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S.1 Derivation of the Efficient Score

Having obtained both the score function and the two spaces A and A+, we only need to
project the score function onto A+ to obtain the efficient score S.g. To do this, we write
Sy =S—ES|D)=g(e,X) = E(g | D)+ Ser, where Fiue(g) = Fue(eg | X) = 0. We
alternatively write Seg = S — g(e, X) — E(S — g | D) and S satisfies E{Scq — E(Seq | D) |
€, X} > (Ng/N)H(d,x,Y)/pi(d) = ea(X) and E(Ser) = 0. However, E(Se | d) = 0 au-
tomatically, hence we can ignore the second requirement and the first requirement simplifies
to E(Se | €,X) > ,(Ng/N){H(d,X,Y)/pi(d)} = ea(X). This gives

mm{;%%} —E(S—g|eX)—E{E(S—g|D)|eX}.

It follows that

~1
foixy(d,x,y) = Na H(d, x, y) { NdM}

N &N @)
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To simplify notation, in the following calculation we denote

o = pEe(0) = / 1 () na(e, ) H (0, %, y)da (x)dpy):

mo= ) = [ om0 x )du(x)du(s)
bo = E{fpxy(1,X,Y)|D=0};
by = E{fpxy(0,X,Y)|D =1}
co = E(S|D=0)—E{ES|eX)|D =0}
¢, = E(S|D=1)—E{ES|eX)| D=1}
Rxy) = [CaofNaH(d,x,y)}/(Nma)]
uy = E{ea(X)k(X,Y) | D =0};
w = ElaX)r(X,Y)|D=1};
Vo = (S g | D = 0)7
vi = E(S-g|D=1).

Note that T+ T = 1, boN() = blNl, CQNO + C1N1 =0 and VT + V17T = 0.
Under a true model, 7, 71, bg, b1, cg, ¢; are known quantities, while uy, uy, vg, v; are not

known because g = g(¢,x) and a = a(x) are not specified. To further obtain uy, uy, v, vy,
ca(x)k(x,y) = ES-gl|eX=x)—vofpxy(0,%x,y) —vifoxy(l,x,y)
= ES|e,X=x)-g—vofpxy(0,x,y) — vifpxy(l,x,y).

Alternatively, we also have

g(E,X) = E(S | €, X = X) - Ea(X)K&(X, y) - VOfD|X,Y(07X7 y) - VlfD|X,Y(17Xa y) (Sl)
Since vo = E(S —g | D = 0), we obtain
vo = E(S|D=0)-FE{ES|¢X)—-ea(X)s(X,Y)

—vofpxy(0,X,Y) = vifpxy(1,X,Y) | D=0}
= Cg+ug+ Vo(l — bo) + Vlbo.

Thus, we have byvg — byvi — 1y = ¢g. Similarly, from v; = F(S —g | D = 1), we obtain

vi = E(S|D=1)-FE{ES|eX)—-ea(X)x(X,Y)
_VOfD|X,Y(07X7 Y) - VlfD|X,Y(17X7Y) | D= 1}
= ci+u +vob +vi(l—by).
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Thus, we have —b;vy + byvy — u; = ¢;. Since
El{eca(X)r(X,Y)} =0,

we have ugNy + u; Ny = 0. Since Eio(S — g) = 0, we have
0 = Z /(S - g)fX,Y\D(Xv Y, d){f)t;:l)s,D(X7 Y, d)/fX,Y\D(X7 Y, d)}dﬂ(x)d,u(y)
d

= Z/(S - g)fX,Y\D(Xayad){f)t(r,u}s,D<X7y7d)/f)t(rgs\D()gyvd)}dﬂ(x)d:u(y)

= 3 [8 - @hfxriole v <))

= ToVo + T1Vy.
Combining the above relations, we have obtained Nouy + Nyu; = 0, myvg + mvy = 0,
bovg — bgvi —ug = ¢ and —b1 vy + b1vi — u; = ¢q. The last two equations are equivalent so
one is redundant. Using these relations, we can rewrite uy, vg, vi as a function of uy:

u; = —(No/Nl)UQ, Vg = (7T1/b0)(1l0 + C()), Vi = —(7T()/b()>(ll() + Cg). (82)

We cannot obtain a more explicit expression for uy at this stage, but we can further obtain

a(x) as a function of ug. Using (S.1) and since Eie(eg | X) = 0, we have
By {eE(S | €,X) | X} — Eine {€8(X,Y) | X} a(X)
—VoFEirue {efD|X’y(O,X, Y) | X} — V1 Firue {efD|X,y(1,X, Y) | X} =0.
Hence
aX) = [Eue{n(X,Y) | X}]™
[Eie {eE(S | €, X) | X} = VoEuue {efpjx.y(0,X,Y) | X}
— V1 Firue {EfD\X,Y(LXaY) | X}]
= [Buue {€R(XY) | X} [ {eE(S | €.X) | X}
—(m1/bo) (1o + €o) Erue {€fp1x,v (0, X,Y) | X}
+(m0/bo) (1 + €0) Eerue { €fpixy (1, X, Y) | X}
To further simplify notation, denote
H(X) = [Bwe {ER(X,Y) | X} (S.3)
t2(X) = Euue {eE(S | €, X) | X} = (m1/b0)coBrrue {€fpx,y (0, X,Y) | X}
+(70/bo)CoEtrue {€fp1x,y (1, X,Y) | X}
= Buue{eE(S | €. X) | X} = (co/bo) Burue {efpxy (0, X,Y) | X}
t5(X) = —(m1/bo)Eirue {€fD1x,v (0, X,Y) | X} + (70/b0) Etrve {€fp1x,v (1, X,Y) | X}
= —by" Euue {e/D1xy(0,X,Y) | X}.
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Then
a(x) = t1(x){ta(x) + t3(x)ug}, (S.4)
hence the definition of ug yields

uy = E(e[tr(X){2(X) + 13(X)uo}| £(X,Y) | D = 0)
= Eleti(X)to(X)r(X,Y) | D = 0] + E [et,(X)t3(X)x(X, Y) | D = 0] up.

This yields
u = (1-FElet1(X)t3(X)r(X,Y) | D = 0])71 Elet1(X)t2(X)k(X,Y) | D =0].(S.5)

Combining the above results, we have obtained the analytic form of S;g = S—g—E(S—g |
D = d), where g is given in (S.1), a(x) is given in (S.4), v, vy are given in (S.2) ug is given
in (S.5) and the functions t;, to, t3 are given in (S.3).

In forming the estimating equation 3., S = 0, we will have Y. [S(X;,Y;, D;) —
g{V; —m(X;,8),X;}] — NoE(S—g | D=0)—N,ES—g|D=1)=0. Using (S.1), we

obtain
ES—g|D=0) = ES|D=0)—FE{ES|¢X)|D=0}+ FE{ea(X)s(X,Y) | D=0}
Vo {fpoixy(0,X,Y) | D=0} + viE{fpxy(1,X,Y) | D =0}
= Cp+Uug+ Vo(l — bo) + V1b0

and

ES—-g|D=1) = ES|D=1)—FE{ES|¢X)|D=1}+ E{ea(X)s(X,Y) | D =1}
+voE{fpixy(0,X,Y) | D =1} +viE{fpxy(1,X,Y) | D = 1}
= C1+U1+V0b1+V1(1—b1),

hence

NES—-g|D=0)+NES—-g|D=1)
N(){CO =+ L8 ) =+ Vo(]_ — bo) + Vlbg} + Nl{Cl + u; =+ Vobl =+ Vl(]_ — bl)}
(N()C() + N1C1) -+ (Nouo —+ Nlul) + (NQVO + N1V1) + (V1 — VQ)(NobO — Nlbl)-

Thus, the estimating equation simplifies to S_~ [S(X;, Y;, D;) — g{Y; — m(X;, 8), X,}] —
N(]Vo — N1V1 = 0.
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S.2 Verification of Assumptions 1-2 in the Linear Model

as in Remark 2

Let D¢ = [- K, K| for a sufficiently large K. We have assumed that the conditional distri-
bution of € satisfies the property that pr(|¢] > K|X = x) — 0 as K — oo uniformly in x,
and hence pr(e € D) can be made arbitrarily small uniformly in x.

Without loss of generality, assume the first component of a; + 3,5 is not zero. We
consider three situations, 1. EC — B, #0, 2. EC — B. = 0 and the first component of Bl - B4
is not zero and 3) EC — B, = 0 and the first component of Bl — B, is zero. Note that €
has conditional mean zero. Thus for most common density functions with bounded variance
function, this requirement is satisfied.

Case 1 and Case 2: If the first component of a; + 3,y is positive, let ¢; = (00, 0T)7T,
otherwise, let ¢; = (—o00,0")T. Let ¢y = 0, D¢ = [~ K, K| for a sufficiently large K. Then

Sup hm |(1 + eXp[aC + u{x,m(x, /6) + €, (q, 052}])71 - CQ‘

ecDe X—C1

= sup lim |[1 +exp{a. +x" (g + B a2) + Beay + e} !

7K§E§K X—C1

= 0.

Finally, since D = (—o0, —K) U (K, 00), we have that every element u € D satisfies u > 1
as long as K > 1. We have thus verified Assumption 1.

We have ¢(8,8) = cT(8, — 3,) + (8. — 8,), which is not zero if 3, — 8, # 0 (case 1),
and is also not zero if the first component of Bl — 3, is not zero (case 2). Thus, Assumption
2 also holds.

Case 3: Since E # 3, without loss of generality, we assume the second component of
,51 — B, is not zero in this case. We select c; as follows. If the first component of o + 3, s
is positive and the second component of a; + By is non-negative, let ¢; = (00, 00,0T).
If the first component of oy + B;as is positive and the second component of a; + B;s
is negative, let ¢; = (0o, —00,0T)T. If the first component of a; + B, is negative and
the second component of a; + B, is non-negative, let ¢; = (—o00,00,0%)T. If the first
component of a; + B,s is negative and the second component of o + 3,5 is negative,
let ¢; = (—o00,—00,0")T. The selection of ¢y, D, K remains the same as in Cases 1 and
2. We an see the same arguments lead to the verification of Assumption 1. In addition,
C(B,B) = clT(B1 — [3;,), which is either oo or —oco, and is thus not zero. Thus, Assumption
2 also holds.
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S.3 Verification of Nonidentifiability in the Special

Case in Remark 2

Here, we provide the details of the proof of the nonidentifiability result in Remark 2, which
happens when when m(x,8) = x'3; + 8. and u(x,y, a1, a.) = x @y + yas + a,, and
oy + Bias = 0. We first exclude a special case when ay = 0. This special case implies
a; = 0 and ay = 0, hence the case-control sampling is in fact random sampling. Thus, in

the following, we assume as # 0, We point out that

. / 1 + exp(a, + feag + €as)
mi =

1+ exp(ac + Beaa + eaz)m(e)du(e) 70

This is because we can use the mean value theorem for integration to obtain

1+ exp(a + feag + €an)
n2(€)dp(e)

1+ exp(ae + Beavs + €as)
/0 61 + exp(a, + Beag + €as)
—oo L Hexp(ae + Beag + €as)

na(e)dpu(e) + / "ot Pt F ) o

0 T+ exp(ae + Peag + €ay)

1+ exp(d, + oy — k1) [° 1+ exp(ae + Beag + kaag) [

1+ exp(ac + Bear — kraz) /_oo era()dp(e) + 1+ exp(ae + Beas + kaas) /0 ema(€)dp(c)
1+ exp(ae + Beag + kaan) 1+ exp(a, + Beay — ki) o0

{ 1+ exp(ae + Beas + ko) 1+ exp(ae + Peag — k) } /0 m(€)dp(c)

{exp(a.) — exp(a.)} exp(Beao){exp(kocz) — exp(—kia }

{1+ exp(ae + Beag + ko) H1 + exp(ae + Beaz — kraz) }

ena(€)du(e) # 0,

where k1, ko are positive constants.

Following the notation in the proof of Proposition 1, we define ny(e, x) = 12(€),

~ o 1+ exp(ae + Beay + €ay)
= JR— d .
1 (x) ﬁl(x)/ 1+ exp(a. + Beas + EQQ)HQ(E) w(e);
B, 1+ eXp(&C + ﬁca2 + 6042) -1
c — c d 7
p e+ {/ 1 + exp(ae + Beag + Ea2>772(6) p(e) my
n: 1 + exp(ae + BcOéz + ean)

Bl€) = 1 + exp(a. + Bcozg + ean) na(€ + B = Bo),

where

772(6 + /gc - ﬁc)dp“(e)'

—1 — / 1 + exp(&c + ECOQ + ECYQ)
1+ exp(ae + Beag + ean)
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Obviously [ 7(€)du(e) = 1. We can easily verify that

N 7o 1 + exp(a. + Bea + €as)
X)du(x) = — Z
/771( )dyi(x) o m( )1 + exp(a. + Beas + €az)

n2(€)dp(e)du(x)

T -
- 0 {mo + exp(a@. — a.)m }
o

. moexp(ag)m L L
o exp(ave)

using the intermediate results in the proof of Proposition 1. We can also obtain

[m@ine) = o [t SP(Ae T feoz T e02) 1B g du(e)
1 + exp(ae + Beas + €as)

~ 1+ exp(a. + Beag + tas)
= t c — FMe
€0 /< +Be—F )1 + exp(ae + feag + tag)

me(t)dp(e) = 0.

Now we can easily verify that the two parameter sets {a., o, g, By, Be, 11 (%), m2(€)} and
{ae, o1, a2, By, Bey T (x), T2(€)} satisfy (A.1), hence the problem is not identifiable.
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Figure S.1: Boxplots of the variables in the original data scale among the controls. Each

variable has been normalized to have maximum value 1.0. This and Figure S.2 indicate a
need for data transformation.
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Figure S.2: Kernel density estimates in the original data scale, among the controls. This
and Figure S.1 indicate a need for data transformation.
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Figure S.3: Boxplots of the variables in the transformed data scale, among the controls.
Each variable has been normalized to have maximum value 1.0. Contrast with the boxplots
in the original data scale in Figure S.1.
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Figure S.4: Kernel density estimates in the transformed data scale, among the controls.
Contrast with the boxplots in the original data scale in Figure S.2
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Figure S.5: Scatterplots of transformed MelQX and PhIP against transformed Red Meat,
among the controls.



