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A Supplementary experimental details

A.1 Plasmid details

Table S1: Ratiometric reporter constructs. All plasmids built on backbone pSB2K3 with an added reference promoter
(all pR except pR0011LL123* which is Bba J23101) driving eCFP [1, 2]. All RBS sequences are Bba B0034.

Plasmid name Promoter driving re-
ceiver protein(s)

Receiver proteins expressed Promoter driving eYFP

pR0011LL123 pLlacO-1 (Bba R0011) LuxR, LasR pLux (Bba R0062)
pR0011LL123* pLlacO-1 (Bba R0011) LuxR, LasR pLux (Bba R0062)

pCatLL123 pCat (Bba I14033) LuxR, LasR pLux (Bba R0062)
pCatR123 pCat (Bba I14033) LuxR pLux (Bba R0062)
pCatS123 pCat (Bba I14033) LasR pLux (Bba R0062)
pCatLL76 pCat (Bba I14033) LuxR, LasR pLux76
pCatR76 pCat (Bba I14033) LuxR pLux76
pCatS76 pCat (Bba I14033) LasR pLux76

pCatLL81 pCat (Bba I14033) LuxR, LasR pLas81
pCatR81 pCat (Bba I14033) LuxR pLas81
pCatS81 pCat (Bba I14033) LasR pLas81

pBADLuxR pBAD (BBa I0500) LuxR N/A
pBADLasR pBAD (BBa I0500) LasR N/A

Table S2: Double receiver constructs. All plasmids built on backbone pSB2K3 with pLas81 driving eYFP and pLux76
driving eCFP both with RBS Bba B0034. The asterisk symbol indicates synthetic RBS designed using the RBS calculator
[3].

Plasmid name LuxR promoter LuxR RBS LasR promoter LasR RBS

pCatR34S34 pCat Bba B0034 pCat Bba B0034
pR33S34 Bba R0040 Bba B0033 Bba R0011 Bba B0034

pR33S175 Bba R0040 Bba B0033 Bba R0011 S175*
pR33S32 Bba R0040 Bba B0033 Bba R0011 Bba B0032

pR100S34 Bba R0040 S100* Bba R0011 Bba B0034
pR100S32 Bba R0040 S100* Bba R0011 Bba B0032

Table S3: Sender constructs. The asterisk symbol indicates synthetic RBS designed using the RBS calculator [3].

Plasmid name Promoter RBS CDS Origin/antibiotic

pR0011LuxI Bba R0011 Bba B0034 LuxI P15a/Kan
pBADLasI PBAD Bba B0034 LasI P15a/Kan

pLux76LasI PLux76 S900* LasI pMB1/Amp
pLas81LuxI PLas81 Bba B0032 LuxI pMB1/Amp
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A.2 Comparison of standard promoters
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Figure S1: pR, unlike Bba J23101, is not inhibited by C12-LasR but serves as an equivalent reference promoter. (A)
Normalized activity (deCFP/dOD normalized to activity at [C12]=0) of reference promoter pR (orange) or Bba J23101
(blue) in the presence of high expression of receiver proteins (pR0011LL123, pR0011LL123*), as a function of 3OC12-
HSL concentration. (B) Ratiometric activity (deYFP/deCFP) of pLux (Bba R0062) with respect to reference promoter pR
(orange, pR0011LL123) or Bba J23101 (blue, pR0011LL123*), as a function of 3OC6-HSL concentration.

A.3 Summary of experimental data

Here, we summarize the experimental measurements that were used for inferring parameters of the models.
Five different strategies were used to probe the response of pLux promoters to HSL signal concentration,
each providing a different control over the intracellular level of LuxR and LasR protein. These are detailed
in Table S4.

Table S4: Datasets used for characterizing pLux promoters. For descriptions of each plasmid, see Table S1.

Plasmids Number of datasets
k = 123 k = 76 k = 81

pCatLLk 3 5 3
pCatRk 5 3 4
pCatSk 4 3 2
pBADLuxR + pCatSk 3 3 3
pBADLasR + pCatRk 3 3 3
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B Full model

B.1 Derivation from chemical reactions

As introduced in the main text, the model is based on the following chemical reactions:

∅
nR−→ R ∅

nS−→ S

R + Ck
bRk−−⇀↽−−
uRk

Rk S + Ck
bSk−⇀↽−
uSk

Sk

Rk + Rk
bDk−−⇀↽−−
uDk

Dk Sk + Sk
bEk−−⇀↽−−
uEk

Ek

G + Dk
bGDk−−⇀↽−−
uGDk

G.Dk G + Ek
bGEk−−⇀↽−−
uGEk

G.Ek

G.Dk
aRk−→ G.Dk + mRNA G.Ek

aSk−→ G.Ek + mRNA
G

a0−→ G + mRNA ∅
nG−→ G

R, S, Rk, Sk, Dk, Ek, G, G.Dk, G.Ek
γ−→ ∅

(1)

where R represents LuxR, S represents LasR, Ck represents HSL of type k (either 6 or 12). By specifying
the rate constants as distinct in this way, we cover all possibilities of the various interactions being signal-
specific, LuxR/LasR-specific, etc. For example, it may or may not be important to model promoter-binding
of Dk or Ek as being dependent on whether the regulators incorporate AHL6 or AHL12 signals. If not, we
would simply enforce bGD6 = bGD12 and bGE6 = bGE12. We assume a zero-order production rate for gene
G, which models the replacement of plasmids during cell division. This is motivated by wanting to bal-
ance plasmid replication with dilution in equilibrium. Finally, we note that transcription and translation of
LuxR/LasR are lumped into a single generation reaction. This is for simplicity, as we will seek an equilib-
rium eventually, and the LuxR/LasR factors in the model will become subsumed into a single parameter.

Translating the reaction system (1) to a system of differential equations, assuming mass action kinetics,
we obtain

d[R]
dt

= nR + uRk[Rk]− [R](γ + bRk[Ck]) (2a)

d[Rk]

dt
= bRk[R][Ck] + 2uDk[Dk]− [Rk](γ + uRk + 2bDk[Rk]) (2b)

d[Dk]

dt
= bDk[Rk]

2 + uGDk[G.Dk]− [Dk](γ + uDk + bGDk[G]) (2c)

d[G]

dt
= nG + uGDk[G.Dk]− (γ + bGDk[Dk])[G] (2d)

d[G.Dk]

dt
= bGDk[G][Dk]− (γ + uGDk)[G.Dk] (2e)

There will also be an equivalent set of equations for LasR, which can be appended to describe cells express-
ing both receiver proteins.

Ideally, we would seek a closed-form expression for the steady-state transcription from gene G in cells
expressing only LuxR (we return to the multiple receiver proteins case later), by equating the equations (2)
to zero. By considering conservation of mass for LuxR and G, we note that

0 =
d[R]
dt

+
d[Rk]

dt
+ 2

(
d[Dk]

dt
+

d[G.Dk]

dt

)
= nR − γ ([R] + [Rk] + 2.[Dk] + 2.[G.Dk]) (3a)

0 =
d[G]

dt
+

d[G.Dk]

dt
= nG − γ ([G] + [G.Dk]) (3b)
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By defining a series of equilibrium constants

[Rk] = KRk[R][Ck], [Dk] = KDk[Rk]
2, [G.Dk] = KGRk[G][Dk], (4)

then substituting into (3), we obtain

nR
γ

=
(
[R] + KRk[R][Ck] + 2(1 + KGRk[G])KDkK2

Rk[R]
2[Ck]

2
)

(5a)

nG
γ

= [G]
(

1 + KGRkKDkK2
Rk[R]

2[Ck]
2
)

(5b)

Eqn. (5b) can be rearranged to give an expression

[G] =
nG

γ
(
1 + KGRkKDkK2

Rk[R]
2[Ck]2

) , (6)

which can be substituted into (5a) to give

nR
γ

=

(
[R] + KRk[R][Ck] + 2

(
1 +

nGKGRk

γ
(
1 + KGRkKDkK2

Rk[R]
2[Ck]2

))KDkK2
Rk[R]

2[Ck]
2

)
(7)

Therefore, to obtain a complete solution, it remains to solve (7) numerically for [R], and then substitute into
(4) and (6). Note that this equation is quartic in [R], and so an algebraic solution may be formulated, but it
is too complex to extract any useful interpretation.

The rate of mRNA synthesis is given by fCk = a0[G] + a1[G.Dk], which after substituting the above
expressions can be rearranged to give the model output as

fCk =
(

a0 + aRkKGRkKDkK2
Rk[R]

2[Ck]
n
)
[G] (8)

where [G] and [R] are as determined above.

Multiple receiver proteins. When LasR is present and expressed at rate nS, (6) becomes

[G] =
nG

γ
(
1 + KGRkKDkK2

Rk[R]
2[Ck]2 + KGSkKEkK2

Sk[S]
2[Ck]2

) (9)

The solution for [R] and [S] are then obtained via numerical solutions in the same way as before. The
transcription rate fCk is determined analogous to the above.

Multiple promoters in competition. Finally, to extend to the case of n competing promoters each pro-
duced at rate nj

G and with LuxR/LasR affinities K j
GRk and K j

GSk for j ∈ {1, . . . , n}, we obtain the solution for
each unbound promoter as

[Gj] =
nj

G

γ
(

1 + K j
GRkKDkK2

Rk[R]
2[Ck]2 + K j

GSkKEkK2
Sk[S]

2[Ck]2
) =: gj([R]) (10)

Accordingly, the concentrations [R] and [S] are obtained by numerically solving

nR
γ

= [R](1 + KRk[Ck]) + 2

(
1 + ∑

j
K j

GRk.gj([R])

)
KDkK2

Rk[R]
2[Ck]

2 (11a)

nS
γ

= [S](1 + KSk[Ck]) + 2

(
1 + ∑

j
K j

GSk.gj([R])

)
KEkK2

Sk[S]
2[Ck]

2 (11b)
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B.2 Non-dimensionalisation

Since we are interested in the transcription rate from gene G, which is given by a0[G] + a1[G.Dk], we can
consider the rescaling of [G] → αG. Equivalently, we can rescale the level of LuxR in the system, i.e.
[R]→ βR. Using similar scales on the complexes, [Rk]→ βRk, [Dk]→ βDk and [G.Dk]→ β.GDk.

With these rescalings, the conservation equations (3) become

0 = nR − γ (βR + βRk + 2β.Dk + 2β.GDk) (12)
0 = nG − γ (α.G + β.GDk) (13)

By setting α =
nG
γ

and β =
nR
γ

, then defining KRk, KDk and KGRk as before, we obtain

G =
1

1 + ρ.KGRk.KDkK2
RkR2C2

k
(14)

where ρ = β
α . Therefore, R is the solution to

1 = (1 + KRkCk) .R + 2

(
1 +

KGRk

1 + ρ.KGRk.KDkK2
RkR2C2

k

)
KDkK2

RkC2
k .R2 (15)

The non-dimensionalized transcription rate is as in (8).

Multiple receiver proteins. When LasR is present the non-dimensionalized equivalent of (9) becomes

G =
1

1 + ρR.KGRkKDkK2
RkR2C2

k + ρS.KGSkKEkK2
SkS2C2

k
(16)

where ρR = nR
nG

and ρS = nS
nG

. The solution for R and S are then obtained numerically as before.

Multiple promoters in competition. The non-dimensionalized equivalent of (10) is

Gj =
1

1 + ρ
j
RK j

GRkKDkK2
RkR2C2

k + ρ
j
SK j

GSkKEkK2
SkS2C2

k

=: ĝj(R) (17)

Accordingly, the non-dimensionalized concentrations R and S are obtained by numerically solving

1 = R (1 + KRkCk) + 2

(
1 + ∑

j
ĝj(R)

)
KDkK2

RkR2C2
k (18a)

1 = S (1 + KSkCk) + 2

(
1 + ∑

j
ĝj(R)

)
KEkK2

SkS2C2
k (18b)

Note, we drop the superscript j on the ρR and ρS parameters as the same plasmid is used for expressing
LuxR and LasR in our experiments.

In this form, the parameterisation is extremely general. There are different rates of transcription depend-
ing on whether LuxR or LasR-based tetramers are bound, and also whether a C6 or C12 molecule is bound.
To ensure that the parameters are sufficiently constrained by the data, it is often necessary to make simpli-
fying assumptions, that may well be representative of the underlying biochemistry. For instance, we expect
that whether the tetramer contains C6 or C12 molecules will not affect recruitment of RNA polymerase (and
therefore aR6 = aR12 = aR, aS6 = aS12 = aS). The same may also be true of the binding of tetramer to the
promoter. Whereas the binding of C6 to LuxR will be different to the binding of C12 to LuxR, and similarly
for LasR, though the homo-binding of LuxR-C6 dimers (for example) may or may not be signal-specific.
The question is how much signal and receiver specificity is required in the reaction parameters in order to
reproduce multiple experimental measurements.
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B.3 Empirical alteration of the ”Hill coefficient”

The more common approach to modeling HSL-based signaling is to use a Hill function representation f (c)
for the transcriptional dependency on HSL concentration c []. For example,

f (c) =
a0 + a1Kncn

1 + Kncn (19)

where a0 is the basal transcription rate, a1 is the transcription rate of the bound promoter, K is the sensitivity
(reciprocal of the half-maximal saturating concentration) and n is the Hill coefficient. One would expect n to
take on values near 2, in line with there being 2 HSL molecules in the regulator of the promoter. However,
empirically, this value is often inferred to be a lower value.

In our models with more complex transfer functions, we find that the exponent 2 that arises in the
underlying equations leads to responses that are too steep with respect to the HSL concentration. Therefore,
we applied a correction to the model that allowed a free parameter n that is analogous to the Hill coefficient.
As such, the full model becomes

1 = R
(

1 + KRkC
n
2
k

)
+ 2

(
1 + ∑

j

1

1 + ρRK j
GRkKDkK2

RkR2Cn
k + ρSK j

GSkKEkK2
SkS2Cn

k

)
KDkK2

RkR2Cn
k (20a)

1 = S
(

1 + KSkC
n
2
k

)
+ 2

(
1 + ∑

j

1

1 + ρRK j
GRkKDkK2

RkR2Cn
k + ρSK j

GSkKEkK2
SkS2Cn

k

)
KEkK2

SkS2Cn
k (20b)

B.4 Inducible expression of LuxR/LasR

Experiments were performed in which cells expressing one receiver protein under the control of the consti-
tutive expresser pcat promoter and the other receiver protein under the control of the arabinose-inducible
pbad promoter. For convenience, we assume that pcat expression of LuxR mRNA results in LuxR protein
at concentration 1. i.e. we work in pcat units r representing the relative concentration of LuxR. We describe
the control of r via arabinose-pbad relative to this value.

To model the quantity of LuxR/LasR synthesized via the pbad promoter, we used a Hill function, as
has been done previously [4]. Note, the Hill function can also be obtained from rearranging more detailed
representations, such as in [5, 6]. We used the parameterization

fA([Ara]) =
aA

1 .[Ara] + aA
0 .KA

[Ara] + KA
(21)

Additionally, we allowed the eventual LasR versus LuxR levels at arabinose concentration A to differ by a
constant scale factor. As such, we assign s = sbad. fA([Ara]).

We also alternatively tried inferring a separate parameter for each different concentration of arabinose.
However, the inferred values nicely coincided with the Hill function representation, so we opted to show
results corresponding to the simpler Hill functional scheme.

7



B.5 Parameter inference

The parameters of the full model were inferred using Filzbach. Eight independent MCMC chains were run
with 125,000 burn-in iterations and 250,000 samples. The majority of the marginal posterior distributions
were convincingly Gaussian-shaped (Fig. S2), though some parameters were poorly identifiable, such as
ρR, ρS and KGR. Evidence of poor identifiability of the same parameters could also be seen in the correlation
structure of the joint posterior (Fig. S3). The value of n was convincingly less than 2, which helps to explain
the poorer performance we observed when n was fixed equal to 2 (not shown).
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Figure S2: Marginal posterior parameter distributions for the full model. The marginal parameter posterior distri-
butions are shown for each inferred parameter in the model. Parameters for which the base-10 logarithm is shown are
those parameters which used a logarithmic proposal distribution, while other parameters had real-valued proposals.
The histograms shown represent every 50th sample out of a total of 250,000 samples in a single MCMC chain. The
maximum log-likelihood score attained was -472.6.
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Table S5: Parameters Summary. Each parameter of the full model is defined, along with its maximum likelihood
estimate (MLE). For parameter inference, all prior distributions were uniform, with the ranges specified below. The
proposal distributions for some parameters were set to a logarithmic scale, as indicated below.

Parameter Description MLE Prior Scale

a123
0 Basal transcription rate of PLux 0.208 [0, 10] Real

a76
0 Basal transcription rate of POLux 0.093 [0, 10] Real

a81
0 Basal transcription rate of POLas 0.282 [0, 10] Real

aR
1 Transcription rate with LuxR regulators bound 18.881 [0, 100] Real

aS
1 Transcription rate with LasR regulators bound 8.067 [0, 100] Real

K123
GR Affinity of PLux for LuxR regulators 5.80× 10−3 [

10−6, 102] Log
K76

GR Affinity of POLux for LuxR regulators 3.40× 10−4 [
10−6, 102] Log

K81
GR Affinity of POLas for LuxR regulators 1.25× 10−5 [

10−6, 102] Log
K123

GS Affinity of PLux for LasR regulators 9.49× 10−4 [
10−6, 102] Log

K76
GS Affinity of POLux for LasR regulators 3.66× 10−6 [

10−6, 102] Log
K81

GS Affinity of POLas for LasR regulators 6.00× 10−3 [
10−6, 102] Log

KD6 Affinity of LuxR-HSL6 tetramerisation 3.44× 10−2 [
10−8, 100] Log

KD12 Affinity of LuxR-HSL12 tetramerisation 7.63× 10−4 [
10−8, 100] Log

KE6 Affinity of LasR-HSL6 tetramerisation 3.27× 10−5 [
10−8, 100] Log

KE12 Affinity of LasR-HSL12 tetramerisation 3.96× 10−2 [
10−8, 100] Log

KR6 Affinity of LuxR-HSL6 dimerisation 1.68× 10−2 [
10−8, 102] Log

KR12 Affinity of LuxR-HSL12 dimerisation 1.07× 10−2 [
10−8, 102] Log

KS6 Affinity of LasR-HSL6 dimerisation 7.57× 10−5 [
10−8, 102] Log

KS12 Affinity of LasR-HSL12 dimerisation 1.42× 10−1 [
10−8, 102] Log

ρR LuxR scale (see Appendix B.2) 7.52× 103 [
10−3, 104] Log

ρS LasR scale (see Appendix B.2) 2.92× 103 [
10−3, 104] Log

n Stoichiometry of HSL molecules (see Appendix B.3) 1.195
[
10−2, 105] Real

aA
0 Basal transcription rate of pBad 0.877 [0.0, 10.0] Real

aA
1 Maximum transcription of pBad 5440

[
10−1, 104] Real

KA Half-saturation constant of pBad induction by arabinose 3.707× 103 [
10−5, 105] Log

nA Stoichiometry of arabinose 0.99 [0.5, 2.5] Real
sbad Scale factor of LasR/LuxR levels from Pbad (see Appendix B.4) 0.284

[
10−2, 105] Log
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Figure S3: Parameter correlations within the joint posterior parameter distribution for the full model. The correlation
between each pair of parameters was calculated using the thinned marginal posterior samples, using the corrcoef

function in Matlab. Strong positive correlations are indicated in blue, while strong negative correlations are indicated
in red.
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B.6 Model-data comparison

Figure S4: Model-data comparison for the wild-type pLux promoter. Experimental measurements are shown as circles,
and model behavior as black lines and grey areas. Experimental measurements use the ratiometric characterization
method in [2], driving YFP with PLux and normalising by measurements of CFP driven by Pstd (J23101). Model behaviors
were obtained by simulating the thinned joint posterior and calculating the mean and 95% confidence intervals. The top
row has data where LuxR and LasR are expressed by pcat, while the other rows use arabinose-inducible expression of
either LuxR or LasR, as specified by the left-hand labels. The concentration of arabinose is indicated above each panel.
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Figure S5: Model-data comparison for the mutant pLux promoters. Experimental measurements are shown as cir-
cles, and model behavior as solid lines and lighter shaded areas. Overlaid are simulations and measurements of the
pLux76promoter (blue) and the pLas81promoter (red). Experimental measurements use the ratiometric characteriza-
tion method in [2], driving YFP with pLux76/pLas81and normalising by measurements of CFP driven by Pstd (J23101).
Model behaviors were obtained by simulating the thinned joint posterior and calculating the mean and 95% confidence
intervals. The top row has data where LuxR and LasR are expressed by pcat, while the other rows use arabinose-
inducible expression of either LuxR or LasR, as specified by the left-hand labels. The concentration of arabinose is
indicated above each panel.
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C A simplified model that has a closed-form solution

C.1 Derivation of the transfer function

We found that a closed-form solution could be obtained when making the assumption that cell growth does
not dilute the Dk and G.Dk (and accordingly Ek, G.Ek). As such, we also remove the term for plasmid
production nG. Applying this assumption leads to the following modified version of equations (2):

d[R]
dt

= nR + uRk[Rk]− [R](γ + bRk[Ck]) (22a)

d[Rk]

dt
= bRk[R][Ck] + 2uDk[Dk]− [Rk](γ + uRk + 2bDk[Rk]) (22b)

d[Dk]

dt
= bDk[Rk]

2 + uGDk[G.Dk]− [Dk](uDk + bGDk[G]) (22c)

d[G]

dt
= uGDk[G.Dk]− bGDk[Dk][G] (22d)

d[G.Dk]

dt
= bGDk[G][Dk]− uGDk[G.Dk] (22e)

Solving (22) equal to zero, we obtain the equilibria

[G.Dk]
∗ = KGDk[G][Dk], [Dk]

∗ = KDk[Rk]
2, [Rk]

∗ = KRk[R][Ck], [R]∗ =
r

1 + KRkCk
(23)

where KRk =
bRk

γ + uRk
, KDk =

bDk
uDk

, KGDk =
bGDk
uGDk

and r =
nR
γ

. Therefore (also symmetry of R and S),

[G.Dk]
∗ = KGDkKDk

(
KRk[Ck]r

1 + KRk[Ck]

)2

(24a)

[G.Ek]
∗ = KGEkKEk

(
KSk[Ck]s

1 + KSk[Ck]

)2

(24b)

where the new K’s are defined as above, and s =
nS
γ

.

By taking advantage of the conservation law [G] + [G.D6] + [G.D12] + [G.E6] + [G.E12] = constant, we
can derive the rate of production of mRNA as a function of r, s and Ck as

a0 + aRkKGRk

(
KRkCkr

1 + KRkCk

)2
+ aSkKGSk

(
KSkCks

1 + KSkCk

)2

1 + KGRk

(
KRkCkr

1 + KRkCk

)2
+ KGSk

(
KSkCks

1 + KSkCk

)2 (25)

where KGRk = KGDkKDk and KGSk = KGEkKEk.
As before, we replaced the exponent 2 of the HSL concentration with a parameter to-be-inferred, giving

a0 + aRkKGRkr2
(

KRkCk
1 + KRkCk

)n
+ aSkKGSks2

(
KSkCk

1 + KSkCk

)n

1 + KGRkr2
(

KRkCk
1 + KRkCk

)n
+ KGSks2

(
KSkCk

1 + KSkCk

)n (26)
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C.2 The functional response to combinations of C6 and C12.

In order to associate a single response function with our double receiver, we sought a transfer function
of both inputs, HSL6 and HSL12. To achieve this, we combined equations (22)b–e for the k = 6 and k =
12 and extended the expression for free LuxR (Eqn. (22)a). We then added the equivalent equations for
LasR, as in the previous sections. By solving the combined system at equilibrium, making mostly the same
simplifications/substitutions as before but additionally aR6 = aR12 = aR

1 and KGR6 = KGR12 = KGR, we
obtained the expression

a0 + aR
1 KGRr2 Kn

R6Cn
6 + Kn

R12Cn
12

(1 + KR6C6 + KR12C12)
n + aS

1 KGSs2 Kn
S6Cn

6 + Kn
S12Cn

12
(1 + KS6C6 + KS12C12)

n

1 + KGRr2 Kn
R6Cn

6 + Kn
R12Cn

12
(1 + KR6C6 + KR12C12)

n + KGSs2 Kn
S6Cn

6 + Kn
S12Cn

12
(1 + KS6C6 + KS12C12)

n

(27)
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C.3 Parameter inference

The simplified model has 6 fewer parameters than the full model. The parameter values were inferred us-
ing Filzbach, as before. The overall model performance was numerically weaker than the full model, with
the maximum likelihood being ≈ −615.5. However, all marginal posterior distributions were more con-
vincingly Gaussian-shaped (Fig. S6) than in the full model. The only parameters that were not possible to
identify were the maximum transcription rate and half-saturation constants relating to the pBad promoter.
This was not surprising, as we did not explore the upper end of the induction curve for the pBad promoter,
because we found that arabinose concentrations beyond 10 mM had adverse growth effects on the cells.
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Figure S6: Marginal posterior parameter distributions for the simplified model. The marginal parameter posterior
distributions are shown for each inferred parameter in the simplified model. Parameters for which the base-10 logarithm
is shown are those parameters which used a logarithmic proposal distribution, while other parameters had real-valued
proposals. The histograms shown represent every 50th sample out of a total of 250,000 samples in a single MCMC chain.
The maximum log-likelihood score attained was -623.7.

15



sbad

nA

KA

a1A

a0A

n

KS12

KR12

KS6

KR6

KGS81

KGS76

KGS123

KGR81

KGR76

KGR123

a1S

a1R

a081

a076

a0123

sb
adnAKA

a1
A

a0
An

KS12
KR12KS6

KR6

KGS 81

KGS 76

KGS 12
3

KGR 81

KGR 76

KGR 12
3

a1
S

a1
R

a0 81a0 76
a0 12

3
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure S7: Parameter correlations within the joint posterior parameter distribution for the simplified model. The
correlation between each pair of parameters was calculated using the thinned marginal posterior samples, using the
corrcoef function in Matlab. Strong positive correlations are indicated in blue, while strong negative correlations are
indicated in red.
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Table S6: Parameters Summary. Each parameter of the full model is defined, along with its maximum likelihood
estimate (MLE). For parameter inference, all prior distributions were uniform, with the ranges specified below. The
proposal distributions for some parameters were set to a logarithmic scale, as indicated below.

Parameter Description MLE Prior Scale

a123
0 Basal transcription rate of pLux 0.199 [0, 10] Real

a76
0 Basal transcription rate of pLux76 0.086 [0, 10] Real

a81
0 Basal transcription rate of pLas81 0.264 [0, 10] Real

aR
1 Transcription rate with LuxR regulators bound 18.47 [0, 100] Real

aS
1 Transcription rate with LasR regulators bound 8.24 [0, 100] Real

K123
GR PLux binding and tetramizeration for LuxR regulators 1.419× 100 [

10−6, 102] Log
K76

GR POLux binding and tetramizeration for LuxR regulators 8.657× 10−2 [
10−6, 102] Log

K81
GR POLas binding and tetramizeration for LuxR regulators 3.329× 10−3 [

10−6, 102] Log
K123

GS PLux binding and tetramizeration for LasR regulators 7.186× 10−2 [
10−6, 102] Log

K76
GS POLux binding and tetramizeration for LasR regulators 4.788× 10−4 [

10−6, 102] Log
K81

GS POLas binding and tetramizeration for LasR regulators 4.249× 10−1 [
10−6, 102] Log

KR6 Affinity of LuxR-HSL6 dimerization 2.076× 10−4 [
10−8, 102] Log

KR12 Affinity of LuxR-HSL12 dimerization 4.937× 10−7 [
10−8, 102] Log

KS6 Affinity of LasR-HSL6 dimerization 1.710× 10−8 [
10−8, 102] Log

KS12 Affinity of LasR-HSL12 dimerization 8.827× 10−3 [
10−8, 102] Log

n Stoichiometry of HSL molecules (see Appendix B.3) 0.797 [0.5, 2.5] Real
aA

0 Basal transcription rate of pBad 0.874 [0.0, 10.0] Real
aA

1 Maximum transcription of pBad 8864
[
10−1, 104] Real

KA Half-saturation constant of pBad induction by arabinose 6.750× 103 [
10−5, 105] Log

nA Stoichiometry of arabinose 0.99 [0.5, 2.5] Real
sbad Scale factor of LasR/LuxR levels from Pbad (see Appendix B.4) 0.282

[
10−2, 105] Log
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D Characterization using GEC

In previous work [2], computational procedures for ratiometric characterization were implemented as part
of the Visual GEC software framework [7]. While the focus there was on the characterization of a single
device, in this work the simultaneous characterization of multiple devices using a number of different data
sets is required. These devices share a number of parts and, subsequently, the computational models de-
scribing their behaviors have shared parameters. In this section, we describe the main extensions to the
GEC language and relevant methods that were implemented as a prototype within Visual GEC in order to
support the definition of (i) modules, (ii) shared parameters and (iii) module response functions, allowing
the results of this study to be reproduced directly in the GEC framework.

To allow the specification of multiple devices within GEC, we exploited the concept of modules intro-
duced in [7]. However, for the purpose of characterization, the composition of modules as part of a GEC
program was treated differently than in [7], where each module was characterized in isolation. Further-
more, we extended GEC to allow the definition of a set of parameters shared between different modules,
together with a relevant range of values for each parameter to be considered during characterization.

To allow the specification of arbitrary models describing the input/output behavior of modules, we ex-
tended the GEC language to support the annotation of modules with response functions. The responses of
simple devices such as single inducible promoters, could be described by a pre-defined response function
with unknown parameters (e.g. based on the Hill or Michaelis-Menten models), which was the approached
followed in [2]. To handle more general models, we extended the GEC language to support the defini-
tion of response functions as symbolic expressions constructed using basic arithmetic operations (addition,
subtraction, multiplication, division, exponentiation). The terms of these response functions represent con-
stants, quantities that are measured experimentally and will be provided as part of the data sets used for
characterization (e.g. the concentrations of various inducers), or the unknown, pre-defined parameters that
must be characterized.

As part of the study presented in this paper, the extensions to GEC described above allowed us to rep-
resent the devices that were considered for characterization (Table S4), the (shared) model parameters from
Table S6 and the response functions for each device derived in Appendix C (Program S1). A prototype
command-line implementation (available from http://biology.azurewebsites.net/gec/beta/LuxLasGEC.

zip) processed the experimental data to compute the relative steady-state expression observed in each con-
dition, and then constrained all parameters of the response functions simultaneously. Currently, this pro-
totype has limited visualization functionality and, therefore, Matlab was used to visualize the resulting
parameter posteriors and models. The models, which were encoded as the response functions defined as
part of the GEC program, were exported automatically as Matlab functions.

The concept of GEC modules, together with the support of of parameterized modules, allowed a concise
definition of the devices considered in this study. Furthermore, the annotation of GEC modules with re-
sponse functions provided a convenient strategy for formalizing the structure of devices (as in [7]) together
with their hypothesized behavior. However, at present our method does not implement methods to assure
that the response function proposed for a module describes its behavior adequately and response functions
are treated as assumptions encoded directly by the user.
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Program S1: GEC program for characterization of pLux promoters

1 directive parameters [

2 a0, (0.0, 10.0), 0.14, real, random

3 ; a1R, (0.0, 100.0), 10.0, real, random

4 ; a1S, (0.0, 100.0), 10.0, real, random

5 ; KGR_123, (1e-6, 1e2), 1e-2, log, random

6 ; KGS_123, (1e-6, 1e2), 1e-2, log, random

7 ; KGR_76, (1e-6, 1e2), 1e-2, log, random

8 ; KGS_76, (1e-6, 1e2), 1e-2, log, random

9 ; KGR_81, (1e-6, 1e2), 1e-2, log, random

10 ; KGS_81, (1e-6, 1e2), 1e-2, log, random

11 ; KR6, (1e-10, 1e2), 1e-2, log, random

12 ; KS6, (1e-10, 1e2), 1e-6, log, random

13 ; KR12, (1e-10, 1e2), 1e-8, log, random

14 ; KS12, (1e-10, 1e2), 1e-2, log, random

15 ; n, (0.5, 2.5), 2.0, real, random

16 ; Aa0, (0.0, 10.0), 0.0, real, random

17 ; Aa1, (0.0, 300.0), 10.0, real, random

18 ; AK, (1e-12, 1e5), 1.0, log, random

19 ; An, (0.0, 10.0), 1.0, real, random

20 ; sbad, (1e-2, 1e5), 1.0, log, random]

21

22 module PcatLL(KGR, KGS, pLux) {

23 response {

24 PoPS = ((a0 + a1R*KGR*(1.0**2.0)*(((KR6**n)*(C6**n) + (KR12**n)*(C12**n))/((1.0 + KR6*C6 +

KR12*C12)**n)) + a1S*KGS*(1.0**2.0)*(((KS6**n)*(C6**n) + (KS12**n)*(C12**n))/((1.0 +

KS6*C6 + KS12*C12)**n)))/(1.0 + KGR*(1.0**2.0)*(((KR6**n)*(C6**n) +

(KR12**n)*(C12**n))/((1.0 + KR6*C6 + KR12*C12)**n)) + KGS*(1.0**2.0)*(((KS6**n)*(C6**n)

+ (KS12**n)*(C12**n))/((1.0 + KS6*C6 + KS12*C12)**n)))) }

25 pCat:prom; b0034:rbs; luxR:pcr; b0034:rbs; lasR:pcr; ter; pLux:prom; b0034:rbs; eYFP:pcr; ter;

pCI:prom; b0034:rbs; eCFP:pcr; ter };

26

27 module PcatR(KGR, pLux) {

28 response {

29 PoPS = ((a0 + a1R*KGR*(1.0**2.0)*(((KR6**n)*(C6**n) + (KR12**n)*(C12**n))/((1.0 + KR6*C6 +

KR12*C12)**n)) )/(1.0 + KGR*(1.0**2.0)*(((KR6**n)*(C6**n) + (KR12**n)*(C12**n))/((1.0 +

KR6*C6 + KR12*C12)**n)))) }

30 pCat:prom; b0034:rbs; luxR:pcr; ter; pLux:prom; b0034:rbs; eYFP:pcr; ter; pCI:prom; b0034:rbs;

eCFP:pcr; ter };

31

32 module PcatS(KGS, pLux) {

33 response {

34 PoPS = ((a0 + a1S*KGS*(1.0**2.0)*(((KS6**n)*(C6**n) + (KS12**n)*(C12**n))/((1.0 + KS6*C6 +

KS12*C12)**n)) )/(1.0 + KGS*(1.0**2.0)*(((KS6**n)*(C6**n) + (KS12**n)*(C12**n))/((1.0 +

KS6*C6 + KS12*C12)**n)))) }

35 pCat:prom; b0034:rbs; lasR:pcr; ter; pLux:prom; b0034:rbs; eYFP:pcr; ter; pCI:prom; b0034:rbs;

eCFP:pcr; ter };

36

37 module PbadR(KGR, KGS, pLux) {

38 response {

39 PoPS = ((a0 + a1R*KGR*(1.0**2.0)*(((KR6**n)*(C6**n) + (KR12**n)*(C12**n))/((1.0 + KR6*C6 +

KR12*C12)**n)) + a1S*KGS*((sbad * ((Aa0*AK**An + Aa1*Ara**An)/(AK**An +

Ara**An)))**2.0)*(((KS6**n)*(C6**n) + (KS12**n)*(C12**n))/((1.0 + KS6*C6 +

KS12*C12)**n)))/(1.0 + KGR*(1.0**2.0)*(((KR6**n)*(C6**n) + (KR12**n)*(C12**n))/((1.0 +
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KR6*C6 + KR12*C12)**n)) + KGS*((sbad * ((Aa0*AK**An + Aa1*Ara**An)/(AK**An +

Ara**An)))**2.0)*(((KS6**n)*(C6**n) + (KS12**n)*(C12**n))/((1.0 + KS6*C6 +

KS12*C12)**n)))) }

40 pCat:prom; b0034:rbs; luxR:pcr; ter; pLux:prom; b0034:rbs; eYFP:pcr; ter; pCI:prom; b0034:rbs;

eCFP:pcr; ter |

41 pBad:prom; b0034:rbs; lasR:pcr; ter };

42

43 module PbadS(KGR, KGS, pLux) {

44 response {

45 PoPS = ((a0 + a1R*KGR*(((Aa0*AK**An + Aa1*Ara**An)/(AK**An +

Ara**An))**2.0)*(((KR6**n)*(C6**n) + (KR12**n)*(C12**n))/((1.0 + KR6*C6 +

KR12*C12)**n)) + a1S*KGS*(1.0**2.0)*(((KS6**n)*(C6**n) + (KS12**n)*(C12**n))/((1.0 +

KS6*C6 + KS12*C12)**n)))/(1.0 + KGR*(((Aa0*AK**An + Aa1*Ara**An)/(AK**An +

Ara**An))**2.0)*(((KR6**n)*(C6**n) + (KR12**n)*(C12**n))/((1.0 + KR6*C6 +

KR12*C12)**n))+ KGS*(1.0**2.0)*(((KS6**n)*(C6**n) + (KS12**n)*(C12**n))/((1.0 + KS6*C6

+ KS12*C12)**n)))) }

46 pCat:prom; b0034:rbs; lasR:pcr; ter; pLux:prom; b0034:rbs; eYFP:pcr; ter; pCI:prom; b0034:rbs;

eCFP:pcr; ter |

47 pBad:prom; b0034:rbs; luxR:pcr; ter };

48

49 (* Wild type Pcat devices *)

50 PcatLL{Pcat_LL123}(KGR_123, KGS_123, pLux) |

51 PcatR{Pcat_R123}(KGR_123, pLux) |

52 PcatS{Pcat_S123}(KGS_123, pLux) |

53

54 (* Wild type Pbad devices *)

55 PbadR{Pbad_LasR_R123}(KGR_123, KGS_123, pLux) |

56 PbadS{Pbad_LuxR_S123}(KGR_123, KGS_123, pLux) |

57

58 (* 76 mutant Pcat devices *)

59 PcatLL{Pcat_LL76}(KGR_76, KGS_76, pLux76) |

60 PcatR{Pcat_R76}(KGR_76, pLux76) |

61 PcatS{Pcat_S76}(KGS_76, pLux76) |

62

63 (* 81 mutant Pcat devices *)

64 PcatLL{Pcat_LL81}(KGR_81, KGS_81, pLas81) |

65 PcatR{Pcat_R81}(KGR_81, pLas81) |

66 PcatS{Pcat_S81}(KGS_81, pLas81) |

67

68 (* 76 mutant Pbad devices *)

69 PbadR{Pbad_LasR_R76}(KGR_76, KGS_76, pLux76) |

70 PbadS{Pbad_LuxR_S76}(KGR_76, KGS_76, pLux76) |

71

72 (* 81 mutant Pbad devices *)

73 PbadR{Pbad_LasR_R81}(KGR_81, KGS_81, pLas81) |

74 PbadS{Pbad_LuxR_S81}(KGR_81, KGS_81, pLas81)
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E Reducing crosstalk

E.1 Model-based determination of optimal LuxR and LasR levels

To determine the optimal LuxR and LasR levels to be used within the same cell, we used the parameterized
model to calculate a metric analogous to the signal-noise ratio for each signalling channel. Specifically, we
considered the promoter activity at≈ 1µM of HSL6 or HSL12, and varied the LuxR and LasR levels. We then
sought to maximize the ratio of HSL6 response to HSL1212 response in pLux76and the opposite in pLas81.
i.e.

max
R,S

{
f P76
6 (R, S)

f P76
12 (R, S)

·
f P81
12 (R, S)

f P81
6 (R, S)

}
(28)

This choice of cost function produced a convex optimization problem that was easy to solve numerically. In
other words, there was a clear peak combination of LuxR and LasR levels.

We can generate different responses with different combinations of (LuxR,LasR). Here we’ve optimized
for the ratio of expression, while we might well have optimized for minimal crosstalk. However, we would
expect that this comes at the cost of absolute expression.

E.2 Characterization of double receivers

Double receiver cells were created and characterized as described in the main text (also summarized in Fig-
ure 3). To force the LuxR and LasR levels closer to the model-suggested optimum (Figure 3B), the ribosome
binding sites associated with LuxR and LasR translation were modified (Figure 3A). Several different RBSes
were used, and their predicted efficiencies were obtained from the RBS calculator [3] (Table S7).

Table S7: Predicted and inferred translation of LuxR and LasR for different ribosome binding sites. Compared are
LuxR/LasR levels inferred from the modeling process with translation efficiency predicted by the RBS calculator [3].
The modeling calibrated LuxR and LasR levels with the double receiver data shown in Figure S8.

Background LuxR100 LuxR33 LasR32 LasR34 LasR175
LuxR33

LuxR100
LasR34
LasR32

LasR175
LasR32

pR100S32 1.3584 0.6409
pR100S34 0.9450 10.1890
pR33S32 5.5539 0.6583
pR33S34 4.1562 10.8429
pR33S175 5.8881 2.9688
Inferred mean 1.1517 5.1994 0.6496 10.5160 2.9688 4.8236 22.8166 6.1205

RBS calculator 372.49 96.78 37.82 518.14 168.2 3.8488 13.7002 4.4474

The transfer functions for 5 combinations of modified LuxR and LasR levels are shown in Figure S8.
These data were used to infer the relative LuxR and LasR levels in each device. Note that the units of
relative promoter activity for the double receivers was either YFP/RFP or CFP/RFP, which meant that they
needed to be converted so as to be comparable with the relative promoter activity units of YFP/CFP used
in Figures 1 and 2. As such, a CFP/RFP conversion factor was determined from measurements of YFP and
CFP in cells transformed with chromosomally integrated mRFP1 and pCatR34S34. The relative LuxR and
LasR levels inferred using the re-calibrated data are quantified in Table S7.

Constructs in which LasR translation was regulated by RBS Bba B0034 (pR100S34, pR33S34) displayed a
transfer function whose shape was not well fit by the model. The presence of a peak at lower concentrations
of 3OC12-HSL, dipping to a lower plateau at higher concentrations suggests a regulatory mechanism for
which we are not accounting in our model that is revealed only when LasR is expressed at very high levels.
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Figure S8: Characterization of double receivers. Activity (relative to chromosomal constitutive mRFP1) of pLux76
(eCFP, blue) and pLas81 (eYFP, red) in the double receiver variants as a function of 3OC6-HSL (A) or 3OC12-HSL (B).
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Figure S9: Comparison of LasR variants. Activity (relative to chromosomal constitutive mRFP1) of pLux76 (CFP/RFP)
and pLas81 (YFP/RFP) in response to increasing concentrations of 3OC6-HSL (A) or 3OC12-HSL (B) was measured for
construct pR33S175 containing either a LasR variant with the E11K substitution (red points) or WT LasR (blue points).
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F Modelling spatio-temporal dynamics resulting from HSL diffusion

F.1 Characterization of HSL diffusion and sender cells

To characterize the diffusion and detection of HSLs in receiver cells, we formulated a spatial model for
comparison with the experiments in Fig. 3. Cell growth is modelled using the Gompertz function [8].
We then assume that the rate of fluorescent protein synthesis is proportional to the cell density at a given
location and the promoter activity of each promoter in response to each HSL molecule. Based on the 1-
dimensional reaction-diffusion equations, this becomes

[NR](t) = Kelog( c0
K )e−rt

(29a)

∂[C6]

∂t
= −γHSL[C6] + D6

∂2[C6]

∂x2 (29b)

∂[C12]

∂t
= −γHSL[C12] + D12

∂2[C12]

∂x2 (29c)

∂[iCFP]
∂t

= αC[N]. f76(R, S, [C6], [C12])− (γFP + µ)[iCFP] (29d)

∂[iYFP]
∂t

= αY[N]. f81(R, S, [C6], [C12])− (γFP + µ)[iYFP] (29e)

∂[iCFP]
∂t

= µ[iCFP]− γFP[CFP] (29f)

∂[iYFP]
∂t

= µ[iYFP]− γFP[YFP] (29g)

where NR is the density of receiver cells, and iCFP/iYFP are the immature forms of CFP/YFP. D6 and D12
are the HSL diffusion rates, f76 and f81 are the promoter responses to HSL molecules, as derived previously,
µ is the rate of fluorescent protein maturation and γFP is the fluorescent protein degradation rate. This
simple model implicitly incorporates the following assumptions:

• The mRNA dynamics are faster than the protein dynamics, allowing their contribution to be incorpo-
rated into the synthesis of fluorescent protein

• Cells are immotile

To describe HSL sender cells at each end of the domain, we assume that the cells synthesize HSL at a
constant rate, so bulk synthesis is proportional to the density of each sender cell type. i.e.

[NS6](t) = Kelog( c0
K )e−rt

(30a)

[NS12](t) = Kelog( c0
K )e−rt

(30b)

∂[C6]

∂t
= NS6.α6 − γHSL[C6] + D6

∂2[C6]

∂x2 (30c)

∂[C12]

∂t
= NS12.α12 − γHSL[C12] + D12

∂2[C12]

∂x2 (30d)

(30e)

where α6 and α12 are the per-capita rates of HSL production in each sender cell. The initial conditions of the
simulation are then imposed to correspond to the experimental setup, specifying an initial density of each
cell type in the relevant locations. Finally, we note that all spatial simulations in this article used zero-flux
boundary conditions.
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Inferring cell growth parameters

Since f76 and f81 had already been parameterized from steady-state measurements of fluorescence protein
production (Figs. 1 & 2), the remaining unidentified parameters in the system were r, γHSL, D6, D12, γFP,
α6 and α12. We fitted r and γFP separately, since they could be obtained purely from the RFP channel of the
dataset. We approximated r using the measured RFP traces in the plate of Fig. 3, fitting the parameters of
the growth model. Briefly, the model is given by

d[RFP]
dt

= c(t; r, 1, c0)− γRFP[RFP] (31)

where c(t) is the solution to the growth model being used, with growth rate r, carrying capacity assumed
equal to 1, and initial cell density c0. To relate the simulation to the fluorescence data, an optimal scale factor
λ was selected, and a cost function defined as

∆R = ∑
k
(yR(tk)− λ.[RFP](tk))

2 (32)

where yR(tk) is the mean measured RFP signal at time t = tk. The value of λ was evaluated using standard
linear regression techniques (with a zero intercept). The then used the fminsearch function in Matlab to
find solutions to the minimization problem

min
r,c0,γFP

∆R (33)

We obtained a very close fit to the data (Fig. S10; see Table S8 for parameter values).
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Figure S10: Fitting the Gompertz growth parameters to RFP data. The Gompertz growth parameters were inferred
using the fminsearch function in Matlab. Shown are the RFP measurements from each cell colony (grey dots), their
average at each time-point (solid black line), and the model simulation of best fit parameters (dashed red line). See
Table S8 for parameter values.

Inferring HSL parameters

The remaining uncharacterized parameters were inferred from the data in Fig. 3 of the main text. We used
a similar approach to that taken above, using fminsearch to minimize a cost function with a scale param-
eter λ that is calculated using linear regression. The cost function combined data for each of the 5 double
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receiver cell types shown in Fig. 3 of the main text. Additionally, each fluorescent signal was normalized by
dividing the maximum fluorescence observed over the entire experiment, maintaining relative differences
in fluorescence between each double receiver cell type, but removing differences in the absolute scales of
CFP and YFP. Therefore, we can write the cost function as

∆CY = ∑
d

∑
k
(yC(tk)− λ.[CFP](tk))

2 + (yY(tk)− λ.[YFP](tk))
2 (34)

where d ∈ {pR33S34, pR33S175, pR33S32, pR100S34, pR100S32} (see Table S1 for details).
The estimate of γFP for the RFP data was used as an approximation of γFP for the CFP and YFP variables

in (29), reducing the number of parameters to be inferred. The remaining parameters were γHSL, D6, D12,
α6 and α12. These were fit simultaneously using fminsearch against the CFP and YFP data. A comparison
of the data against simulation of the best fit parameters is shown in Fig. 3, and uses the parameters values
summarized in Table S8.

Table S8: Summary of optimized parameters for the spatial model of double receivers and HSL diffusion.

Parameter Description Value (Figure 3E) Value (Figure S11)

r Cellular growth rate 6.50× 10−5 s−1 6.22× 10−5 s−1

c0 Initial cell density 4.72× 10−4 3.99× 10−4

γFP Turnover of fluorescenct protein 8.38× 10−5 s−1

µ Maturation of CFP/YFP 2.80× 10−4 s−1 8.60× 10−5 s−1

γHSL Turnover of HSL 1.63× 10−4 s−1 3.32× 10−5 s−1

α6 Production of 3OC6-HSL in sender cells 0.41 nM s−1 N/A
α12 Production of 3OC12-HSL in sender cells 0.0067 nM s−1 N/A
D6 Diffusion of 3OC6-HSL 9.91× 10−10 m2 s−1 3.79× 10−10 m2 s−1

D12 Diffusion of 3OC12-HSL 1.56× 10−10 m2 s−1 1.99× 10−10 m2 s−1

F.2 Re-characterizing the pLas81 response

Due to the inaccuracy of the simplified model with respect to the YFP measurements in pR33S175 (Fig. S8B,
bottom panel), we decided to use an alternative model of the pLas81 response to 3OC12-HSL. We used a
Hill function defined and parameterized as

h81([C12]) =
a1[C12]

n + a0Kn

[C12]n + Kn , (35)

which enabled a close fit to the 3OC12-HSL response (Figure S11A). The optimized parameter values were
a1 = 9.0701 RPU, a0 = 0.1945 RPU, K = 111 nM, n = 0.96.

We then used the Hill function model of the pLas81 response, in combination with the original simpli-
fied model of the pLux76 response, to characterize the diffusion and degradation of HSL molecules. The
characterization used experimental data from an assay that was similar to the setup in Figure 3D of the
main text. However, here the HSL was pipetted into the left and rightmost grid cells, instead of using HSL
sender cells. In this way, we were able to parameterize system (29) without needing to also fit parameters
for the rate of HSL synthesis. The model was able to fit well to the early increase in CFP and YFP expression,
though poorly reproduced the levelling off and decline in CFP signal after approximately 15 hours (Figure
S11B,C). This indicated that the simplistic approach of modelling HSL degradation proportional to its local
concentration was possibly insufficient. Further refinements could include using HSL-specific degradation
rates, and/or making HSL degradation proportional to cell density.
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Figure S11: Using a Hill function to model the pLas81 response of pR33S175. (A) The parameters of the Hill function
were optimized using fminsearch to solve a least-squares cost function in Matlab. The optimal values were a1 = 9.07,
a0 = 0.19, K = 111 and n = 0.96. (B,C) The HSL diffusion rates and an HSL degradation rate were fit to experimental
measurements of a spatial receiver assay. The assay was similar to the setup in Figure 3D, except that HSL was pipetted
at a concentration of 50 µM into the left- and rightmost grid cells, instead of using HSL senders. The optimal parameters
were determined to be D6 = 3.79× 10−10 m2 s−1, D12 = 1.99× 10−10 m2 s−1, and γHSL = 3.32× 10−5 s−1.

F.3 Characterization of relay sender devices

To characterize the LuxI and LasI enzymes in the spatial assay system, we measured double receiver cells re-
sponding to diffusion of LuxI-synthesized 3OC6-HSL emanating from 3OC12-HSL-inducible cells (pLas81-
LuxI; Figure 4A) and diffusion of LasI-synthesized 3OC12-HSL emanating from 3OC6-HSL-inducible cells
(pLux76-LasI; Figure 4B). When using the simplified model for the pLux76 and pLas81 responses, we found
that the YFP channel data could not be accurately modelled (not shown). To prevent these inaccuracies
from biasing the characterization of LuxI and LasI, we used the Hill function model for pLas81 and the
corresponding HSL diffusion and degradation rates characterized in Figure S11. Comparison of this model
setup with the experimental data is shown in Figure 4C,D of the main text.

The model for the relay sender cells was similar to the model of the double receiver cells (Eqn. 29).
The crucial difference here is that LuxI/LasI are explicit dynamic quantities. By denoting I6 as the non-
dimensionalized concentration of LuxI and I12 as the non-dimensionalized concentration of LasI, we can
write down a model for the relay sender cells as:

[NS](t) = KSelog
(

c0
KS

)
e−rS .t

(36a)
[Ci] = C0 (36b)

Ij = αI j f − dI j Ij (36c)

∂[Cj]

∂t
= bj

I
nI j
j

1 + I
nI j
j

− γHSL[Cj] + Dj
∂2[Cj]

∂x2 (36d)

∂[iCFP]
∂t

= αC[N]. f76(R, S, [C6], [C12])− (γFP + µ)[iCFP] (36e)

∂[iYFP]
∂t

= αY[N].h81([C12])− (γFP + µ)[iYFP] (36f)

∂[iCFP]
∂t

= µ[iCFP]− γFP[CFP] (36g)

∂[iYFP]
∂t

= µ[iYFP]− γFP[YFP] (36h)
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where (i, j, f ) = (6, 12, f76) for pLux76-LasI and (i, j, f ) = (12, 6, h81) for pLas81-LuxI. According, Ci denotes
the concentration of the input HSL and Cj denotes the concentration of the induced HSL.

Inferring cell growth parameters

As before, the cell growth parameters were inferred separately, since these could be extracted from the RFP
data. The method of Appendix F.1 was used, but with separate growth curves for the relay senders cells
and double receiver cells, and also for each concentration of HSL input. For each input concentration, the
relay sender and double receiver models were fit to the data simultaneously. The cell densities were scaled
relative to the double receiver cells, with a relative carrying capacity inferred for the relay senders. By fitting
simultaneously, we could use the same RFP degradation rate and the same model-data scaling (c.f. Eqn. 32).
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Figure S12: Characterization of cell density using RFP fluorescence data. Characterization of cell growth in exper-
iments measuring double receiver cells and (A) pLas81-LuxI relay sender cells or (B) pLux76-LasI sender cells, in re-
sponse to 3OC6-HSL or 3OC12-HSL as indicated above each panel. RFP measurements are indicated by the dots, with
the model indicated by dashed lines. Red lines/symbols indicate relay sender cells, while blue lines/symbols indicate
double receiver cells.

Inferring relay enzyme parameters

The remaining parameters were inferred from the data in Fig. 4A and 4B of the main text. We used the same
approach to that taken above, using fminsearch to minimize a cost function with a scale parameter λ that is
calculated using linear regression. The LuxI and LasI components were characterized separately however,
fitting aLuxI, b6 and nLuxI to the data in Fig. 4A, and then aLasI, b12 and nLasI to the data in Fig. 4B (see Table
S9 the optimized values). The cost function combined data for both the CFP and YFP measurements, and
had an equivalent form to Eqn. 34. The primary responses of each relay circuit are compared in Fig. S13,
while the secondary responses are compared in Fig. 4C,D in the main text.
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Table S9: Summary of optimized parameters for the spatial model of relay senders.

Parameter Description Value

aLuxI Rate of luxI synthesis 7.63× 10−5 nM s−1

aLasI Rate of lasI synthesis 8.00× 10−5 nM s−1

dI Rate of LuxI/LasI degradation 10−3 s−1

b6 Rate of 3OC6-HSL synthesis 0.47
b12 Rate of 3OC12-HSL synthesis 0.096

nLuxI Hill coefficient for LuxI-mediated 3OC6-HSL synthesis 3.21
nLasI Hill coefficient for LasI-mediated 3OC12-HSL synthesis 1.84
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Figure S13: Double receiver cells respond to relay cells in a concentration-dependent manner. Comparison of the
model against experimental measurements for double receiver cells responding to (A) 3OC12-HSL or (B) 3OC6-HSL.
The data shown are from the same experiment as shown in Figure 4 of the main text, here reporting the alternative
fluorescence channel. RFP measurements are indicated by the solid lines, with the model indicated by dashed lines.
Each color indicates a different grid cell, numbered by their distance from the relay sender cells.
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F.4 Simulation of relay cells in a checkerboard arrangement

Simulations were carried to determine whether it was possible to predict complex 2-dimensional spatiotem-
poral behaviors, using parameter values calibrated as described above. By placing the two relay cell types
in a checkerboard arrangement, as reported in Fig. 5D, a positive feedback is created, though diffusion
is required to transduce the feedback signals. However, in the induced variant, both cell types are able to
communicate with one another with short range cell-cell communication.

The model was initialized in a checkerboard pattern, with both cell types in the central 8x8 grid cells, 
then simulated as a 2-dimensional PDE with zero-flux boundary conditions. With the parameters quantified 
in Tables S8 and S9, we found that the positive feedback was not sufficiently s trong t o e xhibit inducible 
behavior, and stabilized at a spatially uniform equilibrium with low levels of HSL and CFP/YFP. We found 
that by increasing the rate of LuxI/LasI transcription by a factor 5 or greater, that the simulations did exhibit 
inducible behavior (Fig. EV3A, Movie S2). Therefore, the first observation is that the model predictions are 
qualitatively incorrect.

Our interpretation is that diffusion stabilizes the system at low levels unless LuxI/LasI is strong enough 
to force the system to the higher equilibrium. To illustrate this bifurcation, we simulated the positive feed-
back loop in LuxI/LasI/3OC6-HSL/3OC12-HSL in spatially homogeneous conditions (i.e. without diffu-
sion). We found that a bifurcation exists when increasing LuxI/LasI transcription rates past a scale factor 
1.7, switching from a low to a high equilibrium in all components (Fig. EV3B). We suggest that when there 
is diffusion, HSL dissipates from the central region, which contributes an opposing force against the pos-
itive feedback, thus moving the position of the bifurcation. This helps to explain why a larger increase in 
LuxI/LasI transcription would be needed to reproduce the inducible behaviors.
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