1 SUPPORTING INFORMATION

2 Table S1. *C. neoformans* strains used in this study.

Strain	Additional information	Reference
RC2-wt (smooth phenotype)	Serotype D, Switch variant $MAT\alpha$	(1)
H99	Serotype A, $MAT\alpha$	(2)
RC2-all2∆	all2Δ::NEO	This study
RC2-all2∆+P _{ACT1} -ALL2	ALL2 promoter replaced with ACT1	This study
	promoter to generate P _{ACT1} -ALL2-	
	<i>NAT</i> and inserted to RC2- <i>all2∆</i>	
	all2∆::NEO	
H99- <i>all2∆</i>	all2∆::NEO	This study
H99- <i>all2∆</i> +P _{ACT1} -ALL2	ALL2 promoter replaced with ACT1	This study
	promoter to generate P _{ACT1} -ALL2-	
	<i>NAT</i> and inserted to H99- <i>all2∆</i>	
RC2- <i>all1∆all2∆</i>	all2∆::NEOall1∆::NAT	This study
RC2-ALL1::HA	ALL1 tagged with HA at C-terminal	This study

4 Table S2

5 **Primers used in this study.** Primers were designed using the Primer3 software 6 package (<u>http://frodo.wi.mit.edu/primer3/</u>) for generating gene-deletion cassettes, gene-7 reconstitution cassettes, or real-time PCR products.

8

Sample	- Δ C _T	2 ^{-∆CT}	2 ^{-∆ ∆CT}
ALL2 expression rel	ative to referenc	e gene – ACT1	
RC2 wt	3.6	0.07745	
	15.1	0.00003	0.00037
all2∆			
	14.8	0.00003	0.00043
all1∆all2∆			
ALL2 expression in	reconstituted stra	ain relative to reference g	ene – ACT1
RC2-wt	3.4	0.094732	
all2∆+P _{ACT1} -ALL2	3.9	0.066986	1.01942
ALL1 expression rel	ative to referenc	e gene – ACT1	
RC2-wt	2.6	0.16348	
	15.5	0.00002	0.00013
all1∆all2∆			

11 Table S3. Expression levels of *ALL2* as determined by real time PCR in mutants.

13 Table S4. Characteristics of *ALL2* null mutant in H99 background.

Characteristic	H99	H99- <i>all2∆</i>	Н99- <i>аll2∆</i> +Р _{АСТ1} -ALL2
Exo-polysaccharide viscosity (mL/g)	3238 <u>+</u> 432.6	1958 <u>+</u> 413.3	3512 <u>+</u> 426.2
H ₂ O ₂ sensitivity zone size (mm)	63	69	62
Phagocytosis index (%)	131.1 <u>+</u> 55.8	101.8 <u>+</u> 28.3	113.2 <u>+</u> 20.3

14

To generate H99-*all*2 Δ , the coding region of *ALL2* (945bp) in H99 was replaced with a neomycin resistance marker by homologous recombination as described in Materials and Methods. The exo-polysaccharide viscosity, H₂O₂ sensitivity and phagocytosis index for H99, H99-*all*2 Δ , and H99-*all*2 Δ +P_{ACT1}-ALL2 were measured using similar methods described for RC2.

20 Figure S1. All1p and All2p are homologous to fungi that affect plants.

Both All1p and All2p exhibit up to 33-38% homology with hypothetical proteins in other non-encapsulated fungi that are pathogenic to plants, but no homology to any fungi that

that are pathogenic to humans.

24

25 All1p alignment tree

26

27

28 All2p alignment tree

Figure S2. Validation of the *ALL2* gene disruption and complementation done by PCR.

(A) PCR Confirmation of the disruption of ALL2 gene with the NEO disruption cassette. 33 Lane 1: 1kb DNA marker, Lane 2: PCR amplification using primers All2homo-F and 34 All2homo-R using RC2 genomic DNA yielded 3000 bp PCR product, Lane 3: PCR 35 amplification using primers All2homo-F and All2homo-R using all1\Delta all2\Delta genomic DNA 36 37 vielded 4000 bp PCR product, Lane 4: PCR amplification using primers All1homo-F and 38 All1homo-R using RC2 genomic DNA yielded 3000 bp PCR product, Lane 5: PCR 39 amplification using primers All1homo-F and All1homo-R using all1\Deltall2D genomic DNA 40 yielded 4000bp PCR product, Lane 6: 1kb DNA marker, Lane 7: PCR amplification using primers All2homo-F and All2homo-R using WT genomic DNA yielded 3000bp 41 PCR product, Lane 8: PCR amplification using primers All2homo-F and All2homo-R 42 using all2d genomic DNA yielded 4000bp PCR product. (B) PCR confirmation of 43 insertion of a copy of ALL2 under Actin promoter to generate $all2\Delta + P_{ACT1} - ALL2$. 44

 $\mathbf{B} \quad \mathbf{M} \quad \mathbf{WT} \quad all 2\Delta + \mathbf{P}_{ACT1} - ALL 2$

Figure S3. All1-mCherry Cells recovered from murine tissue displayed All2p localization (red) in vacuoles.

49 Figure S4. Functional network map of genes regulated by *ALL2*.

50

51 **References**

- Fries BC, Taborda CP, Serfass E, Casadevall A. 2001. Phenotypic switching of Cryptococcus neoformans occurs in vivo and influences the outcome of infection. J Clin Invest 108:1639-1648.
- 55 2. **Perfect JR, Lang SD, Durack DT.** 1980. Chronic cryptococcal meningitis: a new experimental model in rabbits. Am J Pathol **101:**177-194.
- 57 3. Jain N, Li L, Hsueh YP, Guerrero A, Heitman J, Goldman DL, Fries BC. 2009.
- Loss of allergen 1 confers a hypervirulent phenotype that resembles mucoid switch variants of Cryptococcus neoformans. Infect Immun **77**:128-140.
- 60