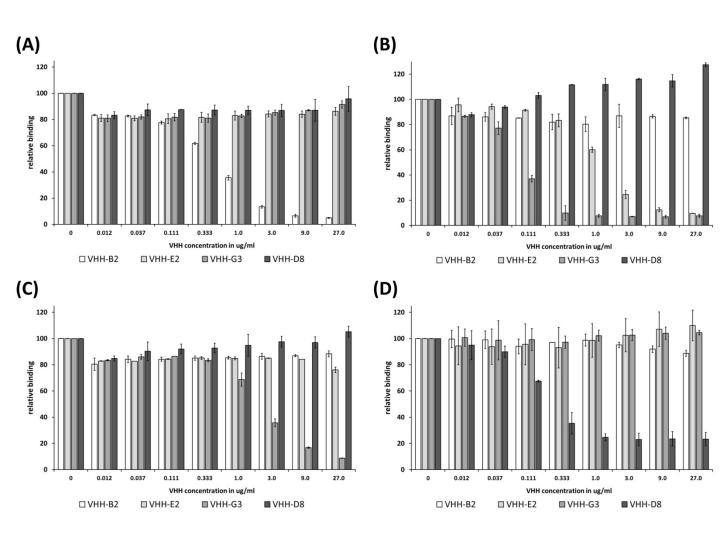


Figure S4. Epitope competition of toxin B neutralizing VHH fragments detected by ELISA. Binding of *Lactobacillus* produced VHH fragments to toxin B as coating antigen competed with purified *E. coli* produced VHH fragments in threefold dilutions. Binding was detected through the E-tag fused to the *Lactobacillus* produced VHH. (A) VHH-B2 produced by strain KKA442. (B) VHH-E2 produced by strain KKA440. (C) VHH-G3 produced by strain KKA382. (D) VHH-D8 produced by strain KKA441.

(A) VHH-B2

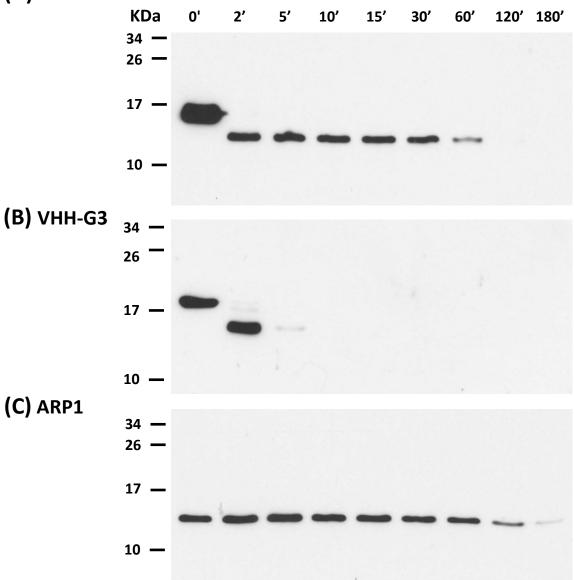


Figure S5. Proteolytic stability of toxin B neutralizing VHH fragments against intestinal proteases. Detection of degradation of VHH fragments exposed to hamster intestinal extracts by immunoblotting using an anti-VHH antibody. Western blotting of (A) anti-toxin B VHH-B2 and (B) anti-toxin B VHH-G3 exposed to hamster intestinal proteases for up to 180 minutes. (C) With anti-rotavirus VHH, ARP1, as control for relative stability of the VHH fragments.